Luke
 

Scalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network

dc.contributor.authorYli-Heikkilä, Maria
dc.contributor.authorWittke, Samantha
dc.contributor.authorLuotamo, Markku
dc.contributor.authorPuttonen, Eetu
dc.contributor.authorSulkava, Mika
dc.contributor.authorPellikka, Petri
dc.contributor.authorHeiskanen, Janne
dc.contributor.authorKlami, Arto
dc.contributor.departmentid4100510310
dc.contributor.departmentid4100510310
dc.contributor.orcidhttps://orcid.org/0000-0003-1528-7246
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2022-09-30T05:46:15Z
dc.date.accessioned2025-05-27T18:06:07Z
dc.date.available2022-09-30T05:46:15Z
dc.date.issued2022
dc.description.abstractOne of the precepts of food security is the proper functioning of the global food markets. This calls for open and timely intelligence on crop production on an agroclimatically meaningful territorial scale. We propose an operationally suitable method for large-scale in-season crop yield estimations from a satellite image time series (SITS) for statistical production. As an object-based method, it is spatially scalable from parcel to regional scale, making it useful for prediction tasks in which the reference data are available only at a coarser level, such as counties. We show that deep learning-based temporal convolutional network (TCN) outperforms the classical machine learning method random forests and produces more accurate results overall than published national crop forecasts. Our novel contribution is to show that mean-aggregated regional predictions with histogram-based features calculated from farm-level observations perform better than other tested approaches. In addition, TCN is robust to the presence of cloudy pixels, suggesting TCN can learn cloud masking from the data. The temporal compositing of information do not improve prediction performance. This indicates that with end-to-end learning less preprocessing in SITS tasks seems viable.
dc.description.vuosik2022
dc.format.bitstreamtrue
dc.format.pagerange24 p.
dc.identifier.olddbid494839
dc.identifier.oldhandle10024/552280
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/5427
dc.identifier.urnURN:NBN:fi-fe2022093060500
dc.language.isoen
dc.okm.avoinsaatavuusjulkaisumaksu2600
dc.okm.avoinsaatavuusjulkaisumaksuvuosi2022
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1171
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMDPI AG
dc.relation.articlenumber4193
dc.relation.doi10.3390/rs14174193
dc.relation.ispartofseriesRemote Sensing
dc.relation.issn2072-4292
dc.relation.numberinseries17
dc.relation.volume14
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/552280
dc.subjectcrop production statistics
dc.subjectyield forecasts
dc.subjectobject-based
dc.subjectremote sensing
dc.subjectmachine learning
dc.subjectagriculture
dc.subjecttime series
dc.teh41003-00015300
dc.teh41003-0001599
dc.titleScalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Yli-Heikkila_et_al_2022.pdf
Size:
6.86 MB
Format:
Adobe Portable Document Format
Description:
Yli-Heikkila_et_al_2022.pdf

Kokoelmat