Luke
 

Applying Different Remote Sensing Data to Determine Relative Biomass Estimations of Cereals for Precision Fertilization Task Generation

dc.contributor.authorKaivosoja, Jere
dc.contributor.authorNäsi, Roope
dc.contributor.authorHakala, Teemu
dc.contributor.authorViljanen, Niko
dc.contributor.authorHonkavaara, Eija
dc.contributor.departmentLuke / Vihreä teknologia / Tuotanto- ja informaatioteknologiat / Automatisaatio ja digitaaliset ratkaisut (4100200614)-
dc.contributor.departmentid4100200614-
dc.contributor.otherFinnish Geospatial Research Institute, Finland-
dc.date.accessioned2017-12-28T13:49:20Z
dc.date.accessioned2025-05-28T21:42:34Z
dc.date.available2017-12-28T13:49:20Z
dc.date.issued2017
dc.description.abstractRecently, the area of passive remote sensing of agricultural fields has been developing fast. The prices of RPAS (remotely piloted aircraft system) equipment has gone down and new suitable sensors are coming into markets while simultaneously new and free relevant satellite data has become available. One of the most used applications for these methodologies is to calculate the relative biomass as a basis for additional nitrogen fertilization. In this work, we study the difference of biomass estimations based on Sentinel-2 imagery, tractor implemented commercial measurement system, a low-cost RPAS equipment with commercial software and a hyperspectral imaging system implemented in a professional RPAS system in fertilization planning. Our study revealed that while there was a 23 % spatial variation in our test field’s yield, the relative biomass estimations for fertilization planning during the growing season varied 22 % on average although they were visually very alike.-
dc.description.vuosik2017-
dc.formatVerkkojulkaisu-
dc.format.bitstreamfalse
dc.format.bitstreamfalse
dc.format.pagerangep. 670-680-
dc.identifier.olddbid483230
dc.identifier.oldhandle10024/541040
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/39156
dc.identifier.urlhttp://urn.fi/urn:nbn:de:0074-2030-3-
dc.language.isoeng-
dc.okm.corporatecopublicationei-
dc.okm.discipline113 Tietojenkäsittely ja informaatiotieteet-
dc.okm.discipline4111 Maataloustiede-
dc.okm.internationalcopublicationei-
dc.okm.openaccess0 = Ei vastausta-
dc.okm.selfarchivedei-
dc.relation.conferenceInternational Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2017): 8, Chania, 2017-
dc.relation.ispartofHAICTA 2017 : Information and Communication Technologies in Agriculture, Food and Environment : Proceedings of the 8th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2017), Chania, Crete Island, Greece, September 21-24, 2017 / eds. Michail Salampasis, Alexandros Theodoridis and Thomas Bournaris-
dc.relation.ispartofseriesCEUR Workshop Proceedings-
dc.relation.issn1613-0073-
dc.relation.numberinseries2030-
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/541040
dc.subject.agrovocapplication-
dc.subject.agrovocfertilization-
dc.subject.keywordsentinel-2-
dc.subject.keywordRPAS-
dc.subject.keywordvariable rate application (VRA)-
dc.teh41007-00073900-
dc.teh41007-00103100-
dc.teh41007-00061800-
dc.titleApplying Different Remote Sensing Data to Determine Relative Biomass Estimations of Cereals for Precision Fertilization Task Generation-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|sv=A4 Artikel i en konferenspublikation|en=A4 Conference proceedings|-

Tiedostot

Kokoelmat