Luke
 

Bayesian joint species distribution model selection for community-level prediction

dc.contributor.authorItter, Malcolm S.
dc.contributor.authorKaarlejärvi, Elina
dc.contributor.authorLaine, Anna‐Liisa
dc.contributor.authorHamberg, Leena
dc.contributor.authorTonteri, Tiina
dc.contributor.authorVanhatalo, Jarno
dc.contributor.departmentid4100110710
dc.contributor.departmentid4100110710
dc.contributor.orcidhttps://orcid.org/0000-0002-0009-7768
dc.contributor.orcidhttps://orcid.org/0000-0001-8783-3213
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-04-15T09:05:38Z
dc.date.accessioned2025-05-28T08:30:15Z
dc.date.available2024-04-15T09:05:38Z
dc.date.issued2024
dc.description.abstractAbstractAim: Joint species distribution models (JSDMs) are an important tool for predicting ecosys-tem diversity and function under global change. The growing complexity of modern JSDMs necessitates careful model selection tailored to the challenges of community prediction under novel conditions (i.e., transferable models). Common approaches to evaluate the per-formance of JSDMs for community- level prediction are based on individual species predic-tions that do not account for the species correlation structures inherent in JSDMs. Here, we formalize a Bayesian model selection approach that accounts for species correlation structures and apply it to compare the community- level predictive performance of alterna-tive JSDMs across broad environmental gradients emulating transferable applications.Innovation: We connect the evaluation of JSDM predictions to Bayesian model selec-tion theory under which the log score is the preferred performance measure for proba-bilistic prediction. We define the joint log score for community- level prediction and distinguish it from more commonly applied JSDM evaluation metrics. We then apply the joint community log score to evaluate predictions of 1918 out- of- sample boreal for-est understory communities spanning 39 species generated using a novel multinomial JSDM framework that supports alternative species correlation structures: independent, compositional dependence and residual dependence.Main conclusions: The best performing JSDM included all observed environmental vari-ables and compositional dependence modelled using a multinomial likelihood. The ad-dition of flexible residual species correlations improved model predictions only within JSDMs applying a reduced set of environmental variables highlighting potential con-founding between unobserved environmental conditions and residual species depend-ence. The best performing JSDM was consistent across successional and bioclimatic gradients regardless of whether interest was in species- or community- level prediction. Our study demonstrates the utility of the joint community log score to compare the pre-dictive performance of JSDMs and highlights the importance of accounting for species dependence when interest is in community composition under novel conditions.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.identifier.citationItter, M. S., Kaarlejärvi, E., Laine, A.-L., Hamberg, L., Tonteri, T., & Vanhatalo, J. (2024). Bayesian joint species distribution model selection for community-level prediction. Global Ecology and Biogeography, 33, e13827. https://doi.org/10.1111/geb.13827
dc.identifier.olddbid497411
dc.identifier.oldhandle10024/554843
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14220
dc.identifier.urlhttp://dx.doi.org/10.1111/geb.13827
dc.identifier.urnURN:NBN:fi-fe2024041517569
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherWiley-Blackwell
dc.relation.articlenumbere13827
dc.relation.doi10.1111/geb.13827
dc.relation.ispartofseriesGlobal ecology and biogeography
dc.relation.issn1466-822X
dc.relation.issn1466-8238
dc.relation.numberinseries5
dc.relation.volume33
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554843
dc.subjectBayesian model selection
dc.subjectboreal forest
dc.subjectglobal change
dc.subjectlog score
dc.subjectmodel transferability
dc.subjectmultinomial likelihood
dc.subjectprobabilistic prediction
dc.subjectspecies dependence
dc.teh41007-00182500
dc.titleBayesian joint species distribution model selection for community-level prediction
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Itter_et_al._2024_(Glob_Ecol_Biogeogr).pdf
Size:
556.26 KB
Format:
Adobe Portable Document Format
Description:
Itter_et_al._2024_(Glob_Ecol_Biogeogr).pdf

Kokoelmat