Luke
 

Digital mapping of peat thickness and extent in Finland using remote sensing and machine learning

dc.contributor.authorPohjankukka, Jonne
dc.contributor.authorRäsänen, Timo A.
dc.contributor.authorPitkänen, Timo P.
dc.contributor.authorKivimäki, Arttu
dc.contributor.authorMäkinen, Ville
dc.contributor.authorVäänänen, Tapio
dc.contributor.authorLerssi, Jouni
dc.contributor.authorSalmivaara, Aura
dc.contributor.authorMiddleton, Maarit
dc.contributor.departmentid4100111010
dc.contributor.departmentid4100110410
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100110410
dc.contributor.orcidhttps://orcid.org/0000-0002-5808-2577
dc.contributor.orcidhttps://orcid.org/0000-0001-5389-8713
dc.contributor.orcidhttps://orcid.org/0000-0002-8588-8488
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-02-18T11:44:16Z
dc.date.accessioned2025-05-30T08:02:42Z
dc.date.available2025-02-18T11:44:16Z
dc.date.issued2025
dc.description.abstractAccurate data on peat extent and thickness is essential for managing drained peatlands and reducing greenhouse gas emissions. Machine learning-based digital soil mapping offers an effective approach for large-scale peat occurrence prediction. In this study, we present a workflow for producing peat occurrence maps for the whole of Finland. For this, we used random forest classification to map areas with peat thicknesses of ≥ 10 cm, ≥30 cm, ≥40 cm, and > 60 cm. The input data consisted of 3.5 million point observations and 188 feature rasters from various sources. We carefully split the reference data into training and test sets, allowing for independent and robust model validation. Feature selection included an initial screening for multicollinearity using correlation-based feature pruning, followed by final selection using a genetic algorithm. Feature importance was evaluated using permutation importance and SHAP values. The resulting models utilized 26–33 features, achieving overall accuracies and F1-scores between 86–95 % and 0.82–0.95, respectively. The most important features included soil wetness indices, terrain roughness indices, and natural gamma radiation. Additionally, we provided an approach for evaluating spatial prediction uncertainty based on the models’ internal prediction agreement. Compared to existing superficial deposit maps, our peat predictions significantly improve the spatial detail of peatlands at the national level, offering new opportunities for land use planning and emission mitigation. Our exceptionally comprehensive approach is broadly applicable, offering new insights into optimizing machine learning-based digital peatland mapping, particularly through refining feature selection to account for local conditions and enhance prediction accuracy.
dc.format.bitstreamtrue
dc.format.pagerange25 s.
dc.identifier.citationHow to cite: Jonne Pohjankukka, Timo A. Räsänen, Timo P. Pitkänen, Arttu Kivimäki, Ville Mäkinen, Tapio Väänänen, Jouni Lerssi, Aura Salmivaara, Maarit Middleton, Digital mapping of peat thickness and extent in Finland using remote sensing and machine learning, Geoderma, Volume 455, 2025, 117216, ISSN 0016-7061, https://doi.org/10.1016/j.geoderma.2025.117216.
dc.identifier.olddbid498717
dc.identifier.oldhandle10024/556141
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/84691
dc.identifier.urlhttps://doi.org/10.1016/j.geoderma.2025.117216
dc.identifier.urnURN:NBN:fi-fe2025021812836
dc.language.isoen
dc.okm.avoinsaatavuusjulkaisumaksu3171.95
dc.okm.avoinsaatavuusjulkaisumaksuvuosi2025
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4111
dc.okm.discipline1172
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber117216
dc.relation.doi10.1016/j.geoderma.2025.117216
dc.relation.ispartofseriesGeoderma
dc.relation.issn0016-7061
dc.relation.issn1872-6259
dc.relation.volume455
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556141
dc.subjectDigital soil mapping
dc.subjectPeatland
dc.subjectPeat thickness
dc.subjectremote sensing
dc.subjectmachine learning
dc.subjectFeature selection
dc.subjectUncertainty quantification
dc.subjectNation-wide dataset
dc.teh41007-00223801
dc.titleDigital mapping of peat thickness and extent in Finland using remote sensing and machine learning
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
1-s2.0-S0016706125000540-main.pdf
Size:
29.7 MB
Format:
Adobe Portable Document Format
Description:
1-s2.0-S0016706125000540-main.pdf

Kokoelmat