A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone
dc.contributor.author | Viljanen, Niko | |
dc.contributor.author | Honkavaara, Eija | |
dc.contributor.author | Näsi, Roope | |
dc.contributor.author | Hakala, Teemu | |
dc.contributor.author | Niemeläinen, Oiva | |
dc.contributor.author | Kaivosoja, Jere | |
dc.contributor.department | Luke / Luonnonvarat / Peltokasvien tuotanto (4100110210) | - |
dc.contributor.department | Luke / Tuotantojärjestelmät / Maatalouden teknologiat (4100210710) | - |
dc.contributor.departmentid | 4100110210 | - |
dc.contributor.departmentid | 4100210710 | - |
dc.contributor.other | Finnish Geospatial Research Institute | - |
dc.date.accessioned | 2018-07-18T13:30:42Z | |
dc.date.accessioned | 2025-05-30T12:18:32Z | |
dc.date.available | 2018-07-18T13:30:42Z | |
dc.date.issued | 2018 | |
dc.description.vuosik | 2018 | |
dc.format.bitstream | true | |
dc.identifier.olddbid | 484605 | |
dc.identifier.oldhandle | 10024/542248 | |
dc.identifier.uri | https://jukuri.luke.fi/handle/11111/85407 | |
dc.identifier.urn | URN:NBN:fi-fe2018071831604 | - |
dc.language.iso | eng | - |
dc.okm.corporatecopublication | ei | - |
dc.okm.discipline | 112 Tilastotiede | - |
dc.okm.discipline | 213 Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka | - |
dc.okm.discipline | 4111 Maataloustiede | - |
dc.okm.discipline | 412 Kotieläintiede, maitotaloustiede | - |
dc.okm.internationalcopublication | ei | - |
dc.okm.openaccess | 1 = Open access -julkaisukanavassa ilmestynyt julkaisu | - |
dc.okm.selfarchived | on | - |
dc.publisher | MDPI | - |
dc.relation.doi | doi:10.3390/agriculture8050070 | - |
dc.relation.ispartofseries | Agriculture | - |
dc.relation.issn | 2077-0472 | - |
dc.relation.numberinseries | 5 | - |
dc.relation.volume | 8 | - |
dc.rights | by | - |
dc.rights.copyright | © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | - |
dc.rights.uri | http://www.mdpi.com/journal/agriculture/about | - |
dc.source.identifier | https://jukuri.luke.fi/handle/10024/542248 | |
dc.subject.agrifors | heinänurmet | - |
dc.subject.agrovoc | photogrammetry | - |
dc.subject.agrovoc | unmanned aerial vehicles | - |
dc.subject.agrovoc | biomass | - |
dc.subject.agrovoc | machine learning | - |
dc.subject.keyword | drone | - |
dc.subject.keyword | digital surface model | - |
dc.subject.keyword | canopy height model | - |
dc.subject.keyword | grass sward | - |
dc.subject.keyword | Random Forest | - |
dc.subject.keyword | multiple linear regression | - |
dc.subject.ysa | fotogrammetria | - |
dc.teh | 41007-00103100 | - |
dc.teh | 41007-00061700 | - |
dc.title | A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone | - |
dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research| | - |
dc.type.version | Publisher's version | - |
dc.virta | 2019 |
Tiedostot
1 - 1 / 1