Luke
 

Upscaling field-measured seasonal ground vegetation patterns with Sentinel-2 images in boreal ecosystems

dc.contributor.authorPang, Yuwen
dc.contributor.authorRäsänen, Aleksi
dc.contributor.authorJuselius-Rajamäki, Teemu
dc.contributor.authorAurela, Mika
dc.contributor.authorJuutinen, Sari
dc.contributor.authorVäliranta, Minna
dc.contributor.authorVirtanen, Tarmo
dc.contributor.departmentid4100311110
dc.contributor.orcidhttps://orcid.org/0000-0002-3629-1837
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2023-07-24T05:03:35Z
dc.date.accessioned2025-05-28T11:02:59Z
dc.date.available2023-07-24T05:03:35Z
dc.date.issued2023
dc.description.abstractAboveground biomass (AGB) and leaf area index (LAI) are key variables of ecosystem processes and functioning. Knowledge is lacking on how well the seasonal patterns of ground vegetation AGB and LAI can be detected by satellite images in boreal ecosystems. We conducted field measurements between May and September during one growing season to investigate the seasonal development of ground vegetation AGB and LAI of seven plant functional types (PFTs) across seven vegetation types (VTs) within three peatland and forest study areas in northern Finland. We upscaled field-measured AGB and LAI with Sentinel-2 (S2) imagery by applying random forest (RF) regressions. Field-measured AGB peaked around the first week of August and, in most cases, one to two weeks later than LAI. Regarding PFTs, deciduous vascular plants had clear unimodal seasonal patterns, while the AGB and LAI of evergreen vegetation and mosses remained steady over the season. Remote sensing regression models explained 24.2–50.2% of the AGB (RMSE: 78.8–198.7 g m−2) and 48.5–56.1% of the LAI (RMSE: 0.207–0.497 m2 m−2) across sites. Peatland-dominant sites and VTs had a higher prediction accuracy. S2-predicted peak dates of AGB and LAI were one to three weeks earlier than the field-based ones. Our findings suggest that boreal ground vegetation seasonality varies among PFTs and VTs and that S2 time series data can be applied to monitor its spatiotemporal patterns, especially in treeless regions.
dc.description.vuosik2023
dc.format.bitstreamtrue
dc.format.pagerange4239-4261
dc.identifier.olddbid496249
dc.identifier.oldhandle10024/553686
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/21526
dc.identifier.urnURN:NBN:fi-fe2023072490898
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1172
dc.okm.discipline1171
dc.okm.discipline1181
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherTaylor and Francis [for] the Remote Sensing Society
dc.relation.doi10.1080/01431161.2023.2234093
dc.relation.ispartofseriesInternational journal of remote sensing
dc.relation.issn0143-1161
dc.relation.issn1366-5901
dc.relation.numberinseries14
dc.relation.volume44
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/553686
dc.teh41007-00216200
dc.titleUpscaling field-measured seasonal ground vegetation patterns with Sentinel-2 images in boreal ecosystems
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Pang_et_al_2023.pdf
Size:
11.02 MB
Format:
Adobe Portable Document Format
Description:
Pang_et_al_2023.pdf

Kokoelmat