Luke
 

Large tree diameter distribution modelling using sparse airborne laser scanning data in a subtropical forest in Nepal

dc.contributor.authorRana, Parvez
dc.contributor.authorVauhkonen, Jari
dc.contributor.authorJunttila, Virpi
dc.contributor.authorHou, Zhengyang
dc.contributor.authorGautam, Basanta
dc.contributor.authorCawkwell, Fiona
dc.contributor.authorTokola, Timo
dc.contributor.departmentLuke / Talous- ja yhteiskunta / Metsäsuunnittelu ja metsävarannot / Metsäsuunnittelu ja metsävarannot (4100400511)-
dc.contributor.departmentid4100400511-
dc.contributor.otherSchool of Forest Sciences, University of Eastern Finland-
dc.contributor.otherDepartment of Geography, University College Cork (UCC)-
dc.contributor.otherSchool of Engineering Science, Lappeenranta University of Technology-
dc.contributor.otherDepartment of Natural Resources & Environmental Science, University of Nevada-
dc.contributor.otherArbonaut Ltd-
dc.date.accessioned2017-11-13T13:37:51Z
dc.date.accessioned2025-05-27T16:26:42Z
dc.date.available2017-11-13T13:37:51Z
dc.date.issued2017
dc.description.abstractLarge-diameter trees (taking DBH > 30 cm to define large trees) dominate the dynamics, function and structure of a forest ecosystem. The aim here was to employ sparse airborne laser scanning (ALS) data with a mean point density of 0.8 m!2 and the non-parametric k-most similar neighbour (k-MSN) to predict tree diameter at breast height (DBH) distributions in a subtropical forest in southern Nepal. The specific objectives were: (1) to evaluate the accuracy of the large-tree fraction of the diameter distribution; and (2) to assess the effect of the number of training areas (sample size, n) on the accuracy of the predicted tree diameter distribution. Comparison of the predicted distributions with empirical ones indicated that the large tree diameter distribution can be derived in a mixed species forest with a RMSE% of 66% and a bias% of !1.33%. It was also feasible to downsize the sample size without losing the interpretability capacity of the model. For large-diameter trees, even a reduction of half of the training plots (n = 250), giving a marginal increase in the RMSE% (1.12–1.97%) was reported compared with the original training plots (n = 500). To be consistent with these outcomes, the sample areas should capture the entire range of spatial and feature variability in order to reduce the occurrence of error.-
dc.description.vuosik2017-
dc.formatSekä painettu, että verkkojulkaisu-
dc.format.bitstreamfalse
dc.format.pagerange86-95-
dc.identifier.elss1872-8235-
dc.identifier.olddbid483015
dc.identifier.oldhandle10024/540843
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/198
dc.identifier.urlhttps://www.journals.elsevier.com/isprs-journal-of-photogrammetry-and-remote-sensing/-
dc.language.isoeng-
dc.okm.corporatecopublicationon-
dc.okm.discipline4112 Metsätiede-
dc.okm.internationalcopublicationon-
dc.okm.openaccess0 = Ei vastausta-
dc.okm.selfarchivedei-
dc.publisherElsevier-
dc.relation.doidoi:10.1016/j.isprsjprs.2017.10.018-
dc.relation.ispartofseriesISPRS Journal of Photogrammetry and Remote Sensing-
dc.relation.issn0924-2716-
dc.relation.volume134-
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/540843
dc.subject.agrovoctrees-
dc.subject.agrovoctropical forests-
dc.subject.gcxNepal-
dc.subject.keyworddiameter distribution-
dc.subject.keywordK-MSN-
dc.subject.keywordlarge tree-
dc.subject.keywordLiDAR-
dc.titleLarge tree diameter distribution modelling using sparse airborne laser scanning data in a subtropical forest in Nepal-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|-

Tiedostot

Kokoelmat