Estimation of tree attributes in mixed tropical hill forests using Landsat-8 and Sentinel-1 data
| dc.contributor.author | Khan, Ariful | |
| dc.contributor.author | Sohel, MSI | |
| dc.contributor.author | Saimum, MSR | |
| dc.contributor.author | Khan, MASA | |
| dc.contributor.author | Uddin, MS | |
| dc.contributor.author | Harris, ML | |
| dc.contributor.author | Rana, Parvez | |
| dc.contributor.departmentid | 4100311110 | |
| dc.contributor.orcid | https://orcid.org/0000-0002-2578-9680 | |
| dc.contributor.organization | Luonnonvarakeskus | |
| dc.date.accessioned | 2025-06-13T09:32:59Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Estimating forest attributes is crucial for understanding forest performance. While forest protection and tree plantations can serve as cost-effective mitigation strategies to address climate change challenges, monitoring natural forests and plantations remains expensive and challenging for a developing nation like Bangladesh, which is highly donor-dependent and lacks advanced remote sensing research facilities such as LiDAR or drone technology. In this context, open-source remote sensing data can serve as an effective tool for monitoring forest structure. In this study, we evaluated the ability of Landsat-8 and Sentinel-1 data to predict forest attributes using ground-measured tree data from 110 plots (each 400 m2 in size). We applied the random forest algorithm to predict tree height, density, basal area, and volume in two forest-protected areas of Bangladesh. For tree height and tree density, Sentinel-1 showed slightly higher prediction accuracy (RMSE = 7% and 46%, respectively) compared to Landsat-8 and combined data (Landsat-8 and Sentinel-1). Landsat-8 data had a higher prediction accuracy (RMSE = 23%) for basal area compared to Sentinel-1 and combined data. For volume, the combined dataset outperformed Sentinel-1 and Landsat-8; however, prediction accuracy was low. Our results indicate that height and basal area can be well predicted by combining Sentinel and Landsat data. The results underscore the value of open-source remote sensing tools as cost-effective alternatives for forest monitoring, offering critical insights for forest management and climate change mitigation strategies in developing nations. | |
| dc.format.pagerange | 13 p. | |
| dc.identifier.citation | How to cite: Khan, A., Sohel, M.S.I., Saimun, M.S.R. et al. Estimation of tree attributes in mixed tropical hill forests using Landsat-8 and Sentinel-1 data. Discov Environ 3, 69 (2025). https://doi.org/10.1007/s44274-025-00256-0. | |
| dc.identifier.uri | https://jukuri.luke.fi/handle/11111/99638 | |
| dc.identifier.url | https://doi.org/10.1007/s44274-025-00256-0 | |
| dc.identifier.urn | URN:NBN:fi-fe2025061367788 | |
| dc.language.iso | en | |
| dc.okm.avoinsaatavuusjulkaisumaksu | 1090 | |
| dc.okm.avoinsaatavuusjulkaisumaksuvuosi | 2025 | |
| dc.okm.avoinsaatavuuskytkin | 1 = Avoimesti saatavilla | |
| dc.okm.corporatecopublication | ei | |
| dc.okm.discipline | 4112 | |
| dc.okm.internationalcopublication | on | |
| dc.okm.julkaisukanavaoa | 1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu | |
| dc.okm.selfarchived | on | |
| dc.publisher | Springer | |
| dc.relation.articlenumber | 69 | |
| dc.relation.doi | 10.1007/s44274-025-00256-0 | |
| dc.relation.ispartofseries | Discover environment | |
| dc.relation.issn | 2731-9431 | |
| dc.relation.volume | 3 | |
| dc.rights | CC BY 4.0 | |
| dc.source.justusid | 121907 | |
| dc.subject | forest structure | |
| dc.subject | basal area | |
| dc.subject | tree density | |
| dc.subject | volume | |
| dc.subject | random forest algorithm | |
| dc.teh | OHFO-Alku-4 | |
| dc.title | Estimation of tree attributes in mixed tropical hill forests using Landsat-8 and Sentinel-1 data | |
| dc.type | publication | |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research| | |
| dc.type.version | fi=Publisher's version|sv=Publisher's version|en=Publisher's version| |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Khan_etal_2025_DiscEnv_Estimation_of_tree.pdf
- Size:
- 1.24 MB
- Format:
- Adobe Portable Document Format
- Description:
- Khan_etal_2025_DiscEnv_Estimation_of_tree.pdf
