Luke
 

A Comparison of Three Airborne Laser Scanner Types for Species Identification of Individual Trees

dc.contributor.authorPrieur, Jean-François
dc.contributor.authorSt-Onge, Benoît
dc.contributor.authorFournier, Richard A.
dc.contributor.authorWoods, Murray E.
dc.contributor.authorRana, Parvez
dc.contributor.authorKneeshaw, Daniel
dc.contributor.departmentid4100310710
dc.contributor.orcidhttps://orcid.org/0000-0002-2578-9680
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2021-12-27T06:19:03Z
dc.date.accessioned2025-05-28T14:13:20Z
dc.date.available2021-12-27T06:19:03Z
dc.date.issued2022
dc.description.abstractSpecies identification is a critical factor for obtaining accurate forest inventories. This paper compares the same method of tree species identification (at the individual crown level) across three different types of airborne laser scanning systems (ALS): two linear lidar systems (monospectral and multispectral) and one single-photon lidar (SPL) system to ascertain whether current individual tree crown (ITC) species classification methods are applicable across all sensors. SPL is a new type of sensor that promises comparable point densities from higher flight altitudes, thereby increasing lidar coverage. Initial results indicate that the methods are indeed applicable across all of the three sensor types with broadly similar overall accuracies (Hardwood/Softwood, 83–90%; 12 species, 46–54%; 4 species, 68–79%), with SPL being slightly lower in all cases. The additional intensity features that are provided by multispectral ALS appear to be more beneficial to overall accuracy than the higher point density of SPL. We also demonstrate the potential contribution of lidar time-series data in improving classification accuracy (Hardwood/Softwood, 91%; 12 species, 58%; 4 species, 84%). Possible causes for lower SPL accuracy are (a) differences in the nature of the intensity features and (b) differences in first and second return distributions between the two linear systems and SPL. We also show that segmentation (and field-identified training crowns deriving from segmentation) that is performed on an initial dataset can be used on subsequent datasets with similar overall accuracy. To our knowledge, this is the first study to compare these three types of ALS systems for species identification at the individual tree level.
dc.description.vuosik2022
dc.format.bitstreamtrue
dc.format.pagerange22 p.
dc.identifier.olddbid493822
dc.identifier.oldhandle10024/551273
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/24782
dc.identifier.urnURN:NBN:fi-fe2021122763272
dc.language.isoen
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.openaccess1 = Open access -julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherMolecular Diversity Preservation International (MDPI)
dc.relation.articlenumber35
dc.relation.doi10.3390/s22010035
dc.relation.ispartofseriesSensors
dc.relation.issn1424-8220
dc.relation.numberinseries1
dc.relation.volume22
dc.rightsCC BY 4.0
dc.source.identifierhttps://jukuri.luke.fi/handle/10024/551273
dc.subject.ysoairborne lidar
dc.subject.ysotree species identification
dc.subject.ysomultispectral lidar
dc.subject.ysosingle photon lidar
dc.subject.ysoRandom Forest
dc.subject.ysofeature selection
dc.subject.ysoindividual tree crown delineation
dc.tehOHFO-Alku-2
dc.titleA Comparison of Three Airborne Laser Scanner Types for Species Identification of Individual Trees
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Prieur_et_al_2022.pdf
Size:
26.7 MB
Format:
Adobe Portable Document Format
Description:
Prieur_et_al_2022.pdf

Kokoelmat