Luke
 

Enhancing forest inventory Accuracy: Comparing 3D-CNN and k-NN with genetic algorithm Approaches using ALS data across boreal bioregions

dc.contributor.authorBalazs, Andras
dc.contributor.authorTuominen, Sakari
dc.contributor.authorKangas, Annika
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0003-0693-7665
dc.contributor.orcidhttps://orcid.org/0000-0001-5429-3433
dc.contributor.orcidhttps://orcid.org/0000-0002-8637-5668
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-05-23T09:43:18Z
dc.date.accessioned2025-05-28T12:53:26Z
dc.date.available2025-05-23T09:43:18Z
dc.date.issued2025
dc.description.abstractIn 2020, the National Land Survey of Finland (NLS) started to acquire airborne laser scanning (ALS) data with a nominal pulse density of 5 pulse/m2, representing a significant increase compared to the ALS data collected in earlier scanning campaigns. In our previous study utilizing lower density ALS data we have found that a three-dimensional convolutional neural network (3D-CNN) yielded results comparable to our benchmark genetic algorithm supported k-nearest neighbors (k-NN) method. In this paper, we compared the performance of our 3D-CNN model using voxelized ALS data with an increased point density to the benchmark k-NN method in estimating forest stand variables. The emphasis of our study was on the generalizability of tested models trained on independent, spatially uncorrelated datasets. For this reason, we utilized three datasets from different parts of Finland, of which two (Mikkeli and Äänekoski) are situated in the southern and one (Kolari) in the northern boreal bioregion. Models were trained with each of the datasets and cross-validated using the two other datasets and results reported separately. The 3D-CNN outperformed our benchmark model by more than 9 % in terms of relative RMSE over all training sets, validation sets and forest variables. On the other hand, k-NN performed slightly better than CNN regarding average relative bias by 4.9 % over all datasets and variables. It Is also important to mention, that over 94 % of RMSE results were proven to be statistically significant, whereas over 40 % of bias results showed no statistically significant differences between the methods. Most remarkable differences are produced by models trained and validated by datasets from the same bioregion (Mikkeli and Äänekoski). Relative RMSE scores calculated from CNN predictions were lower compared to the benchmark method by 5.7 %, 25.3 %, 19.6 %, and 63.3 % for volume of total growing stock, pine, spruce, and broad-leaved, respectively. Based on these results we can state that models trained with the 3D-CNN used in our study are better generalizable at least within the same bioregion compared to our benchmark method. Increased prediction accuracy especially in terms of tree species-specific volumes could bring benefits to forest management practices, planning of harvest, or biodiversity research.
dc.format.bitstreamtrue
dc.format.pagerange15 p.
dc.identifier.citationAndras Balazs, Sakari Tuominen, Annika Kangas, Enhancing forest inventory Accuracy: Comparing 3D-CNN and k-NN with genetic algorithm Approaches using ALS data across boreal bioregions, Computers and Electronics in Agriculture, Volume 237, Part A, 2025, 110576, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2025.110576.
dc.identifier.olddbid498961
dc.identifier.oldhandle10024/556385
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/23053
dc.identifier.urlhttps://doi.org/10.1016/j.compag.2025.110576
dc.identifier.urnURN:NBN:fi-fe2025052353582
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber110576
dc.relation.doi10.1016/j.compag.2025.110576
dc.relation.ispartofseriesComputers and electronics in agriculture
dc.relation.issn0168-1699
dc.relation.issn1872-7107
dc.relation.numberinseriesPart A
dc.relation.volume237
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/556385
dc.source.justusid121118
dc.subjectCNN
dc.subjectdeep learning
dc.subjectforest inventory
dc.subjectremote sensing
dc.subjectALS
dc.teh41007-00293002
dc.titleEnhancing forest inventory Accuracy: Comparing 3D-CNN and k-NN with genetic algorithm Approaches using ALS data across boreal bioregions
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
1-s2.0-S0168169925006829-main.pdf
Size:
7.77 MB
Format:
Adobe Portable Document Format
Description:
1-s2.0-S0168169925006829-main.pdf

Kokoelmat