Luke
 

Mapping old-growth forests using airborne lidar data and satellite images: how do plot size and rarity affect accuracy?

dc.contributor.authorRäty, Janne
dc.contributor.authorMyllymäki, Mari
dc.contributor.authorPeltoniemi, Mikko
dc.contributor.authorLehtonen, Aleksi
dc.contributor.authorPackalen, Petteri
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100311110
dc.contributor.departmentid4100310610
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-6578-8965
dc.contributor.orcidhttps://orcid.org/0000-0002-2713-7088
dc.contributor.orcidhttps://orcid.org/0000-0003-2028-6969
dc.contributor.orcidhttps://orcid.org/0000-0003-1388-0388
dc.contributor.orcidhttps://orcid.org/0000-0003-1804-0011
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-08-13T10:40:47Z
dc.date.issued2025
dc.description.abstractOld-growth forests have become rare and fragmented in the boreal biome. Their precise locations are not currently known with sufficient accuracy to support forest conservation and forest management. We studied the mapping of old-growth forests using airborne lidar data and satellite images in the Finnish coniferous forests. We investigated how plot size and the rarity of old-growth forests affect the accuracy of old-growth forest detection. We employed a Gaussian process classifier to distinguish old-growth forests from managed forests. Our field data consisted of 176 old-growth and 1082 managed forest plots. The results showed that an increase in plot size from 20 m × 20 m to 60 m × 60 m improved the performance of the classifier, because the larger plots more likely contain spatial patterns of trees and crown features indicative of forest naturalness. The largest F1-score (0.74) was achieved by data augmentation that generates additional training plots located inside forest boundaries. We also showed that the detection accuracy of old-growth forests decreases as they become rarer in the population. This rarity effect is crucial to understand, because the occurrence of old-growth forests can vary regionally due to different land use pressures. The mapping procedure proposed here can assist in the planning of field-based inventories of old-growth forests.
dc.format.pagerange14 p.
dc.identifier.citationHow to cite: Janne Räty, Mari Myllymäki, Mikko Peltoniemi, Aleksi Lehtonen, and Petteri Packalen. 2025. Mapping old-growth forests using airborne lidar data and satellite images: how do plot size and rarity affect accuracy?. Canadian Journal of Forest Research. 55: 1-14. https://doi.org/10.1139/cjfr-2024-0283
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/99807
dc.identifier.urlhttps://doi.org/10.1139/cjfr-2024-0283
dc.identifier.urnURN:NBN:fi-fe2025081382490
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherNational Research Council Canada
dc.relation.doi10.1139/cjfr-2024-0283
dc.relation.ispartofseriesCanadian journal of forest research-revue canadienne de recherche forestiere
dc.relation.issn0045-5067
dc.relation.issn1208-6037
dc.relation.volume55
dc.rightsCC BY 4.0
dc.source.justusid123902
dc.subjectairborne laser scanning
dc.subjectnature conservation
dc.subjectsatellite imagery
dc.subjectconservation prioritization
dc.subjectdata augmentation
dc.titleMapping old-growth forests using airborne lidar data and satellite images: how do plot size and rarity affect accuracy?
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Raty_etal_2025_CanJForestRes_Mapping_oldgrowth.pdf
Size:
2.99 MB
Format:
Adobe Portable Document Format
Description:
Raty_etal_2025_CanJForestRes_Mapping_oldgrowth.pdf

Kokoelmat