Luke
 

Comparing machine learning algorithms for simultaneous prediction of tree diameter distribution percentiles

dc.contributor.authorCiceu, Albert
dc.contributor.authorAksoy, Hasan
dc.contributor.authorBadea, Ovidiu
dc.contributor.authorBullock, Bronson
dc.contributor.authorEzenwenyi, Jacinta Ukamaka
dc.contributor.authorGorgoso-Varela, Jose Javier
dc.contributor.authorLeca, Ştefan
dc.contributor.authorLedermann, Thomas
dc.contributor.authorMäkinen, Harri
dc.contributor.authorOgana, Friday N.
dc.contributor.authorYang, Sheng-I
dc.contributor.authorMehtätalo, Lauri
dc.contributor.departmentid4100110310
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-1820-6264
dc.contributor.orcidhttps://orcid.org/0000-0002-8128-0598
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-11-05T11:55:22Z
dc.date.issued2025
dc.description.abstractAccurate predictions of tree diameter distributions are important for assessing forest structure, quantifying biodiversity, and estimating carbon sequestration. Percentile-based approaches are among the most effective methods for reconstructing diameter distributions from stand-level variables. In this study, we compared three modelling approaches, generalised least squares (GLS), Multi-Output Random Forest (MORF), and a multi-output deep learning-based model (MODL), across nine datasets representing different forest types and management regimes, aiming to predict simultaneously six diameter distribution percentiles. Our results show that MODL consistently outperformed both GLS and MORF in predictive accuracy across all nine training subsets and five out of nine test subsets, demonstrating strong generalisation across diverse forest types. MODL was particularly effective in achieving high accuracy while preserving the standard deviation of the response variables. While GLS performed slightly better in predicting the 100th percentile, MODL showed superior performance at the lower percentiles in most datasets. Interestingly, although MORF was generally the least accurate, it was the only method that consistently maintained the monotonicity of the predicted percentiles, a desirable property not inherently ensured by GLS or MODL, especially in the case of narrow diameter distributions. These findings underscore the strong potential of deep learning models for predicting diameter distribution percentiles and position MODL as a promising alternative to traditional parametric approaches.
dc.format.pagerange13 p.
dc.identifier.citationHow to cite: Albert Ciceu, Hasan Aksoy, Ovidiu Badea, Bronson P. Bullock, Jacinta Ukamaka Ezenwenyi, Jose Javier Gorgoso-Varela, Ştefan Leca, Thomas Ledermann, Harri Mäkinen, Friday N. Ogana, Sheng-I Yang, Lauri Mehtätalo, Comparing machine learning algorithms for simultaneous prediction of tree diameter distribution percentiles, Ecological Informatics, Volume 92, 2025, 103500, https://doi.org/10.1016/j.ecoinf.2025.103500.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103172
dc.identifier.urlhttps://doi.org/10.1016/j.ecoinf.2025.103500
dc.identifier.urnURN:NBN:fi-fe20251105105453
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherElsevier
dc.relation.articlenumber103500
dc.relation.doi10.1016/j.ecoinf.2025.103500
dc.relation.ispartofseriesEcological informatics
dc.relation.issn1574-9541
dc.relation.issn1878-0512
dc.relation.volume92
dc.rightsCC BY-NC-ND 4.0
dc.source.justusid127686
dc.subjectmulti-output regression
dc.subjectmachine learning
dc.subjectmodel comparison
dc.subjecttree diameter distribution
dc.subjectprediction
dc.subjectpercentile prediction
dc.teh41007-00293003
dc.teh41007-00309501
dc.teh41007-00279201
dc.titleComparing machine learning algorithms for simultaneous prediction of tree diameter distribution percentiles
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Ciceu_etal_2025_EcologInform_Comparing_machine.pdf
Size:
4.13 MB
Format:
Adobe Portable Document Format
Description:
Ciceu_etal_2025_EcologInform_Comparing_machine.pdf

Kokoelmat