Luke
 

Potential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space

dc.contributor.authorMohamedou, Cheikh
dc.contributor.authorKangas, Annika
dc.contributor.authorHamedianfar, Alireza
dc.contributor.authorVauhkonen, Jari
dc.contributor.departmentid4100310510
dc.contributor.orcidhttps://orcid.org/0000-0002-8637-5668
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2022-02-16T08:36:04Z
dc.date.accessioned2025-05-28T14:31:39Z
dc.date.available2022-02-16T08:36:04Z
dc.date.issued2022
dc.description.abstractForest resource assessments based on multi-source and multi-temporal data have become more common. Therefore, enhancing the prediction capabilities of forestry dynamics by efficiently pooling and analyzing time-series and spatial sequential data is now more pivotal. Bayesian filtering and smoothing provide a well-defined formalism for the fusion or assimilation of various data. We ascertained how often the generic, standardized Bayesian framework is used in the scientific literature and whether such an approach is beneficial for forestry applications. A review of the literature showed that the use of Bayesian methods appears to be less common in forestry than in other disciplines, particularly remote sensing. Specifically, time-series analyses were found to favor <i>ad hoc</i> methods. Our review did not reveal strong numeric evidence for better performance by the various Bayesian approaches, but this result may be partly due to the challenge in comparing a variety of methods for different prediction tasks. We identified methodological challenges related to assimilating predictions of forest development; in particular, combining modeled growth with disturbances due to both forest operations and natural phenomena. Nevertheless, the Bayesian frameworks provide possibilities to efficiently combine and update prior and posterior predictive distributions and derive related uncertainty measures that appear under-utilized in forestry.
dc.description.vuosik2022
dc.format.bitstreamtrue
dc.identifier.olddbid494174
dc.identifier.oldhandle10024/551622
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/25128
dc.identifier.urnURN:NBN:fi-fe2022021619327
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationei
dc.okm.openaccess2 = Hybridijulkaisukanavassa ilmestynyt avoin julkaisu
dc.okm.selfarchivedon
dc.publisherCanadian Science Publishing
dc.relation.doi10.1139/cjfr-2021-0145
dc.relation.ispartofseriesCanadian Journal of Forest Research
dc.relation.issn0045-5067
dc.relation.issn1208-6037
dc.rightsAll rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/551622
dc.subject.ysoBayesian analysis
dc.subject.ysoforest modelling
dc.subject.ysoforest inventory
dc.teh41007-00187500
dc.titlePotential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space
dc.typepublication
dc.type.okmfi=A2 Katsausartikkeli tieteellisessä aikakauslehdessä|sv=A2 Översiktsartikel i en vetenskaplig tidskrift|en=A2 Review article, Literature review, Systematic review|
dc.type.versionfi=Pre-print -versio|sv=Pre-print |en=Pre-print|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Mohamedou_et_al_2022.pdf
Size:
677.85 KB
Format:
Adobe Portable Document Format
Description:
Mohamedou_et_al_2022.pdf

Kokoelmat