Luke
 

Machine-learning aiding sustainable Indian Ocean tuna purse seine fishery

dc.contributor.authorGoikoetxea, Nerea
dc.contributor.authorGoienetxea, Izaro
dc.contributor.authorFernandes-Salvador, Jose A.
dc.contributor.authorGoñi, Nicolas
dc.contributor.authorGranado, Igor
dc.contributor.authorQuincoces, Iñaki
dc.contributor.authorIbaibarriaga, Leire
dc.contributor.authorRuiz, Jon
dc.contributor.authorMurua, Hilario
dc.contributor.authorCaballero, Ainhoa
dc.contributor.departmentid4100111110
dc.contributor.orcidhttps://orcid.org/0000-0001-6562-0727
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-01-10T07:58:24Z
dc.date.accessioned2025-05-28T08:03:54Z
dc.date.available2025-01-10T07:58:24Z
dc.date.issued2024
dc.description.abstractAmong the various challenges facing tropical tuna purse seine fleet are the need to reduce fuel consumption and carbon footprint, as well as minimising bycatch of vulnerable species. Tools designed for forecasting optimum tuna fishing grounds can contribute to adapting to changes in fish distribution due to climate change, by identifying the location of new suitable fishing grounds, and thus reducing the search time. While information about the high probability to find vulnerable species could result in a bycatch reduction. The present study aims at contributing to a more sustainable and cleaner fishing, i.e. catching the same amount of target tuna with less fuel consumption/emissions and lower bycatch. To achieve this, tropical tuna catches as target species, and silky shark accidental catches as bycatch species have been modelled by machine learning models in the Indian Ocean using as inputs historical catch data of these fleets and environmental data. The resulting models show an accuracy of 0.718 and 0.728 for the SKJ and YFT, being the absences (TPR = 0.996 for SKJ and 0.993 for YFT, respectively) better predicted than the high or low catches. In the case of the BET, which is not the main target species of this fleet, the accuracy is lower than that of the previous species. Regarding the silky shark, the presence/absence model provides an accuracy of 0.842. Even though the model's performance has room for improvement, the present work lays the foundations of a process for forecasting fishing grounds avoiding vulnerable species, by only using as input data forecast environmental data provided in near real time by earth observation programs. In the future these models can be improved as more input data and knowledge about the main environmental conditions influencing these species becomes available.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange10 p.
dc.identifier.olddbid498508
dc.identifier.oldhandle10024/555936
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/13658
dc.identifier.urlhttp://dx.doi.org/10.1016/j.ecoinf.2024.102577
dc.identifier.urnURN:NBN:fi-fe202501102254
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1181
dc.okm.discipline113
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber102577
dc.relation.doi10.1016/j.ecoinf.2024.102577
dc.relation.ispartofseriesEcological informatics
dc.relation.issn1574-9541
dc.relation.issn1878-0512
dc.relation.volume81
dc.rightsCC BY-NC-ND 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555936
dc.subjectsustainable fishing
dc.subjectbycatch
dc.subjectmachine-learning
dc.subjecttropical tuna
dc.subjectfisheries oceanography
dc.subjectspecies distribution models
dc.teh41001-00034302
dc.titleMachine-learning aiding sustainable Indian Ocean tuna purse seine fishery
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Goikoetxea_etal-2024-Machine-learning-aiding-sustainable.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Description:
Goikoetxea_etal-2024-Machine-learning-aiding-sustainable.pdf

Kokoelmat