Turvemaiden digitaalinen kartoitus ja turvepeltolohkojen tunnistaminen
Räsänen, Timo; Middleton, Maarit; Pohjankukka, Jonne; Mäkinen, Ville; Kivimäki, Arttu; Pitkänen, Timo P; Lerssi, Jouni; Laatikainen, Matti; Väänänen, Tapio; Auri, Jaakko; Heikkinen, Jaakko; Kanaoja, Tapio; Kekkonen, Hanna; Kivilompolo, Janne; Myllys, Merja; Möller, Åke; Nousiainen, Maarit; Oksanen, Juha; Puttonen, Eetu; Salmivaara, Aura; Madetoja, Jaakko; Säävuori, Heikki; Torppa, Johanna; Salo, Tapio (2023)
Räsänen, Timo
Middleton, Maarit
Pohjankukka, Jonne
Mäkinen, Ville
Kivimäki, Arttu
Pitkänen, Timo P
Lerssi, Jouni
Laatikainen, Matti
Väänänen, Tapio
Auri, Jaakko
Heikkinen, Jaakko
Kanaoja, Tapio
Kekkonen, Hanna
Kivilompolo, Janne
Myllys, Merja
Möller, Åke
Nousiainen, Maarit
Oksanen, Juha
Puttonen, Eetu
Salmivaara, Aura
Madetoja, Jaakko
Säävuori, Heikki
Torppa, Johanna
Salo, Tapio
Julkaisusarja
Luonnonvara- ja biotalouden tutkimus
Numero
119/2023
Sivut
76 s.
Luonnonvarakeskus
2023
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
http://urn.fi/URN:ISBN: 978-952-380-851-5
http://urn.fi/URN:ISBN: 978-952-380-851-5
Tiivistelmä
Maatalouden turvemaiden ilmasto- ja vesistöpäästöjen vähentäminen edellyttää turvepeltolohkojen tunnistamista, mutta maaperätieto ei ole ollut riittävän tarkkaa tähän tarkoitukseen. Raportissa esitellyn työn tavoitteena oli tuottaa tarkennettua paikkatietoa turvemaiden esiintymisestä ja paksuudesta turvepeltolohkojen tunnistamiseksi.
Uusi paikkatietoaineisto turvemaiden esiintymisestä ja paksuudesta luotiin hyödyntämällä koneoppimismallinnusta. Mallinnus tehtiin Random Forest -menetelmällä. Turpeen esiintymistä selittäviksi aineistoiksi valmisteltiin 117 kpl koko maan kattavia satelliitti- ja lentoalustoilta mitattuja kaukokartoitusaineistoja ja geologista paikkatietoaineistoa. Koneoppimismallin opettamista ja testausta varten koottiin 3,5 miljoonaa maaperähavaintoa, josta 70 % käytettiin mallin opetukseen ja 30 % mallin riippumattomaan testaukseen. Mallinnuksessa ennustettiin turvepaksuusluokkien ≥ 10 cm, ≥ 30 cm, ≥ 40 cm ja > 60 cm esiintymistä 50 m × 50 m rasteriresoluutiossa ja ennusteet tuotettiin maankäyttömuodosta riippumatta kaikille maa-alueille.
Malliennusteiden tarkkuus oli korkea. Turvepaksuusluokat pystyttiin erottelemaan muista maalajeista ja turvepaksuusluokista 89–96 % tarkkuudella. Tarkkuudet olivat korkeimmillaan ohuissa turvepaksuusluokissa ja hieman heikompia paksuissa luokissa. Maatalousmailla vähintään 30 cm paksun turvemaan alaksi arvoitiin 273 000 ha, mikä on noin 11 % maatalousmaa-alasta. Tästä pinta-alasta 73 % turvekerros oli > 60 cm. Saamamme arvio maatalousmaiden turvemaiden (≥ 30 cm) pinta-alasta on 8 600 ha suurempi kuin mitä mittakaavaltaan 1:200 000 maaperäkartasta voidaan arvioida. Peltolohkokohtainen tarkastelu osoitti, että turve-ennusteet mahdollistavat turvealan ja -paksuuden arvioimisen yksittäisillä peltolohkoilla. Esimerkiksi turvepeltolohkot, joilla on vähintään 50 % alastaan ≥30 cm paksu turvekerros, tunnistettiin yli 90 % tarkkuudella.
Uusi paikkatietoaineisto Turpeen paksuus 1.0/2023 tarkentaa aikaisempaa tietoa turvemaiden esiintymisestä ja paksuudesta koko maassa. Aineiston luokittelutarkkuus ja alueellinen erottelukyky ovat olemassa olevia maaperäkartta-aineistoja parempia ja sen avulla tunnistetaan aikaisemmin kartoittamattomia turvemaita. Yleistarkkuusmetriikat raportoidaan jokaiselle luokittelulle erikseen ja epävarmuuksien hajautuminen on esitetty Random Forest -puiden yksimielisyyden avulla rasterisolukohtaisesti. Uudet turve-ennusteet tuovat uusia mahdollisuuksia maaperään ja maankäyttöön liittyvien toimintojen suunnittelun, ohjaukseen ja vaikutusten arviointiin, sekä tutkimukseen.
Uusi paikkatietoaineisto turvemaiden esiintymisestä ja paksuudesta luotiin hyödyntämällä koneoppimismallinnusta. Mallinnus tehtiin Random Forest -menetelmällä. Turpeen esiintymistä selittäviksi aineistoiksi valmisteltiin 117 kpl koko maan kattavia satelliitti- ja lentoalustoilta mitattuja kaukokartoitusaineistoja ja geologista paikkatietoaineistoa. Koneoppimismallin opettamista ja testausta varten koottiin 3,5 miljoonaa maaperähavaintoa, josta 70 % käytettiin mallin opetukseen ja 30 % mallin riippumattomaan testaukseen. Mallinnuksessa ennustettiin turvepaksuusluokkien ≥ 10 cm, ≥ 30 cm, ≥ 40 cm ja > 60 cm esiintymistä 50 m × 50 m rasteriresoluutiossa ja ennusteet tuotettiin maankäyttömuodosta riippumatta kaikille maa-alueille.
Malliennusteiden tarkkuus oli korkea. Turvepaksuusluokat pystyttiin erottelemaan muista maalajeista ja turvepaksuusluokista 89–96 % tarkkuudella. Tarkkuudet olivat korkeimmillaan ohuissa turvepaksuusluokissa ja hieman heikompia paksuissa luokissa. Maatalousmailla vähintään 30 cm paksun turvemaan alaksi arvoitiin 273 000 ha, mikä on noin 11 % maatalousmaa-alasta. Tästä pinta-alasta 73 % turvekerros oli > 60 cm. Saamamme arvio maatalousmaiden turvemaiden (≥ 30 cm) pinta-alasta on 8 600 ha suurempi kuin mitä mittakaavaltaan 1:200 000 maaperäkartasta voidaan arvioida. Peltolohkokohtainen tarkastelu osoitti, että turve-ennusteet mahdollistavat turvealan ja -paksuuden arvioimisen yksittäisillä peltolohkoilla. Esimerkiksi turvepeltolohkot, joilla on vähintään 50 % alastaan ≥30 cm paksu turvekerros, tunnistettiin yli 90 % tarkkuudella.
Uusi paikkatietoaineisto Turpeen paksuus 1.0/2023 tarkentaa aikaisempaa tietoa turvemaiden esiintymisestä ja paksuudesta koko maassa. Aineiston luokittelutarkkuus ja alueellinen erottelukyky ovat olemassa olevia maaperäkartta-aineistoja parempia ja sen avulla tunnistetaan aikaisemmin kartoittamattomia turvemaita. Yleistarkkuusmetriikat raportoidaan jokaiselle luokittelulle erikseen ja epävarmuuksien hajautuminen on esitetty Random Forest -puiden yksimielisyyden avulla rasterisolukohtaisesti. Uudet turve-ennusteet tuovat uusia mahdollisuuksia maaperään ja maankäyttöön liittyvien toimintojen suunnittelun, ohjaukseen ja vaikutusten arviointiin, sekä tutkimukseen.
Collections
- Julkaisut [87068]