Hyppää sisältöön
Hakuohjeet
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • På svenska
  • In English
  • Henkilökunnan kirjautuminen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Etusivu
  • Luonnonvarakeskuksen julkaisut
  • Julkaisut
  • Näytä viite
  •   Etusivu
  • Luonnonvarakeskuksen julkaisut
  • Julkaisut
  • Näytä viite

Modelling reindeer rut activity using on‐animal acoustic recorders and machine learning

Boucher, Alexander J.; Weladji, Robert B.; Holand, Øystein; Kumpula, Jouko (2024)

 
Avaa tiedosto
Ecology_and_Evolution-2024-Boucher-Modelling_reindeer_rut_activity.pdf (2.604Mt)
Lataukset 

URI
https://doi.org/10.1002/ece3.11479

Boucher, Alexander J.
Weladji, Robert B.
Holand, Øystein
Kumpula, Jouko

Julkaisusarja
Ecology and evolution

Volyymi
14

Numero
6

Sivut
14 p.


Wiley-Blackwell
2024

How to cite: Boucher, A. J., Weladji, R. B., Holand, Ø., & Kumpula, J. (2024). Modelling reindeer rut activity using on-animal acoustic recorders and machine learning. Ecology and Evolution, 14, e11479. https://doi.org/10.1002/ece3.11479

doi:10.1002/ece3.11479
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/URN:NBN:fi-fe2024081364715
Tiivistelmä
For decades, researchers have employed sound to study the biology of wildlife, with the aim to better understand their ecology and behaviour. By utilizing on-animal recorders to capture audio from freely moving animals, scientists can decipher the vocalizations and glean insights into their behaviour and ecosystem dynamics through advanced signal processing. However, the laborious task of sorting through extensive audio recordings has been a major bottleneck. To expedite this process, researchers have turned to machine learning techniques, specifically neural networks, to streamline the analysis of data. Nevertheless, much of the existing research has focused predominantly on stationary recording devices, overlooking the potential benefits of employing on-animal recorders in conjunction with machine learning. To showcase the synergy of on-animal recorders and machine learning, we conducted a study at the Kutuharju research station in Kaamanen, Finland, where the vocalizations of rutting reindeer were recorded during their mating season. By attaching recorders to seven male reindeer during the rutting periods of 2019 and 2020, we trained convolutional neural networks to distinguish reindeer grunts with a 95% accuracy rate. This high level of accuracy allowed us to examine the reindeers' grunting behaviour, revealing patterns indicating that older, heavier males vocalized more compared to their younger, lighter counterparts. The success of this study underscores the potential of on-animal acoustic recorders coupled with machine learning techniques as powerful tools for wildlife research, hinting at their broader applications with further advancement and optimization.
Collections
  • Julkaisut [87088]
jukuri@luke.fi | Saavutettavuusseloste | Tietosuojailmoitus
 

 

Selaa kokoelmaa

NimekkeetTekijätJulkaisutyyppitJulkaisuajatUusimmatAsiasanatSivukartta
jukuri@luke.fi | Saavutettavuusseloste | Tietosuojailmoitus