Luke
 

Stochastic multicriteria acceptability analysis as a forest management priority mapping approach based on airborne laser scanning and field inventory data

dc.contributor.authorRana, Parvez
dc.contributor.authorVauhkonen, Jari
dc.contributor.departmentid4100311110
dc.contributor.orcidhttps://orcid.org/0000-0002-2578-9680
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2022-11-18T09:42:16Z
dc.date.accessioned2025-05-28T14:23:16Z
dc.date.available2022-11-18T09:42:16Z
dc.date.issued2023
dc.description.abstractThe mapping of ecosystem service (ES) provisioning often lacks decision-makers’ preferences on the ESs provided. Analyzing the related uncertainties can be computationally demanding for a landscape tessellated to a large number of spatial units such as pixels. We propose stochastic multicriteria acceptability analyses to incorporate (unknown or only partially known) decision-makers’ preferences into the spatial forest management prioritization in a Scandinavian boreal forest landscape. The potential of the landscape for the management alternatives was quantified by airborne laser scanning based proxies. A nearest-neighbor imputation method was applied to provide each pixel with stochastic acceptabilities on the alternatives based on decision-makers’ preferences sampled from a probability distribution. We showed that this workflow could be used to derive two types of maps for forest use prioritization: one showing the alternative that a decision-maker with given preferences should choose and another showing areas where the suitability of the forest structure suggested different alternative than the preferences. We discuss the potential of the latter approach for mapping management hotspots. The stochastic approach allows estimating the strength of the decision with respect to the uncertainty in both the proxy values and preferences. The nearest neighbor imputation of stochastic acceptabilities is a computationally feasible way to improve decisions based on ES proxy maps by accounting for uncertainties, although the need for such detailed information at the pixel level should be separately assessed.
dc.description.vuosik2023
dc.format.bitstreamtrue
dc.format.pagerange13 p.
dc.identifier.olddbid495066
dc.identifier.oldhandle10024/552507
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/24975
dc.identifier.urnURN:NBN:fi-fe2022111866163
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier BV
dc.relation.articlenumber104637
dc.relation.doi10.1016/j.landurbplan.2022.104637
dc.relation.ispartofseriesLandscape and Urban Planning
dc.relation.issn0169-2046
dc.relation.volume230
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/552507
dc.subjectForest planning
dc.subjectDecision-making
dc.subjectRemote sensing
dc.subjectFirst-rank acceptability
dc.subjectWeight space
dc.teh41007-00183800
dc.teh41007- 00216200
dc.titleStochastic multicriteria acceptability analysis as a forest management priority mapping approach based on airborne laser scanning and field inventory data
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Rana_et_al_2023.pdf
Size:
10.42 MB
Format:
Adobe Portable Document Format
Description:
Rana_et_al_2023.pdf

Kokoelmat