Luke
 

Tillage and biomass detection for estimating winter-time cropland management practices with satellite remote sensing

dc.contributor.authorYli-Heikkilä, Maria
dc.contributor.authorKlami, Arto
dc.contributor.authorWittke, Samantha
dc.contributor.authorLuotamo, Markku
dc.contributor.authorMero, Pinja
dc.contributor.authorPellikka, Petri
dc.contributor.authorHeiskanen, Janne
dc.contributor.authorHiltunen, Mwaba
dc.contributor.authorLuojus, Kari
dc.contributor.authorPrakasam, Golda
dc.contributor.authorStrahlendorff, Mikko
dc.contributor.authorTörmä, Markus
dc.contributor.authorSulkava, Mi
dc.contributor.departmentid4100110210
dc.contributor.departmentid4100510410
dc.contributor.departmentid4100510310
dc.contributor.orcidhttps://orcid.org/0000-0003-1528-7246
dc.contributor.orcidhttps://orcid.org/0009-0003-8268-7933
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-07-03T09:32:45Z
dc.date.issued2025
dc.description.abstractSupportive policies to promote sustainable agriculture have been implemented across countries and regions. For example, continuous vegetative groundcover and reduced tillage have been advocated for sustainable post-harvest biomass management. Accurate and timely information on cropland management practices is needed for agricultural policy evaluations, evidence-based planning, and agri-environmental assessments. We show that a satellite-based approach can yield off-season cropland management information on preferred spatial and temporal scales from a narrow window of opportunity in early spring after snow melt and before seedbed preparation. Agricultural parcel geometries from an administrative registry were used to extract information on Sentinel-1 backscatter and coherence, and Sentinel-2 spectral reflectance. Based on a large survey-based dataset of 6,623 fields, we show that the highest impact on model performance comes from the spectral regions of near-infrared and upper red edge of the Sentinel-2 mission, whereas Sentinel-1–based features had a relatively small contribution to classification performance. Our proposed method for tillage and biomass detection generalises well in the study area of boreal environmental zone with dominantly mineral soils, as confirmed by the high test set classification accuracy of 85%. The supporting dataset and codes are stored in a publicly accessible repository.
dc.format.pagerange16 p.
dc.identifier.citationHow to cite: Yli-Heikkilä, M., Klami, A., Wittke, S., Luotamo, M., Mero, P., Pellikka, P., … Sulkava, M. (2025). Tillage and biomass detection for estimating winter-time cropland management practices with satellite remote sensing. European Journal of Remote Sensing, 58(1). https://doi.org/10.1080/22797254.2025.2525967
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/99735
dc.identifier.urlhttps://doi.org/10.1080/22797254.2025.2525967
dc.identifier.urnURN:NBN:fi-fe2025070376860
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline218
dc.okm.discipline4111
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherTaylor & Francis
dc.relation.doi10.1080/22797254.2025.2525967
dc.relation.ispartofseriesEuropean journal of remote sensing
dc.relation.issn2279-7254
dc.relation.numberinseries1
dc.relation.volume58
dc.rightsCC BY 4.0
dc.source.justusid123299
dc.subjectobject-based
dc.subjectsatelliteremote sensing
dc.subjecttemporalconvolutional neuralnetwork
dc.subjectrandom forest
dc.subjectsatellite image time series
dc.subjectagricultural monitoring
dc.teh41003-00007502
dc.titleTillage and biomass detection for estimating winter-time cropland management practices with satellite remote sensing
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
YliHeikkila_etal_2025_EurJRemoteSens_Tillage_and_biomass.pdf
Size:
4.41 MB
Format:
Adobe Portable Document Format
Description:
YliHeikkila_etal_2025_EurJRemoteSens_Tillage_and_biomass.pdf

Kokoelmat