Luke
 

A computationally efficient algorithm to leverage average information REML for (co)variance component estimation in the genomic era

dc.contributor.authorStrandén, Ismo
dc.contributor.authorMäntysaari, Esa A.
dc.contributor.authorLidauer, Martin H.
dc.contributor.authorThompson, Robin
dc.contributor.authorGao, Hongding
dc.contributor.departmentid4100111010
dc.contributor.departmentid4100210310
dc.contributor.departmentid4100210310
dc.contributor.departmentid4100210310
dc.contributor.orcidhttps://orcid.org/0000-0003-0161-2618
dc.contributor.orcidhttps://orcid.org/0000-0002-6018-0766
dc.contributor.orcidhttps://orcid.org/0000-0003-0044-8473
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-11-25T11:18:39Z
dc.date.accessioned2025-05-28T08:39:48Z
dc.date.available2024-11-25T11:18:39Z
dc.date.issued2024
dc.description.abstractBackground Methods for estimating variance components (VC) using restricted maximum likelihood (REML) typically require elements from the inverse of the coefficient matrix of the mixed model equations (MME). As genomic information becomes more prevalent, the coefficient matrix of the MME becomes denser, presenting a challenge for analyzing large datasets. Thus, computational algorithms based on iterative solving and Monte Carlo approximation of the inverse of the coefficient matrix become appealing. While the standard average information REML (AI-REML) is known for its rapid convergence, its computational intensity imposes limitations. In particular, the standard AI-REML requires solving the MME for each VC, which can be computationally demanding, especially when dealing with complex models with many VC. To bridge this gap, here we (1) present a computationally efficient and tractable algorithm, named the augmented AI-REML, which facilitates the AI-REML by solving an augmented MME only once within each REML iteration; and (2) implement this approach for VC estimation in a general framework of a multi-trait GBLUP model. VC estimation was investigated based on the number of VC in the model, including a two-trait, three-trait, four-trait, and five-trait GBLUP model. We compared the augmented AI-REML with the standard AI-REML in terms of computing time per REML iteration. Direct and iterative solving methods were used to assess the advances of the augmented AI-REML. Results When using the direct solving method, the augmented AI-REML and the standard AI-REML required similar computing times for models with a small number of VC (the two- and three-trait GBLUP model), while the augmented AI-REML demonstrated more notable reductions in computing time as the number of VC in the model increased. When using the iterative solving method, the augmented AI-REML demonstrated substantial improvements in computational efficiency compared to the standard AI-REML. The elapsed time of each REML iteration was reduced by 75%, 84%, and 86% for the two-, three-, and four-trait GBLUP models, respectively. Conclusions The augmented AI-REML can considerably reduce the computing time within each REML iteration, particularly when using an iterative solver. Our results demonstrate the potential of the augmented AI-REML as an appealing approach for large-scale VC estimation in the genomic era.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange10 p.
dc.identifier.citationHow to cite: Strandén, I., Mäntysaari, E.A., Lidauer, M.H. et al. A computationally efficient algorithm to leverage average information REML for (co)variance component estimation in the genomic era. Genet Sel Evol 56, 73 (2024). https://doi.org/10.1186/s12711-024-00939-x
dc.identifier.olddbid498069
dc.identifier.oldhandle10024/555497
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14494
dc.identifier.urlhttps://doi.org/10.1186/s12711-024-00939-x
dc.identifier.urnURN:NBN:fi-fe2024112596534
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline412
dc.okm.discipline112
dc.okm.discipline111
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherSpringer Science and Business Media LLC
dc.relation.articlenumber73
dc.relation.doi10.1186/s12711-024-00939-x
dc.relation.ispartofseriesGenetics Selection Evolution
dc.relation.issn1297-9686
dc.relation.numberinseries1
dc.relation.volume56
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555497
dc.subjectREML
dc.subjectvariance components
dc.subjectalgorithms
dc.subjectgenomics
dc.subjectgenetics
dc.subjectplant breeding
dc.subjectanimal breeding
dc.teh41007-00014600
dc.titleA computationally efficient algorithm to leverage average information REML for (co)variance component estimation in the genomic era
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Stranden_etal_2024_GenSelEvol_A_computationally_efficient.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
Stranden_etal_2024_GenSelEvol_A_computationally_efficient.pdf

Kokoelmat