Luke
 

Combination of lidar intensity and texture features enable accurate prediction of common boreal tree species with single sensor UAS data

dc.contributor.authorKukkonen, Mikko
dc.contributor.authorLähivaara, Timo
dc.contributor.authorPackalen, Petteri
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0003-4206-1680
dc.contributor.orcidhttps://orcid.org/0000-0003-1804-0011
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-01-02T08:51:36Z
dc.date.accessioned2025-05-27T20:07:13Z
dc.date.available2024-01-02T08:51:36Z
dc.date.issued2024
dc.description.abstractWe evaluated the performance of unmanned aerial system (UAS) airborne light detection and ranging (lidar) data in the species classification of pine, spruce, and broadleaf trees. Classifications were conducted with three machine learning (ML) approaches (multinomial logistic regression, random forest, and multilayer perceptron) using features computed from automatically segmented point clouds that represent individual trees. Trees were segmented from the point cloud using a marker-controlled watershed algorithm, and two types of features were computed for each segment: intensity and texture. Textural features were computed from gray-level co-occurrence matrices built from horizontal cross sections of the point cloud. Intensity features were computed as the average intensity values within voxels. The classification accuracies were validated on 39 rectangular 30×30 m field plots using leave-one-plot out cross-validation. The results showed only very small differences in the classification performance between different ML approaches. Intensity features provided greater classification accuracy (kappa 0.73–0.77) than textural features (kappa 0.60–0.64). However, the best classification results (kappa 0.81) were achieved when both intensity and textural features were used. Feature importance in different ML approaches was also similar. We conclude that the accurate classification of the three tree species considered in this study is possible using single-sensor UAS lidar data.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.format.pagerange8 p.
dc.identifier.citationHow to cite: M. Kukkonen, T. Lähivaara and P. Packalen, "Combination of Lidar Intensity and Texture Features Enable Accurate Prediction of Common Boreal Tree Species With Single Sensor UAS Data," in IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-8, 2024, Art no. 4401508, doi: 10.1109/TGRS.2023.3345745.
dc.identifier.olddbid496965
dc.identifier.oldhandle10024/554399
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/9453
dc.identifier.urlhttp://dx.doi.org/10.1109/tgrs.2023.3345745
dc.identifier.urnURN:NBN:fi-fe2024070560701
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.articlenumber4401508
dc.relation.doi10.1109/tgrs.2023.3345745
dc.relation.ispartofseriesIEEE Transactions on Geoscience and Remote Sensing
dc.relation.issn0196-2892
dc.relation.issn1558-0644
dc.relation.numberinseries8 p.
dc.relation.volume62
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/554399
dc.subjectSpatial resolution
dc.subjectDistance measurement
dc.subjectRandom forests
dc.subjectVegetation
dc.subjectLaser radar
dc.subjectForestry
dc.subjectPoint cloud compression
dc.teh41007-00235501
dc.titleCombination of lidar intensity and texture features enable accurate prediction of common boreal tree species with single sensor UAS data
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Kukkonen-etal-2024-Combination_of_Lidar_Intensity.pdf
Size:
15.66 MB
Format:
Adobe Portable Document Format
Description:
Kukkonen-etal-2024-Combination_of_Lidar_Intensity.pdf

Kokoelmat