Luke
 

Integrating Pre-Harvest UAV Scans to Enhance Harvester Tree Localization Accuracy

dc.contributor.authorLopatin, Evgeny
dc.contributor.authorVäätäinen, Kari
dc.contributor.authorKaartinen, Harri
dc.contributor.authorHyyti, Heikki
dc.contributor.authorSikanen, Lauri
dc.contributor.authorNuutinen, Yrjö
dc.contributor.authorAcuna, Mauricio
dc.contributor.departmentid4100310210
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210610
dc.contributor.departmentid4100210610
dc.contributor.orcidhttps://orcid.org/0000-0003-1811-4930
dc.contributor.orcidhttps://orcid.org/0000-0002-6886-0432
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-12-19T13:08:43Z
dc.date.issued2025
dc.description.abstractAccurate geolocation of individual trees during forest harvesting operations is crucial for effective decision-making, yet traditional cut-to-length (CTL) harvesters often experience significant positional errors (0.5–10 m) due to unreliable GNSS performance under dense forest canopies. This uncertainty hampers the precise integration of harvester-generated data into operational forest management systems. To address this problem, we investigated the integration of high-resolution pre-harvest UAV LiDAR data with harvester-collected positional information. UAV laser scanning (DJI Matrice equipped with Zenmuse L2 LiDAR) was conducted over a dense, mixed-species boreal forest stand scheduled for its first thinning operation. Following harvesting, stump positions were precisely recorded using centimeter-grade GNSS as ground truth. Harvester-recorded tree positions were matched to tree crowns delineated from UAV LiDAR point clouds using Canopy Height Model (CHM) segmentation. For each crown, structural (height, crown size) and spectral (RGB statistics) features were extracted, and tree species (spruce, pine, birch) were classified using Random Forest (RF) and XGBoost models. Comparative positional error analysis revealed that mean harvester GNSS errors were 1.52 m, whereas UAV-derived tree positions showed significantly lower mean errors of 0.63 m. Integrating UAV data with harvester positions successfully reduced the mean positional error to 0.76 m. Species classification accuracy exceeded 91% overall for both RF and XGBoost models, with coniferous species (pine, spruce) classified at approximately 94% accuracy and deciduous birch slightly lower at around 71%. These results highlight the potential of integrating pre-harvest UAV scans to substantially enhance tree-level geolocation accuracy, enabling precise digital twins and improved real-time operational decision-making during harvesting. The study addresses a critical research gap by developing a practical workflow for combining UAV and harvester data, thereby facilitating precision forestry applications such as targeted tree selection, automated navigation, and enforcing environmental safeguards.
dc.format.pagerange117-123
dc.identifier.citationHow to cite: Lopatin, E., Väätäinen, K., Kaartinen, H., Hyyti, H., Sikanen, L., Nuutinen, Y., and Acuna, M.: Integrating Pre-Harvest UAV Scans to Enhance Harvester Tree Localization Accuracy, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2/W2-2025, 117–123, https://doi.org/10.5194/isprs-annals-X-2-W2-2025-117-2025, 2025.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/103500
dc.identifier.urlhttps://doi.org/10.5194/isprs-annals-X-2-W2-2025-117-2025
dc.identifier.urnURN:NBN:fi-fe20251219122814
dc.language.isoen
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline1172
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherISPRS
dc.relation.conferenceUncrewed Aerial Vehicles in Geomatics
dc.relation.doi10.5194/isprs-annals-x-2-w2-2025-117-2025
dc.relation.ispartofseriesISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.relation.issn2194-9042
dc.relation.issn2194-9050
dc.relation.volumeX-2/W2-2025
dc.rightsCC BY 4.0
dc.source.justusid131843
dc.subjectAV LiDAR
dc.subjectprecision forestry
dc.subjectGNSS error
dc.subjectharvester data
dc.subjectdata fusion
dc.subjectdigital twin
dc.subjecttree species classification
dc.titleIntegrating Pre-Harvest UAV Scans to Enhance Harvester Tree Localization Accuracy
dc.typepublication
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|sv=A4 Artikel i en konferenspublikation|en=A4 Conference proceedings|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Lopatin_etal_2025_ISPRS_Integrating_preharvest.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:
Lopatin_etal_2025_ISPRS_Integrating_preharvest.pdf

Kokoelmat