Hyppää sisältöön
Hakuohjeet
    • Suomeksi
    • På svenska
    • In English
  • Suomeksi
  • På svenska
  • In English
  • Henkilökunnan kirjautuminen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Etusivu
  • Luonnonvarakeskuksen julkaisut
  • Julkaisut
  • Näytä viite
  •   Etusivu
  • Luonnonvarakeskuksen julkaisut
  • Julkaisut
  • Näytä viite

Combination of lidar intensity and texture features enable accurate prediction of common boreal tree species with single sensor UAS data

Kukkonen, Mikko; Lähivaara, Timo; Packalen, Petteri (2024)

 
Avaa tiedosto
Kukkonen-etal-2024-Combination_of_Lidar_Intensity.pdf (15.66Mt)
Lataukset 

URI
http://dx.doi.org/10.1109/tgrs.2023.3345745

Kukkonen, Mikko
Lähivaara, Timo
Packalen, Petteri

Julkaisusarja
IEEE Transactions on Geoscience and Remote Sensing

Volyymi
62

Numero
8 p.

Sivut
8 p.


Institute of Electrical and Electronics Engineers (IEEE)
2024

How to cite: M. Kukkonen, T. Lähivaara and P. Packalen, "Combination of Lidar Intensity and Texture Features Enable Accurate Prediction of Common Boreal Tree Species With Single Sensor UAS Data," in IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-8, 2024, Art no. 4401508, doi: 10.1109/TGRS.2023.3345745.

doi:10.1109/tgrs.2023.3345745
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/URN:NBN:fi-fe2024070560701
Tiivistelmä
We evaluated the performance of unmanned aerial system (UAS) airborne light detection and ranging (lidar) data in the species classification of pine, spruce, and broadleaf trees. Classifications were conducted with three machine learning (ML) approaches (multinomial logistic regression, random forest, and multilayer perceptron) using features computed from automatically segmented point clouds that represent individual trees. Trees were segmented from the point cloud using a marker-controlled watershed algorithm, and two types of features were computed for each segment: intensity and texture. Textural features were computed from gray-level co-occurrence matrices built from horizontal cross sections of the point cloud. Intensity features were computed as the average intensity values within voxels. The classification accuracies were validated on 39 rectangular 30×30 m field plots using leave-one-plot out cross-validation. The results showed only very small differences in the classification performance between different ML approaches. Intensity features provided greater classification accuracy (kappa 0.73–0.77) than textural features (kappa 0.60–0.64). However, the best classification results (kappa 0.81) were achieved when both intensity and textural features were used. Feature importance in different ML approaches was also similar. We conclude that the accurate classification of the three tree species considered in this study is possible using single-sensor UAS lidar data.
Collections
  • Julkaisut [87133]
jukuri@luke.fi | Saavutettavuusseloste | Tietosuojailmoitus
 

 

Selaa kokoelmaa

NimekkeetTekijätJulkaisutyyppitJulkaisuajatUusimmatAsiasanatSivukartta
jukuri@luke.fi | Saavutettavuusseloste | Tietosuojailmoitus