Luke
 

Stratified, spatially regular and balanced cluster sampling for cost-efficient environmental surveys.

dc.contributor.authorHeikkinen, Juha
dc.contributor.authorHenttonen, Helena M.
dc.contributor.authorKatila, Matti
dc.contributor.authorTuominen, Sakari
dc.contributor.departmentid4100111010
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0003-3527-774X
dc.contributor.orcidhttps://orcid.org/0000-0001-5429-3433
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-06-13T09:48:59Z
dc.date.issued2025
dc.description.abstractLarge-scale environmental surveys relying on intensive fieldwork are expensive, but survey sampling methodology offers several options to improve their cost-efficiency. For example, sites selected for field assessments can be arranged in clusters to reduce the time spent moving between the sites, and auxiliary data can be utilized to stratify the survey region and sample less important strata less densely. Geographically balanced and well-spread sampling can yield further improvements since the target variables of environmental surveys tend to be spatially autocorrelated. A combination of these ideas was illustrated and evaluated in the context of a national forest inventory, and alternative methods of spatially balanced sampling were compared. The main findings were that (i) both the local pivotal method and the generalized random-tessellation stratified design guaranteed a clearly better spatial regularity than systematic sampling when applied to fragmented regions resulting from stratification and (ii) they also ensured better global balance in unstratified sampling. In our case study, where stratification and sample allocation were based on high-quality auxiliary data, stratified sampling was clearly more efficient than unstratified for the primary survey target parameter. However, our results also illustrate that highly nonproportional sample allocation can be dangerous in a multi-purpose survey.
dc.format.pagerange17 p.
dc.identifier.citationHow to cite: Heikkinen, J., Henttonen, H.M., Katila, M. and Tuominen, S. (2025), Stratified, Spatially Balanced Cluster Sampling for Cost-Efficient Environmental Surveys. Environmetrics, 36: e70019. https://doi.org/10.1002/env.70019
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/99639
dc.identifier.urlhttps://doi.org/10.1002/env.70019
dc.identifier.urnURN:NBN:fi-fe2025061367793
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline112
dc.okm.discipline1172
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherWiley-Blackwell
dc.relation.articlenumbere70019
dc.relation.doi10.1002/env.70019
dc.relation.ispartofseriesEnvironmetrics
dc.relation.issn1180-4009
dc.relation.issn1099-095X
dc.relation.numberinseries5
dc.relation.volume36
dc.rightsCC BY 4.0
dc.source.justusid121827
dc.subjectgeneralized random-tessellation stratified design
dc.subjectlocal pivotal method
dc.subjectnational forest inventory
dc.subjectsimulated sampling
dc.subjectspatialautocorrelation
dc.subjectsystematic sampling
dc.teh41001-00000501
dc.titleStratified, spatially regular and balanced cluster sampling for cost-efficient environmental surveys.
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Environmetrics-2025-Heikkinen-Stratified_Spatially_Balanced_Cluster_Sampling.pdf
Size:
14.92 MB
Format:
Adobe Portable Document Format
Description:
Environmetrics-2025-Heikkinen-Stratified_Spatially_Balanced_Cluster_Sampling.pdf

Kokoelmat