Luke
 

Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences

dc.contributor.authorChristie, Alec P.
dc.contributor.authorAbecasis, David
dc.contributor.authorAdjeroud, Mehdi
dc.contributor.authorAlonso, Juan C.
dc.contributor.authorAmano, Tatsuya
dc.contributor.authorAnton, Alvaro
dc.contributor.authorBaldigo, Barry P.
dc.contributor.authorBarrientos, Rafael
dc.contributor.authorBicknell, Jake E.
dc.contributor.authorBuhl, Deborah A.
dc.contributor.authorCebrian, Just
dc.contributor.authorCeia, Ricardo S.
dc.contributor.authorCibils-Martina, Luciana
dc.contributor.authorClarke, Sarah
dc.contributor.authorClaudet, Joachim
dc.contributor.authorCraig, Michael D.
dc.contributor.authorDavoult, Dominique
dc.contributor.authorDe Backer, Annelies
dc.contributor.authorDonovan, Mary K.
dc.contributor.authorEddy, Tyler D.
dc.contributor.authorFrança, Filipe M.
dc.contributor.authorGardner, Jonathan P. A.
dc.contributor.authorHarris, Bradley P.
dc.contributor.authorHuusko, Ari
dc.contributor.authorJones, Ian L.
dc.contributor.authorKelaher, Brendan P.
dc.contributor.authorKotiaho, Janne S.
dc.contributor.authorLópez-Baucells, Adrià
dc.contributor.authorMajor, Heather L.
dc.contributor.authorMäki-Petäys, Aki
dc.contributor.authorMartín, Beatriz
dc.contributor.authorMartín, Carlos A.
dc.contributor.authorMartin, Philip A.
dc.contributor.authorMateos-Molina, Daniel
dc.contributor.authorMcConnaughey, Robert A.
dc.contributor.authorMeroni, Michele
dc.contributor.authorMeyer, Christoph F. J.
dc.contributor.authorMills, Kade
dc.contributor.authorMontefalcone, Monica
dc.contributor.authorNoreika, Norbertas
dc.contributor.authorPalacín, Carlos
dc.contributor.authorPande, Anjali
dc.contributor.authorPitcher, C. Roland
dc.contributor.authorPonce, Carlos
dc.contributor.authorRinella, Matt
dc.contributor.authorRocha, Ricardo
dc.contributor.authorRuiz-Delgado, María C.
dc.contributor.authorSchmitter-Soto, Juan J.
dc.contributor.authorShaffer, Jill A.
dc.contributor.authorSharma, Shailesh
dc.contributor.authorSher, Anna A.
dc.contributor.authorStagnol, Doriane
dc.contributor.authorStanley, Thomas R.
dc.contributor.authorStokesbury, Kevin D. E.
dc.contributor.authorTorres, Aurora
dc.contributor.authorTully, Oliver
dc.contributor.authorVehanen, Teppo
dc.contributor.authorWatts, Corinne
dc.contributor.authorZhao, Qingyuan
dc.contributor.authorSutherland, William J.
dc.contributor.departmentid4100110910
dc.contributor.departmentid4100110910
dc.contributor.orcidhttps://orcid.org/0000-0002-7846-787X
dc.contributor.orcidhttps://orcid.org/0000-0003-3441-6787
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2020-12-16T11:31:18Z
dc.date.accessioned2025-05-28T13:10:00Z
dc.date.available2020-12-16T11:31:18Z
dc.date.issued2020
dc.description.abstractBuilding trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.
dc.description.vuosik2020
dc.format.bitstreamtrue
dc.format.pagerange11 p.
dc.identifier.olddbid489252
dc.identifier.oldhandle10024/546712
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/23435
dc.identifier.urnURN:NBN:fi-fe20201216100967
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline1181
dc.okm.internationalcopublicationon
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherNature Publishing Group
dc.relation.articlenumber6377
dc.relation.doi10.1038/s41467-020-20142-y
dc.relation.ispartofseriesNature communications
dc.relation.issn2041-1723
dc.relation.issn2041-1723
dc.relation.numberinseries1
dc.relation.volume11
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/546712
dc.teh41007-00047200
dc.titleQuantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Christie_et_al_2020.pdf
Size:
7.13 MB
Format:
Adobe Portable Document Format
Description:
Christie_et_al_2020.pdf

Kokoelmat