Luke
 

Detection of snow disturbances in boreal forests using unitemporal airborne lidar data and aerial images

dc.contributor.authorRäty, Janne
dc.contributor.authorKukkonen, Mikko
dc.contributor.authorMelin, Markus
dc.contributor.authorMaltamo, Matti
dc.contributor.authorPackalen, Petteri
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100310510
dc.contributor.departmentid4100110710
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-6578-8965
dc.contributor.orcidhttps://orcid.org/0000-0001-7290-9203
dc.contributor.orcidhttps://orcid.org/0000-0003-1804-0011
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2024-11-28T11:31:30Z
dc.date.accessioned2025-05-28T08:36:39Z
dc.date.available2024-11-28T11:31:30Z
dc.date.issued2024
dc.description.abstractSnow is among the most significant natural disturbance agents in Finland. In silviculture, maps of snow disturbance are needed to recognize severely disturbed forests where the risk of subsequential disturbances, such as insect outbreaks, is high. We investigated the potential of unitemporal airborne lidar (light detection and ranging) data and aerial images to detect snow disturbance at the tree level. We used 81 healthy and 128 snow-disturbed field plots established in a 63 800 ha study area in Eastern Finland. A subset of trees (n = 675) was accurately positioned in the field plots. We carried out individual tree detection (ITD) using airborne lidar data (5 p/m2), and a random forest classifier was used to classify healthy and broken trees. Tree features were extracted from a terrain elevation model, lidar data, and aerial imagery. We compared canopy height model–based (ITDCHM) and point cloud–based (ITDPC) ITD approaches. We explored random forest variable importance scores and evaluated the classification performance by an F1-score and its components (precision and recall). Performance was also evaluated at the plot level to investigate errors associated with the predicted number of broken trees. We achieved F1-scores of 0.66 and 0.85 for the tree- and plot-level classifications, respectively. The variable importance scores showed that elevation above sea level was the most important predictor variable followed by ITD-based features characterizing the neighborhood of trees. The ITDCHM slightly outperformed the ITDPC at the tree level, while they both underestimated the number of broken trees at the plot level. The proposed approach can be carried out alongside lidar-assisted operational forest management inventories provided that a set of positioned broken and healthy trees are available for model training. Since airborne lidar data often have a temporal resolution of several years for the same areas, future research should consider the utilization of other remotely sensed data sources to improve the temporal resolution.
dc.description.vuosik2024
dc.format.bitstreamtrue
dc.identifier.citationHow to cite: Janne Räty, Mikko Kukkonen, Markus Melin, Matti Maltamo, Petteri Packalen, Detection of snow disturbances in boreal forests using unitemporal airborne lidar data and aerial images, Forestry: An International Journal of Forest Research, 2024;, cpae057, https://doi.org/10.1093/forestry/cpae057
dc.identifier.olddbid498103
dc.identifier.oldhandle10024/555531
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/14410
dc.identifier.urlhttp://dx.doi.org/10.1093/forestry/cpae057
dc.identifier.urnURN:NBN:fi-fe2024112897486
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.julkaisukanavaoa2 = Osittain avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherOxford University Press
dc.relation.articlenumbercpae057
dc.relation.doi10.1093/forestry/cpae057
dc.relation.ispartofseriesForestry
dc.relation.issn0015-752X
dc.relation.issn1464-3626
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/555531
dc.subjectforest damage
dc.subjectairborne laser scanning
dc.subjectnatural forest disturbance
dc.subjectsnow disturbance
dc.subjectsnow damage
dc.teh41007-00217302
dc.titleDetection of snow disturbances in boreal forests using unitemporal airborne lidar data and aerial images
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
cpae057.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format
Description:
cpae057.pdf

Kokoelmat