Luke
 

Assessment of the Performance of a Field Weeding Location-Based Robot Using YOLOv8

dc.contributor.authorPalva, Reetta
dc.contributor.authorKaila, Eerikki
dc.contributor.authorGarcía-Pascual, Borja
dc.contributor.authorBloch, Victor
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210710
dc.contributor.orcidhttps://orcid.org/0000-0003-4165-613X
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-01-20T13:34:07Z
dc.date.accessioned2025-05-28T08:53:50Z
dc.date.available2025-01-20T13:34:07Z
dc.date.issued2024
dc.description.abstractField robots are an important tool when improving the efficiency and decreasing the climatic impact of food production. Although several commercial field robots are available, the advantages, limitations, and optimal utilization methods of this technology are still not well understood due to its novelty. This study aims to evaluate the performance of a commercial field robot for seeding and weeding tasks. The evaluation was carried out in a 2-hectare sugar beet field. The robot’s performance was assessed by counting plants and weeds using image processing. The YOLOv8 model was trained to detect sugar beets and weeds. The plant and weed densities were compared on a robotically weeded area of the field, a chemically weeded control area, and an untreated control area. The average weed density on the robotically treated area was about two times lower than that on the untreated area and about three times higher than on the chemically treated area. The testing robot in the specific testing environment and mode showed intermediate results, weeding a majority of the weeds between the rows; however, it left the most harmful weeds close to the plants. Software for robot performance assessment can be used for monitoring robot performance and plant conditions several times during plant growth according to the weeding frequency.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange10 p.
dc.identifier.olddbid498591
dc.identifier.oldhandle10024/556019
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14889
dc.identifier.urlhttp://dx.doi.org/10.3390/agronomy14102215
dc.identifier.urnURN:NBN:fi-fe202501205885
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4111
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMDPI
dc.relation.articlenumber2215
dc.relation.doi10.3390/agronomy14102215
dc.relation.ispartofseriesAgronomy
dc.relation.issn2073-4395
dc.relation.numberinseries10
dc.relation.volume14
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556019
dc.subjectweeding robot
dc.subjectfield robot
dc.subjectweed detection
dc.subjectrobot performance
dc.subjectfield monitoring
dc.teh41007-00267601
dc.titleAssessment of the Performance of a Field Weeding Location-Based Robot Using YOLOv8
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
agronomy-14-02215-v2.pdf
Size:
4.55 MB
Format:
Adobe Portable Document Format
Description:
agronomy-14-02215-v2.pdf

Kokoelmat