Luke
 

Benchmarking tree species classification from proximally sensed laser scanning data: Introducing the FOR-species20K dataset

dc.contributor.authorPuliti, Stefano
dc.contributor.authorLines, Emily R.
dc.contributor.authorMüllerová, Jana
dc.contributor.authorFrey, Julian
dc.contributor.authorSchindler, Zoe
dc.contributor.authorStraker, Adrian
dc.contributor.authorAllen, Matthew J.
dc.contributor.authorWiniwarter, Lukas
dc.contributor.authorRehush, Nataliia
dc.contributor.authorHristova, Hristina
dc.contributor.authorMurray, Brent
dc.contributor.authorCalders, Kim
dc.contributor.authorCoops, Nicholas
dc.contributor.authorHöfle, Bernhard
dc.contributor.authorIrwin, Liam
dc.contributor.authorJunttila, Samuli
dc.contributor.authorKrůček, Martin
dc.contributor.authorKrok, Grzegorz
dc.contributor.authorKrál, Kamil
dc.contributor.authorLevick, Shaun R.
dc.contributor.authorLuck, Linda
dc.contributor.authorMissarov, Azim
dc.contributor.authorMokroš, Martin
dc.contributor.authorOwen, Harry J. F.
dc.contributor.authorStereńczak, Krzysztof
dc.contributor.authorPitkänen, Timo P.
dc.contributor.authorPuletti, Nicola
dc.contributor.authorSaarinen, Ninni
dc.contributor.authorHopkinson, Chris
dc.contributor.authorTerryn, Louise
dc.contributor.authorTorresan, Chiara
dc.contributor.authorTomelleri, Enrico
dc.contributor.authorWeiser, Hannah
dc.contributor.authorAstrup, Rasmus
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0001-5389-8713
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-02-03T14:16:01Z
dc.date.accessioned2025-05-29T04:09:07Z
dc.date.available2025-02-03T14:16:01Z
dc.date.issued2025
dc.description.abstractProximally sensed laser scanning presents new opportunities for automated forest ecosystem data capture. However, a gap remains in deriving ecologically pertinent information, such as tree species, without additional ground data. Artificial intelligence approaches, particularly deep learning (DL), have shown promise towards automation. Progress has been limited by the lack of large, diverse, and, most importantly, openly available labelled single-tree point cloud datasets. This has hindered both (1) the robustness of the DL models across varying data types (platforms and sensors) and (2) the ability to effectively track progress, thereby slowing the convergence towards best practice for species classification.To address the above limitations, we compiled the FOR-species20K benchmark dataset, consisting of individual tree point clouds captured using proximally sensed laser scanning data from terrestrial (TLS), mobile (MLS) and drone laser scanning (ULS). Compiled collaboratively, the dataset includes data collected in forests mainly across Europe, covering Mediterranean, temperate and boreal biogeographic regions. It includes scattered tree data from other continents, totaling over 20,000 trees of 33 species and covering a wide range of tree sizes and forms. Alongside the release of FOR-species20K, we benchmarked seven leading DL models for individual tree species classification, including both point cloud (PointNet++, MinkNet, MLP-Mixer, DGCNNs) and multi-view 2D-based methods (SimpleView, DetailView, YOLOv5).2D Image-based models had, on average, higher overall accuracy (0.77) than 3D point cloud-based models (0.72). Notably, the performance was consistently >0.8 across scanning platforms and sensors, offering versatility in deployment. The top-scoring model, DetailView, demonstrated robustness to training data imbalances and effectively generalized across tree sizes.The FOR-species20K dataset represents an important asset for developing and benchmarking DL models for individual tree species classification using proximally sensed laser scanning data. As such, it serves as a crucial foundation for future efforts to classify accurately and map tree species at various scales using laser scanning technology, as it provides the complete code base, dataset, and an initial baseline representative of the current state-of-the-art of point cloud tree species classification methods.
dc.format.bitstreamtrue
dc.format.pagerange801-818
dc.identifier.citationHow to cite: Puliti, S., Lines, E. R., Müllerová, J., Frey, J., Schindler, Z., Straker, A., Allen, M. J., Winiwarter, L., Rehush, N., Hristova, H., Murray, B., Calders, K., Coops, N., Höfle, B., Irwin, L., Junttila, S., Krůček, M., Krok, G., Král, K., … Astrup, R. (2025). Benchmarking tree species classification from proximally sensed laser scanning data: Introducing the FOR-species20K dataset. Methods in Ecology and Evolution, 16, 801–818. https://doi.org/10.1111/2041-210X.14503
dc.identifier.olddbid498658
dc.identifier.oldhandle10024/556086
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/56699
dc.identifier.urlhttps://dx.doi.org/10.1111/2041-210X.14503
dc.identifier.urnURN:NBN:fi-fe2025041728924
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherJohn Wiley & Sons
dc.relation.doi10.1111/2041-210x.14503
dc.relation.ispartofseriesMethods in ecology and evolution
dc.relation.issn2041-210X
dc.relation.numberinseries4
dc.relation.volume16
dc.rightsCC BY-NC 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556086
dc.subjectbiodiversity
dc.subjectdeep learning
dc.subjectlidar
dc.subjectpoint cloud classification
dc.subjectremote sensing
dc.teh41007-00209300
dc.titleBenchmarking tree species classification from proximally sensed laser scanning data: Introducing the FOR-species20K dataset
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Methods_Ecol_Evol-2025-Puliti-Benchmarking_tree_species.pdf
Size:
3.65 MB
Format:
Adobe Portable Document Format
Description:
Methods_Ecol_Evol-2025-Puliti-Benchmarking_tree_species.pdf

Kokoelmat