Luke
 

A method for phenotyping lettuce volume and structure from 3D images

dc.contributor.authorBloch, Victor
dc.contributor.authorShapiguzov, Alexey
dc.contributor.authorKotilainen, Titta
dc.contributor.authorPastell, Matti
dc.contributor.departmentid4100210710
dc.contributor.departmentid4100210710
dc.contributor.departmentid4100210510
dc.contributor.departmentid4100210510
dc.contributor.orcidhttps://orcid.org/0000-0002-5810-4801
dc.contributor.orcidhttps://orcid.org/0000-0002-2822-9734
dc.contributor.orcidhttps://orcid.org/0000-0001-7199-1882
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-03-04T13:33:46Z
dc.date.accessioned2025-05-30T08:00:40Z
dc.date.available2025-03-04T13:33:46Z
dc.date.issued2025
dc.description.abstractMonitoring plant growth is crucial for effective crop management, and using color and depth (RGBD) cameras to model lettuce has emerged as one of the most convenient and non-invasive methods. In recent years, deep learning techniques, particularly neural networks, have become popular for estimating lettuce fresh weight. However, these models are typically specific to particular datasets, lack domain adaptation, and are often limited by the availability of open-access datasets. In this study, we propose a method based on plant geometric features for estimating the rosette structure and volume of lettuce. This new approach was compared to existing methods that reconstruct surfaces from point clouds, such as Ball Pivoting and Alpha Shapes. The proposed method creates a tight hull around the plant's point cloud, preserving high detail of the rosette structure while filling in surface holes in areas not visible to 3D cameras. Using a linear regression model, we estimated fresh weight for this dataset, achieving a root mean square error (RMSE) of 18.2 g when using only the estimated plant volume, and 17.3 g when both volume and geometric features were included. Additionally, we introduced new geometric features that characterize leaf density, which could be useful for breeding applications. A dataset of 402 point clouds of lettuce plants, captured before harvest, was compiled using one top-down and three side-view 3D cameras.
dc.format.bitstreamtrue
dc.format.pagerange12 p.
dc.identifier.citationHow to cite: Bloch, V., Shapiguzov, A., Kotilainen, T. et al. A method for phenotyping lettuce volume and structure from 3D images. Plant Methods 21, 27 (2025). https://doi.org/10.1186/s13007-025-01347-y
dc.identifier.olddbid498741
dc.identifier.oldhandle10024/556165
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/84641
dc.identifier.urlhttps://doi.org/10.1186/s13007-025-01347-y
dc.identifier.urnURN:NBN:fi-fe2025030415540
dc.language.isoen
dc.okm.avoinsaatavuusjulkaisumaksu2645
dc.okm.avoinsaatavuusjulkaisumaksuvuosi2025
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4111
dc.okm.discipline113
dc.okm.discipline1183
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherBioMed Central
dc.relation.articlenumber27
dc.relation.doi10.1186/s13007-025-01347-y
dc.relation.ispartofseriesPlant methods
dc.relation.issn1746-4811
dc.relation.numberinseries1
dc.relation.volume21
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556165
dc.source.justusid117596
dc.subjectlettuce fresh weight
dc.subjectlettuce 3D modelling
dc.subjectplant rosette structure
dc.teh41007-00207800
dc.teh41007-00207801
dc.teh41007-00261301
dc.titleA method for phenotyping lettuce volume and structure from 3D images
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Bloch_etal_2025_PlantMeth_A_method_for_phenotyping.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
Description:
Bloch_etal_2025_PlantMeth_A_method_for_phenotyping.pdf

Kokoelmat