Luke
 

Tree stem diameter estimation using inexpensive UAV photogrammetric data and Monte Carlo methods

dc.contributor.authorGarcía-Pascual, Borja
dc.contributor.authorMartín-Cortés, Carlos
dc.contributor.authorZhou, Xin
dc.contributor.authorLopatin, Evgeny
dc.contributor.authorAcuna, Mauricio
dc.contributor.authorKärhä, Kalle
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100310210
dc.contributor.departmentid4100210610
dc.contributor.orcidhttps://orcid.org/0000-0003-4165-613X
dc.contributor.orcidhttps://orcid.org/0000-0003-1811-4930
dc.contributor.orcidhttps://orcid.org/0000-0003-1409-5699
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-11-18T12:35:58Z
dc.date.issued2025
dc.description.abstractAccurate diameter estimation from point cloud data allows for characterizing stem volume and shape without resorting to destructive methods. Typically, circles are fitted at various stem heights using statistical techniques. However, these techniques are susceptible to noise and occlusion in the point cloud, often caused by obstacles or weather phenomena. This susceptibility reduces the feasibility of applying such methods to point clouds captured by low-cost sensors, which tend to be less precise and noisier. Photogrammetry, however, can be used together with consumer-grade cameras and inexpensive UAVs to generate high-quality point clouds from under-canopy data. This study presents MACiF (Morphology-Aware Circle Fit), a novel method to accurately estimate diameters at various heights from noisy point clouds. Our approach uses robust statistical methods and Monte Carlo simulation to filter the point cloud. We also leverage how stems vary gradually to iteratively correct erroneous estimates. This iterative correction enables estimating diameters with an error lower than -3.34 cm, even when data quality limits the use of other methods. These results support the use of undercanopy low-cost photogrammetry as a viable source of data for automatic stem characterization.
dc.format.pagerange49-56
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103233
dc.identifier.urlhttps://doi.org/10.5194/isprs-annals-X-2-W2-2025-49-2025
dc.identifier.urnURN:NBN:fi-fe20251118108991
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherISPRS
dc.relation.doi10.5194/isprs-annals-x-2-w2-2025-49-2025
dc.relation.ispartofseriesISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.relation.issn2194-9042
dc.relation.issn2194-9050
dc.relation.volumeX-2/W2-2025
dc.rightsCC BY 4.0
dc.source.justusid128301
dc.subjectstem characterization
dc.subjectphotogrammetry
dc.subjectstructure from motion
dc.subjectdiameter estimation
dc.subjectunmanned aerial vehicles
dc.tehOHFO-Alku-3
dc.titleTree stem diameter estimation using inexpensive UAV photogrammetric data and Monte Carlo methods
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
GarsiaPascual_etal_2025_ISPRS_Tree_stem.pdf
Size:
4.17 MB
Format:
Adobe Portable Document Format
Description:
GarsiaPascual_etal_2025_ISPRS_Tree_stem.pdf

Kokoelmat