Luke
 

Machine Learning Applications for Fisheries - At Scales from Genomics to Ecosystems

dc.contributor.authorKühn, Bernhard
dc.contributor.authorCayetano, Arjay
dc.contributor.authorFincham, Jennifer I.
dc.contributor.authorMoustahfid, Hassan
dc.contributor.authorSokolova, Maria
dc.contributor.authorTrifonova, Neda
dc.contributor.authorWatson, Jordan T.
dc.contributor.authorFernandes-Salvador, Jose A.
dc.contributor.authorUusitalo, Laura
dc.contributor.departmentid4100111110
dc.contributor.orcidhttps://orcid.org/0000-0002-5143-5253
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-02-05T11:41:33Z
dc.date.accessioned2025-05-29T04:24:27Z
dc.date.available2025-02-05T11:41:33Z
dc.date.issued2024
dc.description.abstractFisheries science aims to understand and manage marine natural resources. It relies on resource-intensive sampling and data analysis. Within this context, the emergence of machine learning (ML) systems holds significant promise for understanding disparate components of these marine ecosystems and gaining a greater understanding of their dynamics. The goal of this paper is to present a review of ML applications in fisheries science. It highlights both their advantages over conventional approaches and their drawbacks, particularly in terms of operationality and possible robustness issues. This review is organized from small to large scales. It begins with genomics and subsequently expands to individuals (catch items), aggregations of different species in situ, on-board processing, stock/populations assessment and dynamics, spatial mapping, fishing-related organizational units, and finally ecosystem dynamics. Each field has its own set of challenges, such as pre-processing steps, the quantity and quality of training data, the necessity of appropriate model validation, and knowing where ML algorithms are more limited, and we discuss some of these discipline-specific challenges. The scope of discussion of applied methods ranges from conventional statistical methods to data-specific approaches that use a higher level of semantics. The paper concludes with the potential implications of ML applications on management decisions and a summary of the benefits and challenges of using these techniques in fisheries.
dc.format.bitstreamtrue
dc.format.pagerange24 p.
dc.identifier.citationHow to cite: Kühn, B., Cayetano, A., Fincham, J. I., Moustahfid, H., Sokolova, M., Trifonova, N., … Uusitalo, L. (2024). Machine Learning Applications for Fisheries—At Scales from Genomics to Ecosystems. Reviews in Fisheries Science & Aquaculture, 1–24. https://doi.org/10.1080/23308249.2024.2423189
dc.identifier.olddbid498671
dc.identifier.oldhandle10024/556099
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/57063
dc.identifier.urlhttps://doi.org/10.1080/23308249.2024.2423189
dc.identifier.urnURN:NBN:fi-fe202502059850
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline113
dc.okm.discipline415
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherTaylor & Francis
dc.relation.doi10.1080/23308249.2024.2423189
dc.relation.ispartofseriesReviews in fisheries science & aquaculture
dc.relation.issn2330-8249
dc.relation.issn2330-8257
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556099
dc.subjectmarine science
dc.subjectmonitoring
dc.subjectmanagement
dc.tehOHFO-Puskuri-2
dc.titleMachine Learning Applications for Fisheries - At Scales from Genomics to Ecosystems
dc.typepublication
dc.type.okmfi=A2 Katsausartikkeli tieteellisessä aikakauslehdessä|sv=A2 Översiktsartikel i en vetenskaplig tidskrift|en=A2 Review article, Literature review, Systematic review|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Kuhn_etal_2024_RevFisfSciAqua_Machine_Learning_Applications.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format
Description:
Kuhn_etal_2024_RevFisfSciAqua_Machine_Learning_Applications.pdf

Kokoelmat