
Global Ecol Biogeogr. 2024;33:e13827.	 ﻿	   | 1 of 13
https://doi.org/10.1111/geb.13827

wileyonlinelibrary.com/journal/geb

Received: 22 March 2023 | Revised: 6 February 2024 | Accepted: 1 March 2024
DOI: 10.1111/geb.13827  

M E T H O D

Bayesian joint species distribution model selection for 
community-level prediction

Malcolm S. Itter1,2  |   Elina Kaarlejärvi2  |   Anna-Liisa Laine2 |   Leena Hamberg3 |   
Tiina Tonteri3 |   Jarno Vanhatalo2,4

1Department of Environmental 
Conservation, University of 
Massachusetts Amherst, Amherst, 
Massachusetts, USA
2Research Centre for Ecological Change, 
Organismal and Evolutionary Biology 
Research Program, Faculty of Biological 
and Environmental Sciences, University of 
Helsinki, Helsinki, Finland
3Natural Resources Institute Finland, 
Helsinki, Finland
4Department of Mathematics and 
Statistics, Faculty of Science, University of 
Helsinki, Helsinki, Finland

Correspondence
Malcolm S. Itter, Department of 
Environmental Conservation, University of 
Massachusetts Amherst, 160 Holdsworth 
Way, Amherst 01003, MA, USA.
Email: mitter@umass.edu

Funding information
Suomen Kulttuurirahasto; Jane ja Aatos 
Erkon Säätiö; Research Council of Finland; 
Grant/Award Number: 317255

Handling Editor: Antoine Guisan

Abstract
Aim: Joint species distribution models (JSDMs) are an important tool for predicting ecosys-
tem diversity and function under global change. The growing complexity of modern JSDMs 
necessitates careful model selection tailored to the challenges of community prediction 
under novel conditions (i.e., transferable models). Common approaches to evaluate the per-
formance of JSDMs for community-level prediction are based on individual species predic-
tions that do not account for the species correlation structures inherent in JSDMs. Here, 
we formalize a Bayesian model selection approach that accounts for species correlation 
structures and apply it to compare the community-level predictive performance of alterna-
tive JSDMs across broad environmental gradients emulating transferable applications.
Innovation: We connect the evaluation of JSDM predictions to Bayesian model selec-
tion theory under which the log score is the preferred performance measure for proba-
bilistic prediction. We define the joint log score for community-level prediction and 
distinguish it from more commonly applied JSDM evaluation metrics. We then apply 
the joint community log score to evaluate predictions of 1918 out-of-sample boreal for-
est understory communities spanning 39 species generated using a novel multinomial 
JSDM framework that supports alternative species correlation structures: independent, 
compositional dependence and residual dependence.
Main conclusions: The best performing JSDM included all observed environmental vari-
ables and compositional dependence modelled using a multinomial likelihood. The ad-
dition of flexible residual species correlations improved model predictions only within 
JSDMs applying a reduced set of environmental variables highlighting potential con-
founding between unobserved environmental conditions and residual species depend-
ence. The best performing JSDM was consistent across successional and bioclimatic 
gradients regardless of whether interest was in species- or community-level prediction. 
Our study demonstrates the utility of the joint community log score to compare the pre-
dictive performance of JSDMs and highlights the importance of accounting for species 
dependence when interest is in community composition under novel conditions.

K E Y W O R D S
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1  |  INTRODUC TION

Joint species distribution models (JSDMs) are an important tool to 
predict community composition in an era of global change (Blowes 
et  al.,  2019). Joint species distribution model predictions may be 
used to advance the understanding of biodiversity change (Antão 
et  al.,  2022), identify at risk populations or natural communities 
(Araújo et al., 2011) and inform conservation management decisions 
(Guisan et al., 2013; Pollock et al., 2020). Joint species distribution 
models differ from traditional species distribution models (SDMs) 
in that they model the joint occurrence or abundance of species 
as a function of fixed environmental effects and residual species 
correlations that account for statistical dependence among spe-
cies (Clark et al., 2014; Pollock et al., 2014; Warton et al., 2015). In 
addition to quantifying residual species correlations, contemporary 
JSDMs apply a hierarchical structure to estimate species-specific 
responses to environmental variables allowing for sharing of infor-
mation among species (Clark et al., 2017; Ovaskainen et al., 2017; 
Pollock et  al.,  2014; Warton et  al.,  2015). Further, they quantify 
spatio-temporal residual autocorrelation among sample units to 
the extent that it is present in model data (Ovaskainen et al., 2016; 
Taylor-Rodríguez et al., 2017; Tikhonov, Duan, et al., 2020). While 
the increased complexity of contemporary JSDMs may contribute to 
more accurate predictions of species occurrence/abundance, it also 
raises the risk of model overfitting and increased uncertainty due to 
poorly identified model parameters. These risks are particularly high 
when JSDMs are applied to make predictions under novel conditions 
(i.e., transferable applications) such as predicting changes in species 
distributions under global change (Yates et al., 2018). The growing 
complexity of contemporary JSDMs combined with the challenges 
of making predictions under novel conditions necessitates careful 
model selection to ensure meaningful predictions of communities 
under global change (Roberts et al., 2017).

A key consideration when conducting model selection for JSDMs 
is the prediction type of interest. As highlighted in recent work 
(Wilkinson et al., 2021), JSDMs allow for several types of prediction in-
cluding individual species (marginal), all species simultaneously (joint), 
and simultaneous prediction of a subset of species conditional on a 
second, disjoint subset (conditional). JSDMs are expected to provide 
the greatest improvement in prediction (relative to SDMs) under the 
joint and conditional cases given that they account for the statistical 
dependence among species (Poggiato et al., 2021). This improvement 
is illustrated by an early JSDM study wherein summing the predicted 
abundance of tree species among independent SDMs (i.e., stacked 
SDMs) led to unrealistically high total abundance values relative to a 
JSDM, which accounted for dependence among species induced by 
fixed growing space (Clark et al., 2014). In contrast, SDMs and JSDMs 
are expected to yield similar or, under certain model specifications, 
identical marginal predictions of species occurrence or abundance 
(Poggiato et al., 2021; Wilkinson et al., 2019, 2021). Despite this expec-
tation, the predictive performance of JSDMs is often evaluated based 
on the prediction of individual species even in cases where interest is 
in community composition (Caradima et al., 2019; Zurell et al., 2020).

Recent work describes the diversity of JSDM prediction types 
along with statistical methods to evaluate their accuracy (Broms 
et al., 2016; Wilkinson et al., 2021). In general, measures of predic-
tive accuracy should be tailored to the type of predictions a model 
will be applied to make (Gelman et al., 2014; Hooten & Hobbs, 2015). 
In the context of JSDMs, this means that if interest is in community 
composition, models should be evaluated based on joint predictions 
that account for statistical dependence among co-occurring spe-
cies (Poggiato et al., 2021; Wilkinson et al., 2021). In this study, we 
formalize and demonstrate an approach for evaluating community-
level predictions applying Bayesian JSDMs (i.e., joint prediction type 
as defined in Wilkinson et al., 2021). We focus on Bayesian JSDMs 
given both their prevalence (Clark et al., 2017; Hui, 2016; Ovaskainen 
et al., 2017) and the capacity of Bayesian models to accommodate 
and quantify varying sources of uncertainty in ecological data and 
models (Cressie et al., 2009).

Statistical measures to evaluate community-level predictions 
(i.e., simultaneous predictions of all species in a community) include 
community dissimilarity indices (e.g., Bray–Curtis dissimilarity and 
Jaccard distance) and likelihood-based methods including the joint 
log score (Wilkinson et  al.,  2021). In some cases, measures com-
monly used to assess predictions of individual species including 
the root mean square error (RMSE) or the coefficient of determina-
tion (R-squared) are applied to univariate summaries of community 
composition such as species richness or diversity indices (Norberg 
et  al.,  2019). Community dissimilarity indices are well known in 
ecology and have been widely applied to assess the community-
level predictive performance of JSDMs or stacked SDMs (Broms 
et  al.,  2016; D'Amen et  al.,  2015; Maguire et  al.,  2016; Norberg 
et al., 2019; Wilkinson et al., 2021). The joint log score is less well 
known in ecology and has been applied to assess the predictive per-
formance of JSDMs in only a small number of cases (Harris, 2015; 
Ingram et al., 2020; Vanhatalo et al., 2020; Wilkinson et al., 2021). 
Despite its limited application to JSDMs, the log score is widely ap-
plied in Bayesian model selection when the objective is prediction 
of future data given important theoretical properties accounting for 
uncertainty in model parameters and the unknown, true data gener-
ating mechanism (Hooten & Hobbs, 2015).

Here, we describe the log score in the context of JSDMs. We 
define different ways it can be quantified to assess community-
level predictions specifying what is meant by an independent ver-
sus joint log score (Wilkinson et al., 2021). We then apply the log 
score to compare alternative JSDMs and identify the best perform-
ing model for community-level prediction of 1918 out-of-sample 
boreal forest understory plant communities comprising 39 species. 
The applied model framework extends existing JSDM approaches 
(e.g., the Hierarchical Model of Species Communities; Ovaskainen 
et  al.,  2017) to account for compositional dependence commonly 
encountered in natural community data in addition to residual cor-
relation among species. Candidate models include nested sets of 
environmental variables and alternative species dependence struc-
tures. We further assess model transferability by evaluating the per-
formance of alternative models in predicting individual species and 
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communities across out-of-sample data partitions spanning broad 
successional and bioclimatic gradients. Finally, we compare the log 
score to other commonly used measures to assess community-level 
predictions of JSDMs. In doing so, we demonstrate the flexibility and 
utility of the log score for Bayesian JSDM selection and highlight the 
role of species correlations in community-level predictions.

2  |  METHODS

2.1  |  Log score calculation

In the context of Bayesian model prediction, the log score refers to 
the log predictive density. It is the log of the probability distribu-
tion of new data integrating over uncertainty in model parameters 
(Gelman et al., 2014; Hooten & Hobbs, 2015). The log score is used 
to evaluate the out-of-sample predictive performance of models. 
That is, how well the model predicts data not used in model fitting. 
The log score evaluates the posterior predictive density at out-of-
sample data points reflecting uncertainty and variability in model 
predictions. It is a preferred metric for Bayesian model selection 
when the goal is probabilistic prediction (Hooten & Hobbs, 2015). 
Probabilistic prediction refers to the case where interest is in the 
probability distribution of new data as opposed to point prediction 
where interest is in a point estimate of new data, most commonly the 
mean (Gelman et al., 2014).

We first define the general form of the log score before describ-
ing the different ways it can be quantified in the context of JSDMs. 
We adapt definitions and notation from Hooten and Hobbs (2015) to 
facilitate connection to a comprehensive review of Bayesian model 
selection methods in ecology. Let yobs and yoos denote observed and 
out-of-sample data, respectively. Further, let � denote unknown 
model parameters. Finally, let [x] denote a generic probability dis-
tribution of a random variable x. The log score as defined in Hooten 
and Hobbs (2015) is given by,

Here, 
[
�| yobs

]
 is the posterior distribution of the model parame-

ters, while 
[
yoos| �

]
 is the likelihood of out-of-sample data conditional 

on the model parameters (the likelihood function follows from the 
model applied). The integral provides the posterior predictive den-
sity of out-of-sample data: 

[
yoos| yobs

]
. In practice, the integral is ap-

proximated numerically applying Monte Carlo integration based on 
posterior samples of model parameters (�).

In the context of JSDMs, the log score can be quantified for in-
dividual species when interest is in species-level prediction or for all 
species simultaneously when interest is in community-level predic-
tion. We refer to the former as the ‘species log score’ and the latter 
as the ‘community log score’. We focus on the community log score 
here given our objective is to evaluate the performance of JSDMs 
for community-level prediction. Definitions of the species log score 
can be found in a number of existing studies (Ingram et al., 2020; 

Wilkinson et al., 2021). The community log score refers to the log 
of the combined likelihood for all species in a natural community. 
One method to quantify the community log score is to sum over the 
marginal log predictive density of each species in a community. This 
method has been referred to as the independent log score given its 
connection to stacked SDMs under which the predictions of each 
species are evaluated independently of one another (Wilkinson 
et al., 2021). An alternative method to quantify the community log 
score is to utilize the joint log predictive density of all species in a 
community taking advantage of the joint likelihood provided by the 
JSDM. This method has been referred to as the joint log score given 
its use of the joint log-likelihood (Harris, 2015; Ingram et al., 2020; 
Wilkinson et al., 2021).

To formalize the independent and joint community log scores (and 
demonstrate the difference between the two), we first define a gen-
eral JSDM fit using observations of m species across n sample sites 
denoted as yij. We use j to index species ( j = 1, … ,m) and i  to index 
sample sites (i = 1, … , n). Here, yij may be observations of presence/
absence (yij = 0; yij = 1) or abundance (0 ⩽ yij < ∞). Adopting a gener-
alized linear mixed model framework consistent with current JSDM 
approaches (Ovaskainen et al., 2017; Poggiato et al., 2021; Pollock 
et al., 2014; Warton et al., 2015; Wilkinson et al., 2019), observations 
are modelled conditionally on a normally distributed, latent variable 
denoted as zij applying an appropriate link function. In the case of 
count data, for example, we apply a Poisson likelihood and a log link 
function such that the likelihood is defined as,

with exp
(
zij
)
 representing the inverse link function mapping the con-

tinuous latent variables modelled on the log scale back to the scale of 
the data. In the case of normally distributed data, an identity link is ap-
plied, while in the case of presence/absence data, a logit or probit link 
is applied (see Ovaskainen et al., 2017; Poggiato et al., 2021; Wilkinson 
et al., 2019, for detailed examples).

Regardless of the observation type and link function applied, the 
statistical dependence among species is modelled through the latent 
variable. Specifically,

where xi is a vector of environmental variables observed at site i  (note 
bold font is used to denote a vector and the ‘T’ superscript denotes 
the transpose of a vector or matrix), � j is an equally-sized vector of 
environmental responses for species j, and wij is a correlated error term 
accounting for variation not attributable to observed environmental 
conditions. By correlated, we mean that wij arises from a multivariate 
normal distribution that models statistical dependence among species. 
Grouping the error term for each species into an m-dimensional vector, 
wi =

(
wi1,wi2, … ,wim

)T, we have,

where 0 is an m-dimensional vector of zeros and Σ is an m-dimensional 
covariance matrix expressing the statistical dependence among 

(1)log
[
yoos| yobs

]
= log ∫

[
yoos| �

][
�| yobs

]
d�.

(2)yij ∣ zij ∼ Poisson
(
exp

(
zij
))

(3)zij = xT
i
� j + wij

(4)wi ∼ MVNorm(0,Σ)
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species. Following from Equations (3) and (4), the joint distribution 
of latent variables for all species at a site i  is given by,

where zi =
(
zi1, … , zim

)T is the collection of latent variables for all m 
species and B is a matrix containing the responses of each species to 
the observed environmental variables in xi. Following from proper-
ties of the multivariate normal distribution, the marginal distribution 
of the latent variable for a single species j at site i  is given by,

where �2
j
 is the variance for species j (the diagonal elements of Σ). Note 

that the covariances among species are not reflected in the marginal 
distribution of the latent variable for a single species—the distribution 
depends only on each species' response to the observed environment 
and its species-specific variance.

The difference between the independent versus the joint com-
munity log score is how each utilizes estimates of species covari-
ance within Σ when calculating the likelihood of out-of-sample data, 
[
yoos| �

]
 in Equation (1). Continuing with the same general JSDM as 

above, suppose we fit the model using nobs sample sites and evalu-
ate community-level predictions at noos out-of-sample sites. The joint 
community log score is calculated applying the joint likelihood of 
species at an out-of-sample site conditional on the joint distribution 
of the latent variables at that site,

where we have grouped out-of-sample observations for each spe-
cies, yoos

i
=
(
yoos
i1

, … , yoos
im

)T. By conditioning on the joint distribution 
of the latent variables as defined in Equation (5), the joint community 
log score reflects the statistical dependence among species as esti-
mated within Σ. The independent community log score also calcu-
lates the combined likelihood for all species in an out-of-sample site, 
but does so conditional on the marginal distribution of each latent 
variable,

such that the combined likelihood for all species is calculated as the 
product of their marginal likelihoods. By conditioning on the mar-
ginal distribution of each latent variable as defined in Equation (6), 
the independent community log score depends only on species-level 
variances and does not account for the covariance among species 
as estimated with Σ. In general, when interest is in community-level 
prediction applying a JSDM that includes statistical dependence 
among species (as in Equation 5), the joint community log score is 
preferred since it accounts for the modelled dependence struc-
ture when evaluating model predictions. In the remaining sections, 
we demonstrate the application of the joint community log score 
in Bayesian JSDM selection using a large forest understory plant 
community data set. Before doing so, we extend the general JSDM 

framework defined above to allow for a multinomial likelihood for 
use with compositional data common in community ecology. Note 
that the use of the joint community log score and the broader model 
selection approach presented here will work for any JSDM and data 
type.

2.2  |  Multinomial JSDM for compositional data

Compositional community data are frequently encountered in natu-
ral community surveys wherein a fixed area or volume is used to 
sample the count or relative abundance of each species present. 
Negative statistical dependence in species observations is com-
mon in this setting given some fixed total available growing space 
or resource pool. For example, the fixed area of a survey plot might 
be taken as the total available growing space containing a limited 
amount of resources. When all available growing space and/or re-
sources are utilized, the relative abundance of a given species cannot 
increase without a corresponding decrease in the total abundance 
of all other species present. A multinomial likelihood is a natural 
choice for modelling compositional data given that it estimates the 
joint abundance of species conditional on a total abundance value 
reflecting the available growing space or fixed resources at a site.

We extend the JSDM framework defined above to allow for a 
multinomial likelihood. Similar versions of the multinomial model 
have been developed and applied to model microbiome data as 
well as plant compositional cover data, but have not been formally 
integrated within a JSDM framework (Damgaard,  2015, 2018; Xia 
et al., 2013). Under a multinomial likelihood, a species' relative abun-
dance is estimated as a function of its expected success relative to 
the expected success of all species given the observed environment. 
We apply the same notation for a local community as above with yi 
denoting an m-dimensional vector of species' relative abundances. 
The relative abundance of each species is modelled jointly applying 
a multinomial likelihood conditional on species-specific probabilities 
denoted by �ij. Species-specific probabilities are estimated as a func-
tion of the normally distributed, latent variables zi. Specifically, the 
relative abundance of all species at site i  is modelled as,

where �i =
(
�i1, … ,�im

)T defines the probabilities for each species 
and yi⋅ is the total abundance at site i  across all m species reflecting 
available growing space. Species-specific probabilities are modelled 
applying a softmax link function of the latent variables,

which ensures each �ij ∈ (0, 1) and 
∑m

j=1
�ij = 1. The latent variables are 

modelled as before according to Equation (3).
As is common in existing JSDM frameworks (Poggiato 

et  al.,  2021; Wilkinson et  al.,  2019), species-specific responses to 
the observed environment (� j's) are estimated applying a hierarchical 
prior allowing for partial pooling of data among species. Specifically, 

(5)zi ∼ MVNorm
(
Bxi ,Σ

)

(6)zij ∼ Norm
(
xT
i
� j , �

2
j

)

(7)Joint community likelihood =
[
yoos
i

| zi
]

(8)Independent community likelihood =

m∏

j=1

[
yoos
ij

| zij
]

(9)yi ∣ zi ∼ Multinom
(
yi⋅,�i

)

(10)�ij =
expzij

∑m

j=1
expzij
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we model the response of species j to the kth environmental variable 
(k = 1, … , p) as,

where �k is the mean response to the kth variable across all species, 
and �2

k
 is the variance in species-level responses.

The multinomial likelihood accounts for negative statistical de-
pendence among species given some fixed total available growing 
space. Specifically, the multinomial correlation between any two 
species j and j′ ( j ≠ j′) is given by,

Note that multinomial correlations are constrained to be 
between −1.0 and 0.0 and account only for the fact that as the 
relative abundance of one species increases, the total relative 
abundance of all other species must decrease for a fixed commu-
nity size (�ij = 1 −

∑
j�≠j�ij�). We refer to the narrow form of species 

dependence captured by the multinomial likelihood as ‘composi-
tional dependence’. In contrast, the correlated residual error term 
(wi) defined in Equation (4) is flexible and supports both positive 
and negative pairwise correlations among species. We refer to the 
flexible species dependence arising through the correlated resid-
ual error term (wi) as ‘residual dependence’ as it captures residual 
correlation among species not accounted for by the effects of the 
observed environment.

2.3  |  Natural community data

We applied the multinomial JSDM to observations of Finnish bo-
real forest understory communities collected as part of national 
vegetation inventories (Itter,  2023). Understory vegetation was 
surveyed in 1985–1986, 1995, and 2006 across 1700 unique plot 
locations established on mineral-soil in forested land. Plots were 
part of the systematic sampling network connected to the 8th 
Finnish National Forest Inventory (Reinikainen et al., 2000). This 
network consisted of clusters located 16 km apart in southern 
Finland, and 24 and 32 km apart in northern Finland along east–
west and north–south axes, respectively. Each cluster consisted 
of four linearly located sampling sites 400 m apart in southern 
Finland and three sampling sites 600 m apart in northern Finland. 
Data include 1494 sites measured in 1985–1986, 1673 sites in 
1995, and 435 sites in 2006 (3602 sites total). The survey in 2006 
was part of the BioSoil project carried out under the Forest Focus 
scheme, a subset of the pan-European International Co-operative 
Programme on Assessment and Monitoring of Air Pollution 
Effects on Forests plot network (Level I, Lorenz & Fischer, 2013). 
This survey included only one site per cluster (hence the smaller 
sample size), but the spatial extent of the inventory was compa-
rable to the 1985 and 1995 surveys and spanned the entirety of 

Finland (Figure S1). The surveys included observations of a total 
of 380 understory plant species. To ensure that meaningful val-
ues of species-specific model parameters could be estimated, we 
focussed only on those species which occurred in at least five per-
cent of sites in each inventory year reducing the total number of 
species to 39 (a common practice in high-dimensional JSDM set-
tings, see Clark et al., 2017).

In all three surveys, vascular plant species were identified 
and each species' per cent cover (0.1% to 100%) was visually es-
timated within four permanent 2 m2 quadrats located 5 m apart 
within each site. There was no requirement that the per cent cover 
values of all species sum to 100% given that a quadrat may not 
be fully occupied or may have a total cover greater than 100% if 
plants over top one another (a common occurrence in understory 
communities). To facilitate modelling, per cent cover values were 
treated as numeric counts (percent cover values were rounded 
up to the nearest integer) representing the relative abundance of 
each species with the total abundance given by the sum across 
all species. When modelling understory communities, we calcu-
lated the average per cent cover across the four sampled quadrats 
before converting percentages to estimates of relative and total 
abundance per site.

A number of environmental variables characterizing local con-
ditions were measured along with understory community compo-
sition. The basal area of overstory trees at each site was estimated 
using measurements of stem diameter at breast height (Tomppo 
et  al.,  2011) and provides information on past forest manage-
ment given basal area is inversely related to past harvest intensity 
(Figure S2). Shrub cover at each site was quantified as the projected 
per cent cover of shrubs and 0.5–1.5 m tall trees within a 9.8 m ra-
dius circular plot centred on the permanent vegetation survey site. 
Soil fertility at each site was determined in the field using six ordinal 
classes based on vegetation (Cajander, 1949; Tomppo et al., 2011). 
For the purposes of this study, we re-classified these into two 
groups representing ‘high’ and ‘low’ fertility. Finally, growing degree 
days were estimated as the average annual sum of daily mean tem-
peratures exceeding +5°C per site over the decade preceding the 
inventory year based on 10 km2-resolution interpolated daily tem-
perature values modelled by the Finnish Meteorological Institute 
(Venäläinen et al., 2005).

2.4  |  Model selection

2.4.1  |  Candidate models

We defined seven candidate models representing alternative sets of 
environmental variables and alternative species dependence types. 
Three alternative sets of environmental variables were considered. 
A ‘stochastic’ set included an intercept term alone to estimate the 
mean abundance of each species across all sites. A ‘management’ 
set included an intercept term and basal area per hectare (BA) to ac-
count for time since forest overstory harvest. An ‘environment’ set 

(11)� jk ∼ Norm
(
�k , �

2
k

)

(12)Cor
(
yij, yij�

)
= −

√
�ij�ij�(

1 − �ij

)(
1 − �ij�

) .
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6 of 13  |     ITTER et al.

included an intercept term and BA along with growing degree days 
(GDD), soil fertility (SoilFert) and per cent shrub cover (ShrubCover) 
including two-  and three-way interactions between BA, GDD and 
SoilFert to account for past management and local environmental 
conditions.

Three species dependence types were considered. An ‘inde-
pendent’ type assumed no correlation among species and applied 
an independent log-normal Poisson likelihood rather than the mul-
tinomial likelihood defined in Equation (9). Specifically, the relative 
abundance of all species in a local community under the indepen-
dent type was modelled as,

with zij as defined in in Equation  (3), but with an important differ-
ence in the way the residual random error terms (wij) were estimated. 
Specifically, under the independent species dependence type, the ran-
dom error terms were modelled as independent, normally distributed 
random variables,

such that there was no statistical dependence among species esti-
mated. A ‘compositional’ type modelled species dependence applying 
the multinomial likelihood (Equation 9), but did not estimate correla-
tion in the residual random error terms, again estimating these as in-
dependent, normal random variables according to Equation (14). Note 
that this approach captures compositional dependence among species 
alone. Finally, a ‘residual’ species dependence type applied the mul-
tinomial likelihood as defined in Equation  (9) and estimated residual 
correlation among species modelling the random error terms according 
to Equation (4). Note that the residual type accounts for both composi-
tional and residual depedence among species.

The seven candidate models were named according to 
the environmental variable set and species dependence type 
applied within the model: (1) Stochastic-independent, (2) 
Management-independent, (3) Environment-independent, (4) 
Management-compositional, (5) Environment-compositional, (6) 
Management-residual and (7) Environment-residual (Table  1). We 

considered the Stochastic-independent model as a null model for 
comparison with the more ecologically realistic models 2–7. We 
considered quadratic terms for BA and GDD during the explor-
atory phase of our analysis, but found limited evidence for such 
quadratic relationships. All candidate models were fit applying the 
Hierarchical Model of Species Communities (HMSC) R package 
(Ovaskainen et al., 2017; Tikhonov et al., 2021; Tikhonov, Opedal, 
et al., 2020). The HMSC package applies the same JSDM structure 
to the one presented here, but does not include a multinomial likeli-
hood (Equation 9). To address this, we modified the HMSC package 
to apply the well-established Poisson approximation to the multino-
mial, which induces a multinomial likelihood for the latent variables 
(zi), which uniquely define species-specific probabilities (Baker, 1994; 
McCullagh & Nelder, 1989). Details on the Poisson approximation to 
the multinomial and its implementation within HMSC are provided 
in the Supplemental material.

2.4.2  | Model assessment

We compared candidate models based on their ability to predict 
out-of-sample understory communities. Model predictions were 
evaluated using the joint community log score calculated using the 
joint community likelihood as defined in Equation (7). We applied a 
sequential approach to construct in-sample and out-of-sample data 
using subsets of the 1985, 1995 and 2006 understory vegetation 
inventories. Specifically, we fit and evaluated each candidate model 
twice: once using the 2006 inventory data alone to predict 435 
communities within the 1995 data (1995|2006), and once using the 
1995 and 2006 inventory data combined to predict 1483 communi-
ties within the 1985 data (1985|1995, 2006). We then summed the 
calculated community log scores across all 1918 (435 + 1483) out-
of-sample communities to assess predictive performance. The sta-
tistical basis for our sequential out-of-sample predictive approach is 
provided in the Supplemental material.

We chose to assess models based on the joint community log 
score given our interest is in probabilistic community-level predic-
tion. Potential alternatives commonly applied to assess community-
level JSDM predictions include the independent community log 
score, community dissimilarity metrics, and point estimates of 

(13)yi ∣ zi ∼

m∏

j=1

Pois
(
expzij

)

(14)wij ∼ Norm
(
0, �2

j

)

TA B L E  1 Summary of candidate models.

Model Environmental variables (xi) Species dependence Data model

Stochastic-independent None Independent Log-normal Poisson

Management-independent BA Independent Log-normal Poisson

Management-compositional BA Compositional Multinomial

Management-residual BA Compositional + residual Multinomial

Environment-independent BA, SoilFert, GDD, ShrubCover Independent Log-normal Poisson

Environment-compositional BA, SoilFert, GDD, ShrubCover Compositional Multinomial

Environment-residual BA, SoilFert, GDD, ShrubCover Compositional + residual Multinomial

Variable abbreviations are defined as follows: BA, basal area per hectare; GDD, growing degree days; ShrubCover, percent shrub cover; SoilFert, soil 
fertility.
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    |  7 of 13ITTER et al.

species richness or diversity (Wilkinson et al., 2021). In order to com-
pare the model selection results applying the joint community log 
score to other measures of JSDM predictive performance, we calcu-
lated the independent community log score using the independent 
community likelihood (Equation 8), the Jaccard community dissimi-
larity index (Chao et al., 2005), and the RMSE of the Shannon true 
diversity index (Jost, 2006) for the 1918 out-of-sample communities. 
Details on the calculation of each additional evaluation metric are 
provided in the Supplemental material.

Lastly, we compared the performance of the seven candidate 
models to predict individual species and communities across out-
of-sample data partitions representing different combinations of 
successional stage and climate in order to assess model trans-
ferability (i.e., predictive performance under novel conditions; 
Roberts et  al.,  2017). Specifically, we partitioned the 1985 and 
1995 inventory data based on BA and regional bioclimatic condi-
tions. The BA variable was divided into three ranges to represent 
management history: 0–10, 10–30 and >30 m2/ha. The low BA 
range is indicative of understory communities early in ecological 
succession, while the high BA range is indicative of later succes-
sional communities given prolonged time since forest overstory 
harvest. We utilized three bioclimatic zones spanning the latitudi-
nal gradient of Finland (south, mid and north boreal) to represent 
regional climatic conditions (Table S1, Figure S1; Ahti et al., 1968). 
This resulted in eight data partitions (the highest BA range was 
dropped for the north boreal zone given lack of sufficient out-
of-sample data) with a minimum of 54 communities (midboreal, 
high basal area) and a maximum of 565 communities (southboreal, 
mid basal area; Table S2). Within each partition, we estimated the 
mean species log score for all 39 species (to assess species-level 
prediction) and the mean joint community log score (to assess 
community-level prediction).

3  |  RESULTS

Joint community log scores for each candidate model are provided 
in Figure 1. Based on the log score values, the Environment com-
positional model including the full set of environmental predictors 
and compositional dependence among species had the highest 
community-level predictive performance across the 1918 out-of-
sample communities. In terms of predictor variables, the top three 
performing models all included the complete set of environmental 
variables (environment models). The next best three models included 
forest overstory density (BA) as the only environmental variable 
(management models). The Stochastic-independent model without 
any environmental variables (included as a null model) had the poor-
est predictive performance. In terms of species dependence type, 
the top-performing model included compositional species depend-
ence, while the second-best performing model assumed statistical 
independence among species. The Environment-residual model with 
both compositional and residual species dependence had the poor-
est performance of the three environment models although its log 

score value was quite close to that of the Environment-independent 
model. In-sample and out-of-sample posterior predictive model 
checks under the best predicting Environment-compositional model 
revealed high correlation with observed data and species-level R-
squared values exceeding 0.50 for the majority of species across all 
inventory years (Table S5, Figure S3; see Supplemental material for 
model checking details).

The relative ordering of candidate model predictive performance 
was largely maintained across the alternative JSDM evaluation met-
rics applied including the independent community log score, RMSE 
of the Shannon true diversity index, and the Jaccard community dis-
similarity index (Table S3). The results of the independent commu-
nity log score closely matched those of the joint community log score 
with the ordering of models remaining the same (Table S3). The re-
sults of the RMSE of community diversity indicated different predic-
tive performance of the management models (Table S3). Specifically, 
the Management-compositional model had nearly identical pre-
dictive performance as the Environment-residual model, while the 
Management-independent and Management-residual models both 
had slightly poorer predictive performance than the Stochastic-
independent model. All other RMSE results followed the joint com-
munity log score values with the Environment-compositional model 
having the best predictive performance in terms of community di-
versity. The three environment models were again preferred based 
on the Jaccard community dissimilarity index, followed by the three 
management models, and finally the Stochastic-independent model 
(Table S3). The relative ordering of predictive performance of alter-
native species dependence types within the environment and man-
agement models was residual > compositional > independent. The 
Environment-residual model had the best predictive performance 
based on the Jaccard community dissimilarity index values, how-
ever, the Environment-compositional model had near equal predic-
tive performance.

Similar to the community log score results for the complete 
out-of-sample data (Figure  1), the Environment-compositional 
model had the highest community-level predictive performance 
across all out-of-sample data partitions (Figure 2). The differences 
in the predictive performance of the three environment models 
were small with 95 per cent confidence intervals for the three 
models overlapping in all partitions. There was clear separation 
of the environment models relative to the Stochastic-independent 
(null) model, but the 95 per cent confidence intervals for all 
seven candidate models overlapped in half of the out-of-sample 
data partitions (Figure 2). The Environment-compositional model 
also had the highest predictive performance for the majority of 
species within every out-of-sample data partition as assessed 
by the species log score (Table  2 and Figure  3). Depending on 
the data partition, the Environment-independent model or the 
Environment-residual model had the best predictive performance 
for the second-highest number of species (Table 2). Among these 
two, the Environment-independent model performed slightly bet-
ter with the best species log scores for the second-highest number 
of species in six out-of eight partitions.
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8 of 13  |     ITTER et al.

4  |  DISCUSSION

We found clear evidence for the inclusion of the complete set of 
environmental variables for the prediction of boreal forest under-
story communities based on the joint community log score results 
(Figure 1). However, the role of species dependence in community-
level prediction was more nuanced. Species dependence was in-
cluded in the candidate models in three ways: (1) no dependence 
(independent models), (2) compositional dependence alone (com-
positional models), (3) compositional and residual dependence al-
lowing for both positive and negative species correlations (residual 
models; Table 1). We expected that the Environment-residual model 
would have the highest predictive performance given the flexibility 
of the correlated random error term allowing for both positive and 
negative associations among species as opposed to compositional 
dependence, which captures negative associations only. Contrary 
to this expectation, we found that the Environment-compositional 
model including the full set of environmental variables and compo-
sitional species dependence alone, had the best predictive perfor-
mance as measured by its joint community log score (Figure 1). The 
Environment-residual model, which included both compositional 
and residual dependence, performed similarly to the Environment-
independent model that assumed no species dependence.

Several factors may have contributed to the better predictive 
performance of the Environment-compositional model relative to 
the Environment-residual model. First, the correlated random error 
term (Equation  4) may have contributed to less accurate or more 

F I G U R E  1 Community log scores for alternative models (as 
calculated by Equations S.4 or S.5). Points represent bootstrapped 
median values, while lines indicate bootstrapped 95 percent 
confidence intervals. Higher log score values indicate better out-of-
sample prediction. Model names are defined in Table 1. Details on 
bootstrap approach are provided in Supplemental material.
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    |  9 of 13ITTER et al.

variable predictions after accounting for compositional dependence 
in the understory data. Specifically, there was evidence of a num-
ber of positive and negative residual species correlations under the 
Environment-residual model (Figure  S4). These correlations con-
strain the random error terms for each species. If much of the sta-
tistical dependence among species is already accounted for through 
compositional dependence, these constrained random error terms 
may not yield improved model predictions. This does not suggest a 

lack of complex interactions among species in boreal forest under-
story communities; rather, it is an indication that model predictions 
are not improved by allowing for additional residual dependence 
among species after accounting for compositional dependence. 
Consistent with this interpretation, we found that the Environment-
compositional and Environment-independent models had lower pre-
cision (higher posterior predictive standard deviation), but better 
accuracy (lower RMSE) than the Environment-residual model at the 

TA B L E  2 Count of the number of species (out of 39) for which each candidate model had the best mean species log score (as calculated 
by Equation S.7) within each out-of-sample data partition.

Partition Stoc.-indep. Man.-indep. Man.-comp. Man.-resid. Env.-indep. Env.-comp. Env.-resid.

SB|Low 0 1 7 0 9 20 2

SB|Mod 0 0 6 0 6 25 2

SB|High 1 3 3 1 6 22 3

MB|Low 0 0 6 0 8 22 3

MB|Mod 0 1 1 0 9 22 6

MB|High 1 1 0 1 10 14 12

NB|Low 0 1 0 0 8 19 11

NB|Mod 0 0 1 3 10 18 7

Model abbreviations are defined as follows: comp., compositional; Env., environment; Indep., independent; Man., management; resid., residual; Stoc., 
stochastic. Data partition labels are defined as: bioclimatic zone|basal area (BA). Bioclimatic zones: MB, mid boreal; NB, north boreal; SB, south 
boreal; BA levels (m2‧ha−1): Low = [0–10), Mod = [10–30), High = ⩾30.

F I G U R E  3 Summary of mean, per-
site species log scores for species-level 
prediction under candidate models 
applied within each out-of-sample data 
partition (as calculated by Equation S.10). 
Coloured cells indicate the model with the 
highest mean species log score for each 
species-by-partition combination. Data 
partition labels are defined as: bioclimatic 
zone|basal area (BA). Bioclimatic zones: 
MB, mid boreal, NB, north boreal; SB, 
south boreal; BA levels (m2‧ha−1): Low =  
[0–10), Mod = [10–30), High = ⩾30. 
Species codes are defined in Table S4.
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10 of 13  |     ITTER et al.

individual species level, although this was not universally true across 
all species (Table S6).

There is good reason to suspect that compositional dependence 
plays a strong role in the modelled understory plant communities. 
Understory communities were measured using fixed area, 2 m2 quad-
rats, with high relative abundance of a given species resulting in less 
available growing space and other resources for other species in the 
community. This type of resource limitation is observed regularly in 
forest ecosystems and is the basis for common conceptual models of 
forest development driven by density-dependent competition (e.g., 
Reineke's self-thinning law; Reineke, 1933). Although compositional 
dependence does not necessarily indicate resource competition 
among species, model predictions combined with previous exper-
imental results suggest such a connection may exist in the mod-
elled boreal forest understory communities (Gundale et al., 2012). 
Functionally, the compositional dependence modelled by the multi-
nomial likelihood constrains predictions of individual species abun-
dance (Equation 10) limiting the potential for overly high predictions 
of total abundance previously identified as a key benefit of JSDMs 
applied to plant abundance data (Clark et al., 2014).

In addition to the potential role of compositional dependence, 
the strong performance of the three environmental models, and the 
Environment-independent model in particular, suggests that much of 
the variability in out-of-sample communities is captured through the es-
timated effects of the observed environment. Note that the three envi-
ronment models were the top three predicting models regardless of the 
metric used to evaluate community-level predictions (Figure 1; Table S3) 
and across all out-of-sample data partitions considered (Figures 2 and 
3; Table 2). The inclusion of this informative set of environmental vari-
ables combined with compositional dependence that constrains the 
relative abundance of species as under the Environment-compositional 
model may leave little residual variation to be explained such that the 
correlated random error term included in the Environment-residual 
model led to less accurate predictions. While variance partitioning ap-
proaches (such as those described in Ovaskainen et al., 2017) would be 
useful to determine the proportion of variance explained by the envi-
ronmental variables, such approaches are not immediately applicable 
to the Environment-compositional and Environment-residual models 
given the softmax link function (Equation 10) used under the multino-
mial model. Extension of variance partitioning methods for composi-
tional data is beyond the scope of the current study. Despite the lack of 
variance partitioning, the strength of the Environment-compositional 
model is highlighted by the high Bayesian R-squared values estimated 
for each species (Table S5). Specifically, an out-of-sample Bayesian R-
squared of greater than 0.50 was estimated for the majority of species 
under the Environment-compositional model with many species having 
a value greater than 0.90.

Interestingly, the relative importance of alternative species 
dependence structures changed when forest density alone was 
included in candidate models (management models). Among the 
management models, there was statistical support for including 
both compositional and residual species dependence to predict 
community composition as evidenced by the ordering of the joint 

community log scores of the three models: Management-residual > 
Management-compositional > Management-independent (Figure 1). 
This ordering is what we would expect to find based on ecological 
theory. That is, community composition related to complex com-
binations of abiotic and biotic filters, here potentially reflected 
by the compositional and residual correlations among species 
(Vellend, 2016). While the predictive performance of the manage-
ment models matches ecological expectations, when compared to 
the predictive performance of the more complex environment mod-
els it hints at a broader and known limitation of JSDMs: the confound-
ing of unobserved environmental variables and species dependence 
(Poggiato et al., 2021). Specifically, there was strong evidence that 
including residual species dependence improved community-level 
prediction when important environmental variables were excluded 
as under the management models (Figure 1). When the full set of en-
vironmental variables was included, however, there was near equal 
predictive performance of independent and residual dependence 
models despite the former assuming no species dependence and the 
latter including both compositional and residual species dependence 
(Figure 1). This suggests that the variability accounted for by residual 
species dependence was captured by the additional fixed environ-
mental effects in the three environment models. The difference in 
predictive performance among the three environment models may 
also be due to confounding of the flexible correlated random error 
term and observed environmental variation (Van Ee et al., 2022).

The relative predictive performance of the seven candidate mod-
els was maintained when predicting communities and individual 
species across the novel conditions reflected in out-of-sample data 
partitions spanning broad successional and bioclimatic gradients 
(Figures 2 and 3; Table 2). The applied out-of-sample data partitions 
emulate block cross-validation strategies advocated for in recent work 
to assess the transferability of JSDMs (Roberts et al., 2017). Based on 
recent work demonstrating spatio-temporal changes in the processes 
underlying community composition (Jabot et al., 2020), we expected 
candidate models to have varying predictive performance conditional 
on the successional stage and relative harshness of the regional cli-
mate. Contrary to our expectations, however, joint community log 
score results across all out-of-sample data partitions matched those 
found applying the complete set of out-of-sample data. Specifically, 
the Environment-compositional model had the highest predictive 
performance at the community-level across all partitions followed 
by the Environment-independent and Environment-residual models 
(Figure 2; note the relative differences among models varies by parti-
tion). Similar results were found when assessing species-level predic-
tions based on the species log score (Table 2 and Figure 3). The strong 
predictive performance of the environment models across a range of 
successional stages and bioclimatic conditions at both the community 
and individual species scales highlights the robustness of model pre-
dictions when the full set of environmental variables is included and 
points to higher potential for model transferability.

Model selection results applying common metrics used to as-
sess community-level JSDM predictions largely matched the joint 
community log score results (Table  S3; Figure  1). There were, 
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    |  11 of 13ITTER et al.

however, some subtle, but important differences. In particular, the 
Environment-residual model had the best predictive model score 
based on the Jaccard community dissimilarity index, although the 
Environment-compositional model was a close second. The differ-
ence in model selection results is not surprising given that each 
alternative community-level metric assesses model predictions dif-
ferently. The independent community log score is calculated based 
on the marginal prediction of species and does not take into account 
the species covariance included in JSDMs (see Log Score Calculation 
for details). RMSE is a measure of point prediction (based on the 
posterior predictive mean) rather than probabilistic prediction and 
hence does not account for the variability of future data (Gelman 
et al., 2014). The Jaccard community dissimilarity index is a measure 
of probabilistic prediction based on how closely predictions repli-
cate observed community composition (Wilkinson et al., 2021).

In the context of predictive model selection, the metric used to 
assess out-of-sample predictions represents a statistical decision 
that affects how models are evaluated and ranked. As such, it is 
important that the metric used to assess out-of-sample predictions 
follow from the objectives of the model application. Here, we have 
applied the joint community log score given our interest in proba-
bilistic community-level prediction. In Bayesian model selection, 
the log score is preferred when interest is in probabilistic predic-
tion given its theoretical properties including the fact that its value 
is maximized under the true data generating mechanism (Hooten & 
Hobbs, 2015). A separate study with different objectives (e.g., point 
prediction of individual species), might apply a different scoring met-
ric, and identify a different “best” predicting model among the same 
seven candidate models considered here.

The current study demonstrates the practical application of the 
joint community log score for community-level prediction and high-
lights its capacity to quantify differences in the predictive perfor-
mance of complex JSDMs including alternative species dependence 
types. Further, the application of the joint community log score to 
assess predictive performance across out-of-sample data partitions 
spanning broad successional and bioclimatic gradients demonstrates 
its utility for transferable model selection where the goal is to identify 
the best performing model under novel conditions. Although not the 
direct objective of the current analysis, the multinomial JSDM provides 
a multivariate approach for modelling compositional data commonly 
encountered in natural community surveys. Given its implementation 
within the more general HMSC framework, the model can deal with a 
large number of species and locations and allows additional informa-
tion on functional traits and phylogeny to be incorporated as predic-
tors of environmental responses (Ovaskainen et al., 2017). As such, 
the model framework combined with the Bayesian model selection 
approach applied here, constitutes a step forward in our ability to pre-
dict natural communities under global change.
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