Luke
 

Estimation of tree attributes in mixed tropical hill forests using Landsat-8 and Sentinel-1 data

dc.contributor.authorKhan, Ariful
dc.contributor.authorSohel, MSI
dc.contributor.authorSaimum, MSR
dc.contributor.authorKhan, MASA
dc.contributor.authorUddin, MS
dc.contributor.authorHarris, ML
dc.contributor.authorRana, Parvez
dc.contributor.departmentid4100311110
dc.contributor.orcidhttps://orcid.org/0000-0002-2578-9680
dc.contributor.organizationLuonnonvarakeskus
dc.date.accessioned2025-06-13T09:32:59Z
dc.date.issued2025
dc.description.abstractEstimating forest attributes is crucial for understanding forest performance. While forest protection and tree plantations can serve as cost-effective mitigation strategies to address climate change challenges, monitoring natural forests and plantations remains expensive and challenging for a developing nation like Bangladesh, which is highly donor-dependent and lacks advanced remote sensing research facilities such as LiDAR or drone technology. In this context, open-source remote sensing data can serve as an effective tool for monitoring forest structure. In this study, we evaluated the ability of Landsat-8 and Sentinel-1 data to predict forest attributes using ground-measured tree data from 110 plots (each 400 m2 in size). We applied the random forest algorithm to predict tree height, density, basal area, and volume in two forest-protected areas of Bangladesh. For tree height and tree density, Sentinel-1 showed slightly higher prediction accuracy (RMSE = 7% and 46%, respectively) compared to Landsat-8 and combined data (Landsat-8 and Sentinel-1). Landsat-8 data had a higher prediction accuracy (RMSE = 23%) for basal area compared to Sentinel-1 and combined data. For volume, the combined dataset outperformed Sentinel-1 and Landsat-8; however, prediction accuracy was low. Our results indicate that height and basal area can be well predicted by combining Sentinel and Landsat data. The results underscore the value of open-source remote sensing tools as cost-effective alternatives for forest monitoring, offering critical insights for forest management and climate change mitigation strategies in developing nations.
dc.format.pagerange13 p.
dc.identifier.citationHow to cite: Khan, A., Sohel, M.S.I., Saimun, M.S.R. et al. Estimation of tree attributes in mixed tropical hill forests using Landsat-8 and Sentinel-1 data. Discov Environ 3, 69 (2025). https://doi.org/10.1007/s44274-025-00256-0.
dc.identifier.urihttps://jukuri.luke.fi/handle/11111/99638
dc.identifier.urlhttps://doi.org/10.1007/s44274-025-00256-0
dc.identifier.urnURN:NBN:fi-fe2025061367788
dc.language.isoen
dc.okm.avoinsaatavuusjulkaisumaksu1090
dc.okm.avoinsaatavuusjulkaisumaksuvuosi2025
dc.okm.avoinsaatavuuskytkin1 = Avoimesti saatavilla
dc.okm.corporatecopublicationei
dc.okm.discipline4112
dc.okm.internationalcopublicationon
dc.okm.julkaisukanavaoa1 = Kokonaan avoimessa julkaisukanavassa ilmestynyt julkaisu
dc.okm.selfarchivedon
dc.publisherSpringer
dc.relation.articlenumber69
dc.relation.doi10.1007/s44274-025-00256-0
dc.relation.ispartofseriesDiscover environment
dc.relation.issn2731-9431
dc.relation.volume3
dc.rightsCC BY 4.0
dc.source.justusid121907
dc.subjectforest structure
dc.subjectbasal area
dc.subjecttree density
dc.subjectvolume
dc.subjectrandom forest algorithm
dc.tehOHFO-Alku-4
dc.titleEstimation of tree attributes in mixed tropical hill forests using Landsat-8 and Sentinel-1 data
dc.typepublication
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|sv=A1 Originalartikel i en vetenskaplig tidskrift|en=A1 Journal article (refereed), original research|
dc.type.versionfi=Publisher's version|sv=Publisher's version|en=Publisher's version|

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Khan_etal_2025_DiscEnv_Estimation_of_tree.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
Khan_etal_2025_DiscEnv_Estimation_of_tree.pdf

Kokoelmat