Hyppää sisältöön
Hakuohjeet
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • På svenska
  • In English
  • Henkilökunnan kirjautuminen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Etusivu
  • Luonnonvarakeskuksen julkaisut
  • Julkaisut
  • Näytä viite
  •   Etusivu
  • Luonnonvarakeskuksen julkaisut
  • Julkaisut
  • Näytä viite

Mapping large European aspen (Populus tremula L.) in Finland using airborne lidar and image data

Toivonen, Janne; Kangas, Annika; Maltamo, Matti; Kukkonen, Mikko; Packalen, Petteri (2024)

 
Avaa tiedosto
CJFR2024Toivonenetal.pdf (1.146Mt)
Lataukset 

URI
http://dx.doi.org/10.1139/cjfr-2023-0271

Toivonen, Janne
Kangas, Annika
Maltamo, Matti
Kukkonen, Mikko
Packalen, Petteri

Julkaisusarja
Canadian journal of forest research-revue canadienne de recherche forestiere

Volyymi
54

Numero
7

Sivut
762-773


National Research Council Canada
2024

How to cite: Janne Toivonen, Annika Kangas, Matti Maltamo, Mikko Kukkonen, and Petteri Packalen. Mapping large European aspen (Populus tremula L.) in Finland using airborne lidar and image data. Canadian Journal of Forest Research. e-First https://doi.org/10.1139/cjfr-2023-0271

doi:10.1139/cjfr-2023-0271
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/URN:NBN:fi-fe2024061351734
Tiivistelmä
European aspen is a keystone species in boreal forests, which support numerous ecologically important and endangered species. As detection of those species by remote sensing is impossible, we instead investigated the detection of large aspen trees using airborne laser scanning and aerial image data. However, this is a challenge due to their low quantity and scattered occurrence. The performance was assessed with representative and unrepresentative (where aspens were over-represented) samples of the population. First, we detected individual trees and then the random forest (RF) classifier was used to identify large aspens. The RF classification was implemented with and without synthetic minority oversampling technique (SMOTE) to balance the training data due to the rarity of large aspens. At the tree-level, the best F1-score (0.44) was obtained when the unrepresentative plot data were used with SMOTE. However, the F1-score decreased to 0.21 when the representative data were used. The best plot-level (plots with at least one aspen tree) F1-score with the representative plot data was 0.41. We conclude that although data augmentation may improve the result, it is difficult to detect large aspen trees in genuine populations.
Collections
  • Julkaisut [87130]
jukuri@luke.fi | Saavutettavuusseloste | Tietosuojailmoitus
 

 

Selaa kokoelmaa

NimekkeetTekijätJulkaisutyyppitJulkaisuajatUusimmatAsiasanatSivukartta
jukuri@luke.fi | Saavutettavuusseloste | Tietosuojailmoitus