Luke
 

Capacitated spatial clustering with multiple constraints and attributes

dc.contributor.authorLähderanta, Tero
dc.contributor.authorLovén, Lauri
dc.contributor.authorRuha, Leena
dc.contributor.authorLeppänen, Teemu
dc.contributor.authorLaunonen, Ilkka
dc.contributor.authorRiekki, Jukka
dc.contributor.authorSillanpää, Mikko J.
dc.contributor.departmentid4100110810
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2023-12-08T07:28:36Z
dc.date.accessioned2025-05-27T20:06:02Z
dc.date.available2023-12-08T07:28:36Z
dc.date.issued2024
dc.description.abstractCapacitated spatial clustering, a type of unsupervised machine learning method, is often used to tackle problems in compressing data, classification, logistic optimization and infrastructure optimization. Depending on the application at hand, a multitude of extensions to the clustering problem may be necessary. In this article, we propose a number of novel extensions to PACK, a recent capacitated partitional spatial clustering method which uses an optimization algorithm that is based on linear programming tasks. These extensions relate to the relocation and location preference of cluster centers, outliers, and non-spatial attributes, and they can be considered jointly. In the context of edge server placement, these improve the spatial location of servers while considering, for example, application placement on the servers in response to spatial application usage patterns. We demonstrate the usefulness of an extended version of PACK with an example with simulated data, as well as a real world example in edge server placement for a city region with various different setups. These setups are evaluated with summary statistics about spatial proximity and attribute similarity. As a result, the similarity of the clusters was improved by 53% at best while simultaneously the proximity degraded only by 18%. The extensions provide valuable means for including non-spatial information in the cluster analysis, and to attain better overall proximity and similarity.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange14 p.
dc.identifier.citationHow to cite: Tero Lähderanta, Lauri Lovén, Leena Ruha, Teemu Leppänen, Ilkka Launonen, Jukka Riekki, Mikko J. Sillanpää, Capacitated spatial clustering with multiple constraints and attributes, Engineering Applications of Artificial Intelligence, Volume 127, Part A, 2024, 107182, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.2023.107182.
dc.identifier.olddbid496703
dc.identifier.oldhandle10024/554137
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/9414
dc.identifier.urnURN:NBN:fi-fe2024070260278
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier BV
dc.relation.articlenumber107182
dc.relation.doi10.1016/j.engappai.2023.107182
dc.relation.ispartofseriesEngineering Applications of Artificial Intelligence
dc.relation.issn0952-1976
dc.relation.volume127
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554137
dc.subjectdistributed networks
dc.subjectconstrained programming
dc.subjectdual clustering
dc.subjectlocation-allocation
dc.teh41001-00026800
dc.titleCapacitated spatial clustering with multiple constraints and attributes
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Lahderanta_etal_2024_Capacitated_spatial_clustering.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format
Description:
Lahderanta_etal_2024_Capacitated_spatial_clustering.pdf

Kokoelmat