Luke
 

Detecting northern peatland vegetation patterns at ultra‐high spatial resolution

dc.contributor.authorRäsänen, Aleksi
dc.contributor.authorAurela, Mika
dc.contributor.authorJuutinen, Sari
dc.contributor.authorKumpula, Timo
dc.contributor.authorLohila, Annalea
dc.contributor.authorPenttilä, Timo
dc.contributor.authorVirtanen, Tarmo
dc.contributor.departmentid4100110510
dc.contributor.orcidhttps://orcid.org/0000-0002-0710-4131
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2019-12-18T09:27:00Z
dc.date.accessioned2025-05-28T13:03:05Z
dc.date.available2019-12-18T09:27:00Z
dc.date.issued2020
dc.description.abstractWithin northern peatlands, landscape elements such as vegetation and topography are spatially heterogenic from ultra‐high (centimeter level) to coarse scale. In addition to within‐site spatial heterogeneity, there is evident between‐site heterogeneity, but there is a lack of studies assessing whether different combinations of remotely sensed features and mapping approaches are needed in different types of landscapes. We evaluated the value of different mapping methods and remote sensing datasets and analyzed the kinds of differences present in vegetation patterns and their mappability between three northern boreal peatland landscapes in northern Finland. We utilized field‐inventoried vegetation plots together with spectral, textural, topography and vegetation height remote sensing data from 0.02‐ to 3‐m pixel size. Remote sensing data included true‐color unmanned aerial vehicle images, aerial images with four spectral bands, aerial lidar data and multiple PlanetScope satellite images. We used random forest regressions for tracking plant functional type (PFT) coverage, non‐metric multidimensional scaling ordination axes and fuzzy k‐medoid plant community clusters. PFT regressions had variable performance for different study sites (R2 −0.03 to 0.69). Spatial patterns of some spectrally or structurally distinctive PFTs could be predicted relatively well. The first ordination axis represented wetness gradient and was well predicted using remotely sensed data (R2 0.64 to 0.82), but the other three axes had a less straightforward explanation and lower mapping performance (R2 −0.09 to 0.53). Plant community clusters were predicted most accurately in the sites with clear string‐flark topography but less accurately in the flatter site (R2 0.16–0.82). The most important remote sensing features differed between dependent variables and study sites: different topographic, spectral and textural features; and coarse‐scale and fine‐scale datasets were the most important in different tasks. We suggest that multiple different mapping approaches should be tested and several remote sensing datasets used when maps of vegetation are produced.
dc.description.vuosik2019
dc.format.bitstreamtrue
dc.format.bitstreamtrue
dc.format.pagerange457–471
dc.identifier.olddbid487738
dc.identifier.oldhandle10024/545207
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/23252
dc.identifier.urnURN:NBN:fi-fe2019121848809
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline1172
dc.okm.internationalcopublicationei
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherWiley
dc.relation.articlenumberrse2.140
dc.relation.doi10.1002/rse2.140
dc.relation.ispartofseriesRemote Sensing in Ecology and Conservation
dc.relation.issn2056-3485
dc.relation.numberinseries4
dc.relation.volume6
dc.rightsCC BY-NC 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/545207
dc.subject.ysounmanned aerial vehicles
dc.subject.ysofloristic analysis
dc.subject.ysolidar
dc.subject.ysonorthern boreal
dc.subject.ysovery-high spatial resolution
dc.teh41007-00031100
dc.titleDetecting northern peatland vegetation patterns at ultra‐high spatial resolution
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Rasanen_et_al_2019.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
Description:
Rasanen_et_al_2019.pdf

Kokoelmat