Luke
 

Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests

dc.contributor.authorKuronen, Mikko
dc.contributor.authorSärkkä, Aila
dc.contributor.authorVihola, Matti
dc.contributor.authorMyllymäki, Mari
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-8089-7895
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2021-09-01T04:39:25Z
dc.date.accessioned2025-05-27T18:32:31Z
dc.date.available2021-09-01T04:39:25Z
dc.date.issued2022
dc.description.abstractWe propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points xx affects another set of points yy but not vice versa. We use the model to investigate the effect of large trees on the locations of seedlings. In the model, every point in xx has a parametric influence kernel or signal, which together form an influence field. Conditionally on the parameters, the influence field acts as a spatial covariate in the intensity of the model, and the intensity itself is a non-linear function of the parameters. Points outside the observation window may affect the influence field inside the window. We propose an edge correction to account for this missing data. The parameters of the model are estimated in a Bayesian framework using Markov chain Monte Carlo where a Laplace approximation is used for the Gaussian field of the LGCP model. The proposed model is used to analyze the effect of large trees on the success of regeneration in uneven-aged forest stands in Finland.
dc.description.vuosik2021
dc.format.bitstreamtrue
dc.format.bitstreamtrue
dc.format.pagerange185-205
dc.identifier.olddbid490364
dc.identifier.oldhandle10024/547819
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/6065
dc.identifier.urnURN:NBN:fi-fe2021090144880
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline112
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherChapman & Hall
dc.relation.doi10.1007/s10651-021-00514-3
dc.relation.ispartofseriesEnvironmental and ecological statistics
dc.relation.issn1352-8505
dc.relation.issn1573-3009
dc.relation.volume29
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/547819
dc.subjectBayesian inference
dc.subjectCompetition kernel
dc.subjectLaplace approximation
dc.subjectMCMC
dc.subjectSpatial random effects
dc.subjectTree regeneration
dc.subject.ysoBayesian inference
dc.subject.ysoCompetition kernel
dc.subject.ysoLaplace approximation
dc.subject.ysoMCMC
dc.subject.ysoSpatial random effects
dc.subject.ysoTree regeneration
dc.teh41007-00075100
dc.teh41007-00075000
dc.teh41007-00172701
dc.titleHierarchical log Gaussian Cox process for regeneration in uneven-aged forests
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Kuronen_et_al_2021.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format
Description:
Kuronen_et_al_2021.pdf

Kokoelmat