Luke
 

Using Multi-Source National Forest Inventory Data for the Prediction of Tree Lists of Individual Stands for Long-Term Simulation

dc.contributor.authorSiipilehto, Jouni
dc.contributor.authorHenttonen, Helena M.
dc.contributor.authorKatila, Matti
dc.contributor.authorMäkinen, Harri
dc.contributor.departmentid4100110310
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100110310
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-5661-8972
dc.contributor.orcidhttps://orcid.org/0000-0001-6946-5736
dc.contributor.orcidhttps://orcid.org/0000-0002-1820-6264
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-08-20T13:04:22Z
dc.date.accessioned2025-05-27T20:09:23Z
dc.date.available2024-08-20T13:04:22Z
dc.date.issued2024
dc.description.abstractForest resource maps and small area estimates have been produced by combining national forest inventory (NFI) field plot data, multispectral satellite images and numerical map data. We evaluated k-nearest neighbors (k-NN) method-based predictions of forest variables for pixels in predicting tree lists of individual stands, including tree diameters at breast height and tree heights and then calculated stem volumes and tree species proportions. We compared alternative parameters (k-NN) using k of either 1 or 5 according to preliminary plot-level study and applying either measured trees (1-NN_trees) or mean stand characteristics (k-NN_stand). In the 1-NN_trees method, a tree list was generated based on the measured trees of the NFI plots, whereas in the 1-NN_stand and 5-NN_stand methods, a Weibull-based diameter distribution was recovered from the stand characteristics of the same inventory plots. In both methods, tree lists were predicted for each 16 m × 16 m pixel included in the stand compartment. Both methods performed well and resulted in 8–14% differences in the total volume compared with the field inventory of the 27 stands used for the evaluation. Moreover, the main tree species was correctly predicted for 74% of cases. The RMSE in total volume ranged from 25% (5-NN_stand) to 31% (1-NN_stand), while the smallest RMSEs in volume by tree species were 61% for broadleaves and 65% for pine and spruce using the 5-NN_stand. When comparing input data for a long-term growth simulation, the choice of the method was less influential as the effect of the error in the initial stand characteristics decreased over time during the simulation period. After 30-year simulation of the inventoried stands, the respective RMSEs were 9.4% for total volume and 39%, 50% and 59% for tree species, respectively. The satellite-based data with NFI plots were useful for predicting tree lists for pixels of a stand. However, the accuracy for operational forest management was still questionable. For a larger area’s strategic information, the accuracy is considered adequate.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange20 p.
dc.identifier.citationHow to cite: : Siipilehto, J.; Henttonen, H.M.; Katila, M.; Mäkinen, H. Using Multi-Source National Forest Inventory Data for the Prediction of Tree Lists of Individual Stands for Long-Term Simulation. Remote Sens. 2024, 16, 2513. https://doi.org/10.3390/rs16142513
dc.identifier.olddbid497740
dc.identifier.oldhandle10024/555169
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/9523
dc.identifier.urlhttps://doi.org/10.3390/rs16142513
dc.identifier.urnURN:NBN:fi-fe2024082065712
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMDPI
dc.relation.articlenumber2513
dc.relation.doi10.3390/rs16142513
dc.relation.ispartofseriesRemote sensing
dc.relation.issn2072-4292
dc.relation.numberinseries14
dc.relation.volume16
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555169
dc.subjectdiameter distribution
dc.subjectstand simulation
dc.subjecttree species composition
dc.teh41007-00147000
dc.teh41007-00236101
dc.teh41001-00000501
dc.teh41007-00261502
dc.titleUsing Multi-Source National Forest Inventory Data for the Prediction of Tree Lists of Individual Stands for Long-Term Simulation
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Siipilehto_etal_2024_RemSens_Using_multi-source_national_forest_inventory.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description:
Siipilehto_etal_2024_RemSens_Using_multi-source_national_forest_inventory.pdf

Kokoelmat