Luke
 

Detecting Spatial Patterns of Peatland Greenhouse Gas Sinks and Sources with Geospatial Environmental and Remote Sensing Data

dc.contributor.authorChristiani, Priscillia
dc.contributor.authorRana, Parvez
dc.contributor.authorRäsänen, Aleksi
dc.contributor.authorPitkänen, Timo P.
dc.contributor.authorTolvanen, Anne
dc.contributor.departmentid4100311110
dc.contributor.departmentid4100311110
dc.contributor.departmentid4100311110
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100610210
dc.contributor.orcidhttps://orcid.org/0000-0002-2578-9680
dc.contributor.orcidhttps://orcid.org/0000-0002-9843-9905
dc.contributor.orcidhttps://orcid.org/0000-0002-3629-1837
dc.contributor.orcidhttps://orcid.org/0000-0001-5389-8713
dc.contributor.orcidhttps://orcid.org/0000-0002-5304-7510
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-04-03T10:32:02Z
dc.date.accessioned2025-05-28T08:08:10Z
dc.date.available2024-04-03T10:32:02Z
dc.date.issued2024
dc.description.abstractPeatlands play a key role in the circulation of the main greenhouse gases (GHG) – methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). Therefore, detecting the spatial pattern of GHG sinks and sources in peatlands is pivotal for guiding effective climate change mitigation in the land use sector. While geospatial environmental data, which provide detailed spatial information on ecosystems and land use, offer valuable insights into GHG sinks and sources, the potential of directly using remote sensing data from satellites remains largely unexplored. We predicted the spatial distribution of three major GHGs (CH4, CO2, and N2O) sinks and sources across Finland. Utilizing 143 field measurements, we compared the predictive capacity of three different data sets with MaxEnt machine-learning modeling: (1) geospatial environmental data including climate, topography and habitat variables, (2) remote sensing data (Sentinel-1 and Sentinel-2), and (3) a combination of both. The combined dataset yielded the highest accuracy with an average test area under the receiver operating characteristic curve (AUC) of 0.845 and AUC stability of 0.928. A slightly lower accuracy was achieved using only geospatial environmental data (test AUC 0.810, stability AUC 0.924). In contrast, using only remote sensing data resulted in reduced predictive accuracy (test AUC 0.763, stability AUC 0.927). Our results suggest that (1) reliable estimates of GHG sinks and sources cannot be produced with remote sensing data only and (2) integrating multiple data sources is recommended to achieve accurate and realistic predictions of GHG spatial patterns.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange461-478
dc.identifier.citationChristiani, P., Rana, P., Räsänen, A. et al. Detecting Spatial Patterns of Peatland Greenhouse Gas Sinks and Sources with Geospatial Environmental and Remote Sensing Data. Environmental Management (2024). https://doi.org/10.1007/s00267-024-01965-7
dc.identifier.olddbid497383
dc.identifier.oldhandle10024/554815
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/13755
dc.identifier.urlhttps://doi.org/10.1007/s00267-024-01965-7
dc.identifier.urnURN:NBN:fi-fe2024040214308
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherSpringer Nature
dc.relation.doi10.1007/s00267-024-01965-7
dc.relation.ispartofseriesEnvironmental management
dc.relation.issn0364-152X
dc.relation.issn1432-1009
dc.relation.volume74
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554815
dc.subjectgreenhouse gases
dc.subjectmaximum entropy
dc.subjectspatial distribution
dc.subjectenvironmental modelling
dc.subjectpeatland
dc.subjectFinland
dc.tehLIFE16NAT/FI/000583
dc.teh41007-00216200
dc.teh41007-00167401
dc.titleDetecting Spatial Patterns of Peatland Greenhouse Gas Sinks and Sources with Geospatial Environmental and Remote Sensing Data
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
s00267-024-01965-7.pdf
Size:
3.85 MB
Format:
Adobe Portable Document Format
Description:
s00267-024-01965-7.pdf

Kokoelmat