Luke
 

Parameter estimation for allometric trophic network models: A variational Bayesian inverse problem approach

dc.contributor.authorTirronen, Maria
dc.contributor.authorKuparinen, Anna
dc.contributor.departmentid4100110810
dc.contributor.orcidhttps://orcid.org/0000-0001-6052-3186
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-12-10T08:02:30Z
dc.date.accessioned2025-05-28T08:45:45Z
dc.date.available2024-12-10T08:02:30Z
dc.date.issued2024
dc.description.abstractDifferential equation models are powerful tools for predicting biological systems, capable of projecting far into the future and incorporating data recorded at arbitrary times. However, estimating these models' parameters from observations can be challenging because numerical methods are often required to approximate their solution. An example of such a model is the allometric trophic network model, for which studies considering its inverse problem are limited, particularly in the Bayesian framework. Here we develop a variational Bayesian method for parameter inference of the allometric trophic network model and explore how accurately we can recover its parameter values.We represent the model as a Bayesian neural network, which combines an artificial neural network with Bayesian inference, using a surrogate for the posterior distribution of model parameters, and train this model by evolutionary optimization to avoid potentially costly computation of the gradient with respect to the model parameters. Using synthetic data, we compare the accuracy of this variational inference to ordinary least squares estimation. To reduce the number of estimated parameters, we focus on the inference of functional response parameters.Our variational Bayesian method yields parameter estimates that are comparable to the ordinary least squares results in terms of accuracy. The method provides a promising approach for including uncertainty quantification in parameter estimation, which the simple ordinary least squares approach as it is does not address. Regardless of the method, potential multimodality of the inference problem is nonetheless important to keep in mind.The present study suggests a technique for parameter inference of ordinary differential equation models in the Bayesian context. We propose the method especially for validation of the allometric trophic network model against empirical data.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange2373-2384
dc.identifier.citationHow to cite: Tirronen, M., & Kuparinen, A. (2024). Parameter estimation for allometric trophic network models: A variational Bayesian inverse problem approach. Methods in Ecology and Evolution, 15, 2373–2384. https://doi.org/10.1111/2041-210X.14447
dc.identifier.olddbid498181
dc.identifier.oldhandle10024/555609
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14638
dc.identifier.urlhttp://dx.doi.org/10.1111/2041-210x.14447
dc.identifier.urnURN:NBN:fi-fe20241210100729
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline112
dc.okm.discipline1181
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherJohn Wiley & Sons
dc.relation.doi10.1111/2041-210x.14447
dc.relation.ispartofseriesMethods in ecology and evolution
dc.relation.issn2041-210X
dc.relation.numberinseries12
dc.relation.volume15
dc.rightsCC BY-NC-ND 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555609
dc.subjectallometric trophic network
dc.subjectBayesian inference
dc.subjectBayesian inverse problem
dc.subjectBayesian neuralnetwork
dc.subjectevolutionary optimization
dc.subjectfood web
dc.subjectODE system
dc.tehOHFO-EI-OHFO
dc.titleParameter estimation for allometric trophic network models: A variational Bayesian inverse problem approach
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Methods_Ecol_Evol-2024-Tirronen-Parameter_estimation_for_allometric_trophic.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:
Methods_Ecol_Evol-2024-Tirronen-Parameter_estimation_for_allometric_trophic.pdf

Kokoelmat