Luke
 

Computing maps of forest structural diversity : aggregate late

dc.contributor.authorRajala, Tuomas
dc.contributor.authorKangas, Annika
dc.contributor.authorMyllymäki, Mari
dc.contributor.departmentid4100111010
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-1343-8058
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-08-27T06:55:06Z
dc.date.issued2025
dc.description.abstractLocal forest biodiversity hotspots are small areas within a landscape or a single stand, characterised by a high variability in e.g. species composition, size distribution or spatial pattern, in comparison to the surrounding areas. Their identification is important, e.g. for planning routes of harvesters, for selecting retention tree groups from the cutting area, and for selecting set-aside areas at landscape level. Traditional optical remote sensing enables prediction of forest attributes at large areas, but is typically restricted to a fixed spatial resolution. The fixed resolution is problematic especially for diversity indices as it contradicts the ecological meaning of local diversity which varies as a function of scale. While traditionally diversity predictions were produced with area-based approaches, combining 3D point-cloud-data-based single tree detection with field data enables the production of tree-level data, creating new opportunities for forest structure quantification. Particularly, at the single-tree level the ecological scale can be separated from the technical resolution. We demonstrate the importance of distinguishing scales when producing forest diversity maps. Furthermore, local diversity indices are typically computed at systematically or randomly selected locations in the landscape. We present new, alternative indices, defined through individual trees’ neighbourhoods, and show via simulated examples how the new indices greatly improve detection of local diversity. We also compare data from Panama and Finland at a shared ecological scale. We conclude that a tree-level data should not be aggregated to any technical scale before computing indicators. The separation of scales also helps produce indicator maps comparable across different studies. We recommend conditional indicators of local diversity over unconditional ones.
dc.format.pagerange10 p.
dc.identifier.citationHow to cite: Tuomas Rajala, Annika Kangas, Mari Myllymäki, Computing maps of forest structural diversity: Aggregate late, Ecological Indicators, Volume 178, 2025, 114046, ISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2025.114046.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/99867
dc.identifier.urlhttps://doi.org/10.1016/j.ecolind.2025.114046
dc.identifier.urnURN:NBN:fi-fe2025082784665
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline112
dc.okm.discipline1172
dc.okm.discipline4112
dc.okm.discipline1181
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber114046
dc.relation.doi10.1016/j.ecolind.2025.114046
dc.relation.ispartofseriesEcological indicators
dc.relation.issn1470-160X
dc.relation.issn1872-7034
dc.relation.volume178
dc.rightsCC BY 4.0
dc.source.justusid124564
dc.subjectbiodiversity
dc.subjectforest structure
dc.subjectGini index
dc.subjectlocal K function
dc.subjectspatial point pattern
dc.subjectspatial structure
dc.teh41007-00229001
dc.teh41007-00209302
dc.titleComputing maps of forest structural diversity : aggregate late
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
1-s2.0-S1470160X25009781-main.pdf
Size:
5.26 MB
Format:
Adobe Portable Document Format
Description:
1-s2.0-S1470160X25009781-main.pdf

Kokoelmat