Jukuri, open repository of the Natural Resources Institute Finland (Luke) All material supplied via Jukuri is protected by copyright and other intellectual property rights. Duplication or sale, in electronic or print form, of any part of the repository collections is prohibited. Making electronic or print copies of the material is permitted only for your own personal use or for educational purposes. For other purposes, this article may be used in accordance with the publisher’s terms. There may be differences between this version and the publisher’s version. You are advised to cite the publisher’s version. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Amer Ait Sidhoum Title: Assessing the contribution of farmers’ working conditions to productive efficiency in the presence of uncertainty, a nonparametric approach Year: 2022 Version: Published version Copyright: The Author(s) 2022 Rights: CC BY 4.0 Rights url: http://creativecommons.org/licenses/by/4.0/ Please cite the original version: Ait Sidhoum, A. Assessing the contribution of farmers’ working conditions to productive efficiency in the presence of uncertainty, a nonparametric approach. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-022-02414-3. Vol.:(0123456789) Environment, Development and Sustainability https://doi.org/10.1007/s10668-022-02414-3 1 3 Assessing the contribution of farmers’ working conditions to productive efficiency in the presence of uncertainty, a nonparametric approach Amer Ait Sidhoum1 Received: 17 February 2020 / Accepted: 28 April 2022 © The Author(s) 2022 Abstract This article investigates the contribution of farmers’ working conditions to production efficiency under state-contingent production uncertainty. Directional distance function is used to estimate efficiency scores and input shadow prices for 180 Spanish crop farms in 2015. Results suggest that shadow prices vary considerably between the different states of nature, suggesting why incorporating the stochastic production specification is important. The present study provides evidence of the important contribution of working conditions to technical efficiency. Thus, improved working conditions have the potential to help farms to progress toward sustainable agriculture. Keywords Data envelopment analysis · State-contingent approach · Shadow prices · Social sustainability · Working conditions 1 Introduction According to the recently published EU Farm to Fork Strategy, farmers’ safety, health and working conditions will play a key role in building a sustainable and fair farming system, where it is especially crucial to reduce the socioeconomic impacts affecting the food and agricultural sector as well as ensuring that the European Pillar of Social Rights principles are adhered to. The European Working Conditions Survey (EWCS) reported that around 57% of farm workers experience backache, 55% upper limb pain and 46% lower limb pain, with agriculture and forestry being the most harmful occupations, with a high rate of injuries and threatening the sustainability of the sectors. (Eurofound, 2017). To inte- grate aspects of social sustainability of farming systems into the European Union’s (EU) * Amer Ait Sidhoum amer.ait-sidhoum@luke.fi 1 Natural Resources Institute Finland (Luke), Business Economics, Helsinki, Finland A. Ait Sidhoum 1 3 Common Agricultural Policy (CAP) reform, the incorporation of social dimensions into farm performance measurement will be a real challenge. Initially, assessment of produc- tive technologies was essentially based on economic and environmental aspects1 (Berre et al., 2013; Chung et al., 1997; Coelli et al., 2007; Färe et al., 1989; Førsund, 2009; Hailu & Veeman, 2001; Hoang & Coelli, 2011). Only recently, this line of research has been extended to include social factors into production technology analyses and the literature is still scarce, especially for agricultural technologies (Ait Sidhoum, 2018; Chambers & Serra, 2018; Skevas et al., 2021). While several studies have explored the impact of the social dimension on business cor- porations (Berman et al., 1999; Garcia-Castro et al., 2010; Lima Crisóstomo et al., 2011; Margolis et al., 2009; Nollet et al., 2016; Saeidi et al., 2015), the literature is much scarcer on the potential benefits of socially sustainable practices on agricultural production activi- ties. In order to incorporate the social aspects in production models, it is necessary first to define the relevant social indicators. The most often used social input indicator is related to human labor issues (Zhou et al., 2018). In this study, I have focused on working conditions to reflect the contribution of the social dimension to farm performance. In this analysis, four dimensions have been identified as components of working conditions: skill discre- tion; decision autonomy; psychological demand and health risk. A growing literature has documented that sustainable agriculture movements are considering workplace conditions as an important issue (Dumont & Baret, 2017). According to Gray (2013), in order to pro- mote the social dimension of sustainability, improving workers’ conditions should be con- sidered as important as preserving water resources or improving animal welfare. It is being increasingly recognized that a holistic perspective of the firm performance measurement is required when targeting sustainable development. While a number of stud- ies have already addressed the incorporation of environmental aspects when dealing with firms’ production processes (Kumbhakar & Malikov, 2018), few alternatives exist in the lit- erature on the proper modeling of social netputs in production processes. These social fac- tors can take a number of forms, such as labor burden reduction, improvement of farmers’ well-being, and labor conditions. Some activities, such as working conditions and farmers training, may have no direct impact on a firm’s outputs, but they can improve the effective- ness of other operations (e.g., labor) that have a direct impact on its outputs. Moreover, information on the level of the social activities and their role on production processes may support the decision-making of managers in making informed choices and inform policy- makers in planning and implementing sustainable management practices. The considera- tion of social factors is especially crucial to reduce the socioeconomic impacts affecting the food and agricultural sectors. However, assigning a value to nonmarketable goods is not an easy process. Computing shadow prices is one methodological option for valuing non-traded goods. The literature contains a number of studies using parametric and non- parametric approaches to compute shadow prices of environmental externalities associated with production activities (Chambers et al., 2014; Fare et al., 1993; Lansink & Carpentier, 2001; Li & Ma, 2015). However, the role of social aspects on production activities has been under‐investigated so far. This study adds to the current body of knowledge evaluat- ing the contribution of working conditions to agricultural efficiency under uncertainty by computing shadow prices of the working conditions. Measuring shadow prices of farmers’ working conditions is necessary for at least two reasons: (1) Shadow pricing may provide a 1 See Dakpo et al. (2016) for a good overview of the different methods on modeling polluting-generating technologies. Assessing the contribution of farmers’ working conditions… 1 3 direct management insight for achieving viability of the sector since they capture the qual- ity of labor conditions in terms of its contribution to the production process. (2) The advan- tage of calculating shadow prices of non-marketed inputs is that they make their compari- son with productive inputs possible,  and therefore, making it easier for policymakers to design policies that would enhance sustainability and the economic viability of the sector. The concept of pricing a non-marketed activity is not new. Previous works used the idea of shadow prices to quantify non-marketed goods (e.g., pollution). As the sustainability issues of production processes have become of great importance, the concept of shadow prices has been applied to other non-marketed activities such as Corporate Social Respon- sibility (CSR) (Aparicio et al., 2020; Puggioni & Stefanou, 2019). For agriculture, as previ- ously mentioned, a number of studies employed parametric and nonparametric techniques to measure shadow prices of bad outputs. However, due to data challenges, few research has been conducted to quantify social activities of the agricultural sector. This work taps into this gap by measuring a price of working conditions that captures their contribution to agricultural performance.2 According to a recent report from the EU on a new vision known as EU Farm to Fork Strategy, safety and working conditions in the agricultural sec- tor will play an important role in the development of a sustainable food system. In this context, this paper provides the foundations for the measurement of the relative importance of working conditions in the farming sector. In addition to the contributions mentioned above, this study also engages in other important methodological issues. First, this work addresses the gap in the current literature on data envelopment analysis by incorporating social aspects, namely working conditions to the productive efficiency of crop farms in the Spanish region of Catalonia. Second, only a few studies have accounted for the stochastic environment of the agricultural technology, and this paper aims to extend the classical deterministic DEA models by allowing for the stochastic environment of agriculture through a state-contingent approach. The rest of this article is structured as follows. In Sect. 2, I present related literature reviews. Section 3 is devoted to the methodology used in this study and describes the data. In Sect. 4, I present the results and discuss them. The last section is devoted to the conclusion. 2 Literature review In addition to the traditional agricultural inputs (e.g., land, labor and capital), agricul- tural systems may require other inputs related to social performance, such as work-related issues. There is an increasing body of research exploring the socio-economic determinants of technical efficiency scores in a second stage analysis (Berre et  al., 2017; Bozoǧlu & Ceyhan, 2007; García-Cornejo et al., 2020; Latruffe et al., 2004; Oladeebo & Fajuyigbe, 2007; Pérez Urdiales et al., 2016). Nevertheless, this approach has been criticized as the sample bias in the first stage affects the second step analysis, leading to inaccurate esti- mates of the determinants (Johnson & Kuosmanen, 2012). In this context, researchers and practitioners  have been  calling  for the need to incorporate social aspects into models of production (Tajbakhsh & Hassini, 2018; Zhou et  al., 2018).  While the productivity and 2 The papers by Ait Sidhoum (2018) and Ait Sidhoum et al. (2020) constitute an exception. Although these companion studies incorporate working conditions, they adopt a different approach which involves a multi- equation framework (Murty et  al., 2012) to characterize farm efficiency. However, no studies on shadow prices of working conditions could be found. A. Ait Sidhoum 1 3 efficiency literature has numerous empirical applications that directly address environmen- tal and economic measures, there is a scarcity of literature that integrates social aspects. The present study contributes to fill the research gap by considering working conditions as an input along with conventional agricultural inputs. Improved working conditions, and similar choices by the farmers may have various impacts on crop yields. The literature on the impacts of workplace‐related factors on agri- cultural production efficiency is very scarce. Outside the agricultural efficiency literature, Ødegaard and Roos (2014) rely on the Malmquist productivity index and through boot- strapped DEA framework, they have investigated the effects of labor quality, measured using answers that relate to workers’ health, on the efficiency of Swedish companies. Their findings suggest an overall increase in efficiency, around half of the effect could be associ- ated with an improvement in labor quality attributes. Veltri et al. (2016) propose a com- bined SFA-DEA approach to evaluate the performance of Italian banks through efficiency analysis. Their idea is to get an estimate of managerial ability from the first stage SFA model and to introduce it in the second stage DEA model as an input. They find differences in results with or without the introduction of managerial ability as a new input, which provide evidence of the contribution of work-related factors to efficiency and productiv- ity. Chambers and Serra (2018) is another recent paper that extended the conventional efficiency measures that allow for corporate social responsibility activities of a sample of global firms using Data Envelopment Analysis. To allow for the work-related issues, the authors consider the average training hours per employee and per year as an input that posi- tively affect firm performance. Skevas et al. (2021) also propose a framework of production performance that allows for socially responsible activities. The authors estimate a socially responsible input inefficiency of a sample of dairy farms. The socially responsible input is represented by the non-cash benefits (e.g., health insurance, pension contributions, food, accommodation, transportation, etc.) provided to workers. However, these two papers deal exclusively with efficiency estimation and not with shadow prices computation. Within the agricultural efficiency literature, the list of studies dealing with social-related issues is much shorter. There is actually only one study that integrates the working conditions of farmers in the production process (Ait Sidhoum, 2018). This companion paper seeks to quantify social outputs of agricultural activities; however, it does not account for the con- tribution of work-related issues to production efficiency. Although the overall sustainability includes environmental, economic, and social dimen- sions, the latter has been given less attention compared to the other two pillars (Brent & Labuschagne, 2006; Lehtonen, 2004; White & Lee, 2009). While the literature has widely explored a broad spectrum of environmental indicators, there are few studies that have con- sidered the social dimension of sustainability, in part due to its subjectivity, making its quantification very difficult. This may be reinforced by the fact that there is no scientific evidence on the framework used for measuring social sustainability, largely because there is still significant debate over the causes and effects of social impact, as well as the design and the selection of suitable social indicators (Dubois & Mahieu, 2002; Dyllick & Hock- erts, 2002; Hutchins et al., 2019; van Haaster et al., 2017). With the aim of promoting sustainability, the European Union identified appropriate metrics for sustainable agriculture (European Commission, 2008; Regulation, 2005, 2006). More specifically, the economic indicators that have been identified are linked to produc- tivity growth, income distribution and investments, while environmental metrics are related to natural resources, land use and water quality and threats to biodiversity and wildlife habitat. While the social indicators are related to farmers’ quality of life and rural commu- nities. In this regard, Van Calker et al. (2007) considered that social sustainability at farm Assessing the contribution of farmers’ working conditions… 1 3 level is based on labor conditions and societal sustainability indicators. Similarly, Lebacq et al. (2013) grouped the social sustainability indicators under two key categories: a private social dimension that corresponds to the well-being of farmers such as working conditions and education, and a second social dimension which can be described as a public dimen- sion as it is linked to general expectations of the society. Our approach reflects the lim- ited empirical data available and only focuses on the internal social dimension (related to farmers). More specifically, this paper provides a farm-efficiency model that incorporates farmers’ working conditions and shows the contribution of these work-related factors to productive efficiency. Because of the unpredictable nature of agricultural activities, uncertainty in produc- tion should be taken into consideration when assessing farms’ efficiency. O’Donnell et al. (2010) have shown that efficiency evaluation can be significantly biased when the agricul- tural stochastic conditions are ignored. In the same spirit, in this paper, the state-contingent approach which identifies the relevant states of nature is employed to account for uncer- tainty (Chambers & Quiggin, 1998, 2000). This technique is used to account for uncer- tainty in production models by differentiating the outcomes according to the state of nature in which they are obtained. Our reading of the efficiency and productivity literature reveals very few applications of the state-contingent framework, and those studies which have been done have generally been limited to the estimation of very specific technologies that are concerned only by economic and environmental issues (e.g., Chambers et  al., 2014; Chavas, 2008a, b; Nauges et  al., 2011; Serra et  al., 2014). However, the contribution of conventional inputs and social inputs, such as working conditions to production efficiency under uncertainty, has not been investigated so far. The present study aims to derive the economic value of working conditions and assess their roles in agricultural production efficiency. To meet this objective, a DEA3 framework is employed to measure farm-level efficiency scores and compute the shadow prices of working conditions. The contributions of this paper are threefold: First, this work addresses the gap in the current literature on data envelopment analysis by incorporating social aspects, namely working conditions to the productive efficiency of crop farms in the Span- ish region of Catalonia. The second contribution is to derive the economic value of work- ing conditions through the computation of shadow prices and compare them with other conventional inputs shadow prices to evaluate their relative importance. Third, only a few studies have accounted for the stochastic environment of the agricultural technology, and this paper aims to extend the classical deterministic DEA models by allowing for the sto- chastic environment of agriculture through a state-contingent approach. 3 Materials and methods This study investigates farm efficiency while considering working conditions as a non-con- ventional input to reflect the social dimension of farm performance. The methodological roadmap is shown in Fig. 1. 3 In this study, the state-contingent approach is employed as it allows to overcome the main constraint of DEA by representing the stochastic production process in terms of state-contingent outputs. While some studies combined the state-contingent approach with the parametric stochastic frontier analysis (SFA), the strong correlation between outputs in different states causes serious collinearity issues (see Chavas (2008a, b)). A. Ait Sidhoum 1 3 Here, I analyze a technology where the production process is subject to adverse weather conditions, pests, diseases, and other sources. The risk of agricultural production has to do with uncertainty in terms of potential output level and, sometimes also the level of inputs to be allocated, at the moment when production decisions are made.In a state-contingent frame- work, the stochasticity is represented by using a state-space (S,Ω) , where the symbol S repre- sents the states’ number, called the states of nature. Random variables are represented by the real vector space ℝΩ . The stochastic production technology is represented as follow: (1)Ψ ∶ {(ỹ, x) ∶ x can produce ∼ y} Farm Performance Assessment Input indicators Land Labor Machinery EPF Working conditions items Output indicators Principal Component Analysis Skill discretion Decision autonomy Psychological demand Health Risk Output - bad state- Output - normal state- Output - ideal state- Directional Distance function Efficiency computation Shadow prices computation Primal form Dual form Conclusions and implications Fig. 1  Methodological flowchart Assessing the contribution of farmers’ working conditions… 1 3 where a vector of non-random input variables x ∈ ℝN + can produce the state-contingent outputs4 ỹ ∈ ℝΩ + , where ỹ = {ys ∶ s ∈ Ω} , being ys the ex-post value, the realizations of the random outputs are then y1s,… , yMs . It is important to note that “nature” makes the final decision on the ex-post outcomes, and not the decision-maker (Chambers et al., 2011). To illustrate the procedure of estimating the best-practice frontier, I assume a single output technology (ỹ) , which denotes crop production. Land (x1) , labor (x2) , machinery (x3) and I am also considering the use of energy, pesticides and fertilizers (EPF)(x4) within conventional agricultural inputs. Although the efficiency literature has largely focused on assessing the relationship between traditional inputs and outputs in agricultural produc- tions, the discussion over the appropriate framework which should be used to include social issues in the production technology has just been launched (Chambers & Serra, 2018). In this paper, working conditions (x5) are considered as an input along with traditional inputs. A state-contingent input-oriented DDF is used to fit the primal formulation to the sto- chastic production technology (Ψ) . The input-oriented DDF projects the input vector, in a pre-assigned direction, onto the technology frontier. Let g ∈ ℝN + be the directional vector in which inputs can be scaled; the state-contingent directional distance function of the sto- chastic production technology (Ψ) can be represented as (Chambers et al., 1998): The 훽 is non-negative and scaled to reach the efficient frontier (xn − 훽g ∈ Ψ) where 𝛽 = ��⃗D ( xn, ỹm, g ) . A higher 훽 means lower efficiency such that the agricultural holding is further away from the best practice frontier. If 훽 equals zero, the farm is efficient and located at the production frontier. ��⃗D(x, ỹ, g) inherits its properties from the production possibility frontier and satisfies the following properties: (1) ��⃗D(x, ỹ, g) ≥ 0 if and only if (x, ỹ, ) ∈ Ψ assuming (x, ỹ, ) are freely disposable; (2) non-decreasing in x ; (3) non-increasing in ỹ ; (4) concavity in x and (5) verifies the translation property: ��⃗D(x − 𝛾g, ỹ, g) = ��⃗D(x, ỹ, g) + 𝛾 , 𝛾 ∈ ℝ+ . In the empirical application, a directional vector g = x is specified5; thus, the derived distances from the DDF indicate the maximum contraction of inputs while keeping the outputs constant. The directional distance function is estimated using DEA framework, solving the model (3) for each observation in the sample (Chambers et al., 1998): (2)��⃗D ( xn, ỹm, g ) = Max{𝛽 ∶ xn − 𝛽g ∈ Ψ} (3)��⃗DI ( xn, ỹm, g ) = Max 𝜆 {𝛽} st. ⎧⎪⎨⎪⎩ ∑ i 𝜆 ixi n ≤ xn − 𝛽gx, n = 1,… ,N,∑ i 𝜆 iỹi m ≥ ỹm,m = 1,… ,M, 𝜆 ∈ ℝ+ ⎫⎪⎬⎪⎭ 5 Following Chambers et  al. (1996), the production technology under consideration drives the choice of directions. This implies that the selection of a direction toward the efficient frontier depends on the specific observed input values. The key feature of this arbitrary choice is that it does not require a priori information on the selected directions. However, there are other alternative methods, See Wang et al. (2019) for more details on this. 4 The tildes are used to differentiate random variables from their ex-post outcomes. A. Ait Sidhoum 1 3 where i = 1,… , I denotes the observation number. 휆i represents the intensity variable that weights all firms to define the benchmark for the production technology. (1 − 훽) is the effi- ciency measure. The dual specification of the model in (3) is then used to derive a single shadow price for non-efficient units, while for the estimation of shadow prices for the efficient units, I follow the approach proposed by Chambers and Färe (2008) who have used a directional derivative feature to address this issue. Because ��⃗D(x, ỹ, g) is concave in x , its directional derivative can be represented as follows: D⃗ ′( x, ỹ, g;x0 ) can also be defined as a superlinear of ��⃗D(x, ỹ, g) in x , which is denoted as 𝜕��⃗D(x, ỹ, g) and can be formalized as: where 𝜕��⃗D(x, ỹ, g) = {v ∈ ℝN ∶ ��⃗D(x, ỹ, g) + v�(x0 − x) ≥ ��⃗D ( x0, ỹ, g ) ∀x0 ∈ ℝN} Chambers and Färe (2008) show how shadow prices can be computed from the direc- tional derivatives and super-differentials as well as how these shadow prices are associated with the concept of willingness to pay (WTP) and willingness to accept (WTA) for effi- cient firms. The WTP for a small unit improvement in xn can be expressed as: where x∗ denotes the efficient level of input quantities. Alternatively, the WTA a small unit increase in the input vector (xn) can be represented by: Shadow prices can be obtained directly from the solution to the dual problem in model (3). Shadow pricing is a way of assigning a monetary value to inputs in terms of their con- tribution to farm performance. The dual formulation of ��⃗DI ( xn, ỹm, g ) in (3) can be derived as follows (Chambers et al., 2014): where wn and pm denote the shadow values associated with inputs (xn) and state-contingent outputs (ỹm) , respectively. The shadow prices wn and pm are computed to solve the dual lin- ear programming model in (8). These dual values6 differ for each firm and are considered (4)D⃗� ( x, ỹ, g;x0 ) = lim 𝛾→0+ { D⃗ ( x + 𝛾x0, ỹ, g ) − D⃗(x, ỹ, g) 𝛾 } (5)D⃗� ( x, ỹ, g;x0 ) = Inf {v�x0 ∶ v ∈ 𝜕D⃗(x, ỹ, g), (6) Wn W �g = inf {vn ∶ v ∈ 𝜕D⃗(x ∗, ỹ, g) (7)− Wn W �g = sup {vn ∶ v ∈ 𝜕D⃗(x ∗, ỹ, g) (8) E⃗I ( xn, ỹm, g ) = min w∈ℝN ,p∈ℝΩ {w� n xn − p � m ỹm} st. w� n g ≥ 1 w� n xi n − p� m ỹi m ≥ 0, forall i, i = 1,… , I 6 When comparing these shadow prices, it is possible to determine the relative importance of the netputs used in the DEA model (Yue, 1992). Assessing the contribution of farmers’ working conditions… 1 3 as an internal value estimation for inputs and outputs, consistently with cost minimization, these virtual prices represent the implicit values of the netputs to the efficiency of produc- tion, that can be particularly useful to investigate non-marketed inputs such as working conditions. As shown by Chambers and Färe (2008), when the technology is smoothly differenti- able, the dual problem in (8) has a single solution and can be formalized as: In contrast, if the technology is not smooth, the resulting production frontier displays kinks, which are associated with the extreme efficient units. The lack of differentiability of the frontier yields to multiple solutions that are delimited by a lower (WTP) and an upper (WTA) bound within which shadow values are placed. Based on the directional derivative approach and the DEA framework, Chambers and Färe (2008) define the WTP for an extra unit increase in input: while the WTA a small reduction in the input vector (xi n ) is given by: Under duality theory and consistent with the concept of cost minimization, relative shadow prices are calculated from the dual formulation of the input distance function. The absolute shadow prices of productive inputs can be computed by assuming that the cal- culated shadow price of the output is representative of its market price. Following Färe et al. (1993), the output market price is used as our normalizing price, since intended out- puts have an observable market price (while the working conditions do not), then absolute shadow prices are derived as follow: where po m is the observed (market) price of the output. Using the observed price of output to calculate absolute shadow prices of inputs is in line with other studies in the efficiency literature (Singbo et al., 2015; Skevas & Serra, 2017). In our empirical application, we use the expected price (under the normal state of nature) of each crop type (cereals, protein and (9) {( w∗ n , p∗ m )} = argmin{w� n xn − p � m ỹm} st. w� n g ≥ 1 w� n xi n − p� m ỹi m ≥ 0, forall i, i = 1,… , I (10) wn, i,WTP ∗ = min { wn,i } st. w� n xn − p � m ỹm = 0 w� n g ≥ 1 w� n xi n − p� m ỹi m ≥ 0, for all i, i = 1,… , I (11) w∗ n,i,WTA = max { wn,i } st. w� n xn − p � m ỹm = 0 w� n g ≥ 1 w� n xi n − p� m ỹi m ≥ 0, for all i, i = 1,… , I (12)W � n = po m ⋅ 휕D(x, y, g)∕휕x � n 휕D(x, y, g)∕휕ym , A. Ait Sidhoum 1 3 oilseeds crops). Absolute shadow prices have the advantage of being linked to real market conditions, as opposed to relative shadow values. 3.1 Data The data have been collected through a survey aimed at analyzing the efficiency of crop farms in Catalonia. Crops consist of cereals, protein, and oilseeds crops (COP). A farm is considered only if more than 80% of overall farm revenues are generated from COP crops. A total of 180 farms were surveyed.7 The survey was specifically designed to implement an empirical representation of state-contingent technologies. To this end, the first part of the questionnaire was conducted before the starting of the growing season in October 2015 to gather predicted yields for three different states of nature. Specifically, farmers were asked to predict the yields they expect under bad, normal, and ideal states of nature. Measuring ex-ante production is challenging because it is difficult to obtain objective responses from farmers on what represents a bad, normal or ideal growing season. Experts from the largest Catalan farmers’ association—Unió de Pagesos (UdP)—that was respon- sible for carrying out the survey, recommended collecting output data for bad, normal and ideal states of nature as the most appropriate and pragmatic method for gathering ex-ante output data.8 According to UdP, yields under normal conditions can be used as a reference for farmers (e.g., the average yield over a ten-year period), then, identification of yield data for the bad and the ideal state of nature should be relatively easy for producers. The collected data include information about planned use of inputs from each farm. These included details on cropland use ( x1 in hectares), labor use ( x2 in hours), machinery Table 1 Descriptive statistics EPF Energy, pesticides and fertilizers. Variables Dimension Symbol Average Std. Dev Min Max Output—bad state - Euros y 1 33 024,49 34 050,12 1 239,18 262 162,50 Output—normal state - Euros y 2 52 114,47 50 695,80 4 969,11 387 700,00 Output—ideal state - Euros y 3 71 570,62 72 414,69 8 190,00 573 150,00 Land Hectares x 1 80,65 73,60 10,30 510,00 Labor Hours x 2 827,08 841,85 23,00 5 760,00 Machinery Number x 3 5,57 2,05 1,00 13,00 EPF Euros x 4 14 641,46 15 093,79 645,09 117 110,00 Working conditions Score x 5 46,98 3,93 36,00 59,00 7 With the condition of at least 80% of overall farm revenues are generated from COP, around 250 agri- cultural holdings have been identified as meeting the specialization criteria from a large list of 7000 farms. From there, 180 farms have been surveyed. 8 For the agricultural sector, the states of Nature are typically related to weather parameters (temperature, precipitation, solar radiation, etc.…). While using the average yield over a ten-year period to identify yields under normal conditions and then the two other states. The constraints associated with collecting ex-ante output are known. This data collection is based on farmers’ subjective perceptions, which might lead to identification biases. Some procedures have been proposed by the literature to deal with this issue, such as the use of “cheap-talk” (Cummings & Taylor, 1999). However, other studies, such as Lusk (2003), have shown that these techniques maybe ineffective with experienced participants. Our group of farmers had 33 years of experience in the crops sector; therefore, our respondents can be regarded as experienced. Assessing the contribution of farmers’ working conditions… 1 3 ( x3 in physical units) and EPF inputs ( x4 in euros), and working conditions ( x5 in scores). A total of 180 farms were chosen for the study purpose. Descriptive statistics are provided in Table 1. Data to assess the contribution of the working conditions to the production process were also elicited. Although some studies have focused on developing work conditions metrics, these usually depend on the particular sector of interest. Our working condi- tions indicators are based upon the work by Karasek et al. (1998), Pickett et al. (2008) and White and Cessna (1989). The items are, however, adapted to fit the specific con- text of research. A total of 22 items were introduced in our questionnaire to measure the working conditions. To extract the relevant information from working conditions statements and fur- ther maximize the discriminatory power of data envelopment analysis, I used princi- pal component analysis (PCA) as a descriptive technique on the working conditions items rated on a 4-point Likert scale, with increasing scores representing greater lev- els of working conditions. PCA reveals that four components (skill discretion, health risk, psychological demands and decision autonomy) provide a good description of the working conditions structure. The component skill discretion reflects the degree to which the job involves the need for a broad range of skills, development of individual skills and abilities, the absence of routinization and creativity. Decision autonomy rep- resents the farmer’s freedom to make decisions about his own job without constraint or coercion. The psychological demands component represents the psycho-social aspects of workload. While the health risk component sums up the damaging physical health effects of the workplace among farmers. Only the working conditions statements with Table 2 Working conditions items that have been considered in this study Working conditions item Components In my work, I have to be creative. Skill discretion My work requires a high level of skills. I get to do a variety of different things in my job. At work, I have the opportunity to develop my own abilities. My job allows me to take a lot of decisions on my own. Decision autonomy I have very little freedom to decide how I do my work. My opinions influence the management of the agricultural holding. In the farm, work schedules are flexible. My work requires working very fast. Psychological demand My work requires working very hard. I do not need to do an excessive amount of work. I have enough time to get the job done. Suffer from muscular pain due to farm work Health Risk My work entails painful postures I am exposed to annoying noise in my workplace In my work, I need to manipulate or breathe noxious or toxic substances A. Ait Sidhoum 1 3 high factor loadings were retained and considered for further study (Table  2). The working condition variable is quantified as the total points score of the four factors. 4 Results and discussion 4.1 Efficiency scores ��⃗D(x, ỹ, g) was calculated for each state of nature. Summary statistics on the average effi- ciency scores and the frequency distribution of ex-ante information as derived from the primal approach of the technology are presented in Table 3. The findings show that mean efficiency ratings in our sample fluctuate from 0.64 to 0.72 in bad and normal growing conditions. This indicates that our sample farms produce 36% and 28% less output than is Table 3 Frequency distribution of state-contingent efficiency scores Bad state Normal state Ideal state 0 < 𝜑 < 0.1 0 0 0 0.1 ≤ 𝜑 < 0.2 7 0 0 0.2 ≤ 𝜑 < 0.3 3 2 1 0.3 ≤ 𝜑 < 0.4 11 0 0 0.4 ≤ 𝜑 < 0.5 22 11 12 0.5 ≤ 𝜑 < 0.6 35 24 31 0.6 ≤ 𝜑 < 0.7 36 51 55 0.7 ≤ 𝜑 < 0.8 25 43 32 0.8 ≤ 𝜑 < 0.9 11 23 27 0.9 ≤ 𝜑 < 1.0 13 13 5 휑 = 1.0 17 13 17 Mean score 0.64 0.72 0.71 Fig. 2 Kernel distributions of the efficiency ratings for each state of nature Assessing the contribution of farmers’ working conditions… 1 3 technically possible under the bad and normal setting. Seventeen farms were found to be fully efficient (on the frontier) in the bad crop year, thirteen under normal growing condi- tions, and seventeen in the ideal state of nature. The analysis of individual farms shows some differences among units; for instance, larger farms are found to be more efficient, a result that is consistent with previous studies (Hallam & Machado, 1996; Skevas & Lan- sink, 2014), while we were unable to find any common pattern related with their working conditions levels. Nonparametric kernel density distributions for the ex-ante efficiency scores are pre- sented in Fig. 2. The three density distributions display a bimodal shape of our state-con- tingent data. Similarly, for the three distributions, the bimodal shape seems to indicate the existence of a specific group operating quite far from its output potential level (major- mode) who is clearly separated from another smaller group that has a high concentration of farms around 1. Under bad growing conditions, the major mode shows a concentration of farms around 0.55, while for the normal and ideal state, the group with considerable inef- ficiency is characterized by a high concentration of farms around 0.65. Furthermore, the two groups are discriminated by an anti-mode or a minimum, which may suggest the exist- ence of an efficiency trap between the best performers and the inefficient ones. According to the Simar and Zelenyuk test, the efficiency ratings of bad state and normal/ ideal state of nature come from different statistical distributions (Table 5). While when comparing nor- mal and ideal states, the result (similar statistical distributions) of the test is consistent with the plots shown in Fig. 1. Table 4 Average shadow prices (Normalized values in euros) Inefficient Farms Efficient farms Bad Normal Ideal Inputs Bad Normal Ideal WTP WTA WTP WTA WTP WTA Land 83.67 134.69 206.24 16.56 77.60 4.55 120.70 29.40 177.25 Labor 2.58 2.70 2.18 1.18 6.34 0.31 20.19 2.65 30.30 Machinery 137.49 133.97 160.93 197.83 2,050.31 159.69 3,669.65 136.66 4,523.70 EPF 0.13 0.15 0.15 0.04 0.47 0.20 1.18 0.26 1.79 Working conditions 27.15 25.94 25.30 17.92 150.32 19.58 371.01 13.51 435.32 Table 5 Simar and Zelenyuk (2006) test for comparing efficiency scores and working conditions shadow prices between the three states of nature Simar and Zelenyuk (2006) Bad vs. Normal Bad vs. Ideal Normal vs. Ideal Efficiency scores Test value (p value) 6.189 (0.000) 4.422 (0.000) 0.071 (0.919) Working conditions shadow prices Test value 7.828 15.870 43.454 (p value) (0.000) (0.000) (0.000) A. Ait Sidhoum 1 3 4.2 Shadow prices Shadow values are computed as a means by which non-traded working conditions are assigned a monetary value for their contribution to technical efficiency. The virtual prices are estimated using Eq. 3. Although Eq. 3 is differentiable for inefficient farms, I use mul- tiple shadow prices solutions (Chambers & Färe, 2008) for efficient farms. Calculated shadow prices (Table 4) present the needed increase in agricultural output while maintain- ing the efficiency level constant when inputs are changed.9 Our results also provide differ- ences between shadow prices across states of nature,10 implying that the marginal produc- tivity of inputs differs across the three different states of nature. The findings show that there exist substantial variations in the average shadow price of the inputs used. For the inefficient farms, capital machinery shows the higher average shadow value per farm that fluctuates from 137.49 euros to 160.93 euros in bad and good crop growing conditions (e.g., an additional unit of capital machinery (one machine) requires an increase in the crop value of 137.49 euros to keep the efficiency level constant under the bad state of nature). Our results also showed that our sample of crop farms presents shadow values of land on the order of 206 euros under the ideal state, which differs from the shadow prices levels (83–134 euros) under bad and normal states, implying that when the switch from bad to the good state of nature occurs, the productivity of an additional unit of land (hectare) increases by around 123 euros. Working conditions shadow prices for inefficient farms take a value of 27.15 euros per score point under bad conditions to about 25 euros in the normal and ideal states of nature. Therefore, an additional unit of working conditions is expected to increase the desirable outputs. Working conditions are the third most relevant input after capital machinery and land, a result that is consistent with the fact that farmers’ well-being at work is likely to enhance agricultural productivity. Interestingly, results show that for an additional euro of EPF, farmers’ return was less than 1 euro for the three alternative states of nature. This result implies that pesticides, chemical fertilizers and energy use are the less productive inputs for our sample farms. This suggests the possibility that farmers could improve their efficiency by reducing the Fig. 3 Farmers’ WTA for their working conditions input for each state (efficient units) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Ideal State Normal State Bad State 9 A shadow price of a productive input can be interpreted as well as the marginal product of that input. 10 To test whether the differences between shadow prices of working conditions across states of nature are significant, we rely on the Li (1996)’s test which was adpated and suggested by Simar & Zelenyuk (2006). The results of the test (Table 5) confirm that shadow prices of working conditions come from different con- tinuous distributions. Assessing the contribution of farmers’ working conditions… 1 3 use of environmentally detrimental inputs. This can be interpreted as an indication that farmers are allocatively inefficient with respect to the use of polluting inputs. These results are consistent with the widespread view that farmers overuse fertilizers and pesticides (Ait Sidhoum et al., 2020; Skevas et al., 2013; Zhang et al., 2015). The estimation of the dual representation of the input distance functions in (10) and (11) allows us to generate multiple shadow value solutions in terms of WTP and WTA for efficient farms. Results are reported in Table 4. On average, the WTA for all inputs values in the ‘ideal’ state is relatively larger than the average input values in the ‘bad’ state, imply- ing that these inputs are especially productive when growth conditions improve from bad to ideal. From a visual point of view, Fig. 3 summarizes this for the working conditions input in terms of the upper price limit for each efficient observation for each state of nature. Relative to inefficient farms, shadow prices of working conditions for the efficient units progress to be the second most valuable input after machinery, while land input downshifts to the third position. This result for land input is not expected but might reflect land quality differences among farms. 4.3 Working conditions issues and sustainability in agriculture: from theory to practice Based on the findings of this research, several theoretical and practical implications should be discussed. In terms of theoretical aspects, this work is among the first that empirically examines how working conditions contribute to farm technical performance. In view of the importance of working conditions in agricultural production, the incorporation of social performance indicators into production models would increase our understanding of how social aspects contribute to sustainable farming systems. However, the multi-dimensional nature of the social dimension makes it especially challenging from a methodological point of view. In light of this, it is crucial to develop harmonized methods and indicators for monitoring social indicators (Diazabakana et  al., 2014). Furthermore, Lunner Kolstrup et  al. (2013) note that farmers’ well-being and working conditions will be significantly affected by the fluctuating weather and the stochastic environment of agriculture and rec- ommend the adoption of measures that mitigate the impact of these production risks. This study empirically measures the relative importance of working conditions in the farming sector under production uncertainty. The paper findings provide evidence on differences between shadow prices across states of nature. These differences in shadow prices between the different states show the importance of taking into account the stochastic environment of agriculture when calculating farms’ performance and shadow prices. These results con- firm relevant previous research on the development of farm performance measures under uncertainty (Chambers et al., 2014; Mallawaarachchi et al., 2017; Nauges et al., 2011; Ske- vas & Serra, 2017). In practice, this study makes a number of significant contributions to workplace sustain- ability practice. First, the option of developing better working conditions in the agricultural sector is a key organizational investment that spreads positive and green signals among co-workers and outside the farm and develops a strong connection with key stakeholders in order to gain their support and enhance the reputation of the agricultural sector among the general public. For instance, organic farming has been suggested as a production sys- tem that could provide better workplace conditions and hence contribute to the sustain- ability and viability of the sector without causing environmental damage. However, it is worth mentioning that in some agroecological systems, the farm managers prioritize the A. Ait Sidhoum 1 3 economic benefits over the social ones (Shreck et  al., 2006). The estimates for working conditions shadow prices reveal that working conditions are the third most relevant input after capital machinery and land. This finding is consistent with the notion that work- related aspects are important factors when adopting more sustainable practices (Delecourt et al., 2019). In practice, transitions toward sustainable farming systems may require policy intervention to support farmers in adopting smarter and innovative solutions (e.g., preci- sion and smart farming) that increase the attractiveness of the farming profession. While rural depopulation is an increasing source of worry for the European Commission (Schuh, 2019), as well as national agricultural authorities (Rodríguez-Soler et al., 2020), smart and sustainable technologies have the potential to improve safety, reduce the workload, and hence, prevent rural depopulation (Jones et al., 2020). 5 Conclusion The consideration of social issues in a production system is important to achieve a sustaina- ble business. Our article integrates farmers’ working conditions into the production process as an input and compares its importance relative to other inputs. The use of the state-con- tingent approach to allow for the stochastic conditions of agricultural production entails an improvement compared to the previous literature. Specifically, it estimated shadow prices of farmers’ working conditions under production uncertainty. The application focuses on the Catalan arable crop sector through a sample of 180 farms in 2015, where information on inputs and ex-ante state-contingent outputs have been collected through a survey. This empirical analysis suggests several interesting results. First, on average, relatively poor performance scores have been obtained in terms of technical efficiency, suggest- ing that inputs use could be significantly reduced while leaving output levels unchanged. Additionally, farms appear to be operating at a lower production frontier as crop growing conditions worsen. This finding is compatible with the argument that farm performance improves with the improvement of conditions during the growing season (Ait Sidhoum et al., 2020; Serra et al., 2014). Although the empirical findings are consistent with the ear- lier literature, the interpretation of these results is limited to a particular geographical loca- tion. Second, significant differences in inputs shadow values across states of nature show the importance of considering production uncertainty when assessing farms performance. Finally, shadow prices suggest that working conditions represents the third most valuable input after capital machinery and land for the non-efficient farms and the second most valuable input after capital machinery for the efficient farms, which makes it significantly above the shadow values of EPF and labor for the inefficient farms and also considerably above the shadow prices of EPF, labor and land for the efficient farms. In terms of policy recommendations, three main recommendations emanate from the analysis. First, policy-makers need to design agricultural policies that take into account the stochastic nature of agricultural production. In the future, climate change will have a signif- icant impact on farmers’ safety and health (Applebaum et al., 2016). Successful adaptation by the farming sector requires appropriate farm performance measurement that allows for the stochastic environment of agriculture. Second, given the findings of the relative impor- tance of working conditions in farm efficiency, this latter could be potentially improved by providing more freedom11 for the workers to decide how to do their own work and 11 As emphasized by one reviewer, higher farm performance may also be achieved by higher supervision intensity (Feder, 1985). However, this case is especially relevant for developing countries. Assessing the contribution of farmers’ working conditions… 1 3 providing more opportunities to make decisions (Langfred & Moye, 2004). For instance, Dumont & Baret (2017) suggested that the capacity to innovate and to participate in the decision-making process (e.g., adoption of new technology) can be important factors in determining farm performance. Third, the adoption of digital and smart farming technolo- gies will be the key concern in the future; however, without sufficient training, the use of modern technologies alone will not enhance farmers well-being, working conditions and their overall performance in general. Finally, this study also shows evidence of differences in labor conditions between the efficient and non-efficient farms. This finding clearly indi- cates the need to improve the quality of workplace conditions for farmers who are lagging behind in terms of efficiency. The literature suggests that poor working conditions come from the absence/poor safe workplace practices. Therefore, with the aim of promoting sus- tainability practices, public policies should encourage these farmers to establish internal management systems and guide them in the implementation of quality management pro- grams aimed specifically at improving working conditions and environmental practices (Gereffi et al., 2005; Nadvi, 2008). To conclude, it is worth mentioning that there are different avenues for further follow- up research. This study confines the analysis to a consideration of working conditions to reflect the social dimension of farm performance. However, several indicators can be found in the existing literature for measuring social performance, such as investment in workers’ health (Ødegaard & Roos, 2014), qualitative control (Kuo & Lin, 2012), education and training (Chambers & Serra, 2018) and human rights (Ioannou & Serafeim, 2012). There- fore, a potential avenue for future research would be to consider other indicators which could better represent the social dimension of sustainability. A second future avenue for research is to investigate the differential effects of the different components of working conditions on farm performance. Finally, it would be interesting to extend the socio-eco- nomic approach to more recent approaches that allow modeling polluting-generating tech- nologies (e.g., pesticides pollution). Farmers’ working conditions may be strongly linked to environmental protection and climate change mitigation practices. Better farmers’ working conditions (e.g., the use of precision equipment) may affect how pesticides and mineral fertilizers are applied, this implies that environmental pollution could be reduced by pro- moting innovative and sustainable solutions. Therefore, future research could explore the relative importance of working conditions in terms of their contribution to environmental pollution control by building on the methods proposed by Murty et al. (2012) or Murty and Russell (2018). Acknowledgements The author gratefully acknowledges financial support from Instituto Nacional de Inves- tigaciones Agrícolas (INIA) in Spain and from the European Regional Development Fund (ERDF), Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+i), Project Reference Number RTA2012-00002-00-00. Funding Open access funding provided by Natural Resources Institute Finland (LUKE). Data availability The farm-level data cannot be shared publicly because it is proprietary and confidential information. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com- mons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not A. Ait Sidhoum 1 3 permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. References Ait Sidhoum, A. (2018). Valuing social sustainability in agriculture: An approach based on social outputs’ shadow prices. Journal of Cleaner Production, 203, 273–286. https:// doi. org/ 10. 1016/j. jclep ro. 2018. 08. 212 Ait Sidhoum, A., Serra, T., & Latruffe, L. (2020). Measuring sustainability efficiency at farm level: A data envelopment analysis approach. European Review of Agricultural Economics, 47(1), 200–225. https:// doi. org/ 10. 1093/ erae/ jbz015 Aparicio, J., Kapelko, M., & Monge, J. F. (2020). A well-defined composite indicator: An application to corporate social responsibility. Journal of Optimization Theory and Applications, 186(1), 299–323. https:// doi. org/ 10. 1007/ s10957- 020- 01701-1 Applebaum, K. M., Graham, J., Gray, G. M., LaPuma, P., McCormick, S. A., Northcross, A., & Perry, M. J. (2016). An overview of occupational risks from climate change. Current Environmental Health Reports, 3(1), 13–22. https:// doi. org/ 10. 1007/ s40572- 016- 0081-4 Berman, S. L., Wicks, A. C., Kotha, S., & Jones, T. M. (1999). Does stakeholder orientation matter? The relationship between stakeholder management models and firm financial performance. Academy of Management Journal, 42(5), 488–506. Berre, D., Boussemart, J.-P., Leleu, H., & Tillard, E. (2013). Economic value of greenhouse gases and nitro- gen surpluses: Society vs farmers’ valuation. European Journal of Operational Research, 226(2), 325– 331. https:// doi. org/ 10. 1016/J. EJOR. 2012. 11. 017 Berre, D., Corbeels, M., Rusinamhodzi, L., Mutenje, M., Thierfelder, C., & Lopez-Ridaura, S. (2017). Thinking beyond agronomic yield gap: Smallholder farm efficiency under contrasted livelihood strate- gies in Malawi. Field Crops Research, 214, 113–122. https:// doi. org/ 10. 1016/j. fcr. 2017. 08. 026 Bozoǧlu, M., & Ceyhan, V. (2007). Measuring the technical efficiency and exploring the inefficiency deter- minants of vegetable farms in Samsun province Turkey. Agricultural Systems, 94(3), 649–656. https:// doi. org/ 10. 1016/j. agsy. 2007. 01. 007 Brent, A., & Labuschagne, C. (2006). Social indicators for sustainable project and technology life cycle management in the process industry (13 pp + 4). The International Journal of Life Cycle Assessment, 11(1), 3–15. https:// doi. org/ 10. 1065/ lca20 06. 01. 233 Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economic The- ory, 70(2), 407–419. https:// doi. org/ 10. 1006/ jeth. 1996. 0096 Chambers, R. G., Chung, Y., & Färe, R. (1998). Profit, directional distance functions, and Nerlovian effi- ciency. Journal of Optimization Theory and Applications, 98(2), 351–364. https:// doi. org/ 10. 1023/A: 10226 37501 082 Chambers, R. G., & Färe, R. (2008). A “calculus” for data envelopment analysis. Journal of Productivity Analysis, 30(3), 169–175. https:// doi. org/ 10. 1007/ s11123- 008- 0104-8 Chambers, R. G., Hailu, A., & Quiggin, J. (2011). Event-specific data envelopment models and efficiency analysis*. Australian Journal of Agricultural and Resource Economics, 55(1), 90–106. https:// doi. org/ 10. 1111/j. 1467- 8489. 2010. 00517.x Chambers, R. G., & Quiggin, J. (1998). Cost Functions and Duality for Stochastic Technologies. American Journal of Agricultural Economics, 80(2), 288–295. https:// doi. org/ 10. 2307/ 12445 01 Chambers, R. G., & Quiggin, J. (2000). Uncertainty, production, choice, and agency: The state-contingent approach. Cambridge University Press. Chambers, R. G., & Serra, T. (2018). The social dimension of firm performance: A data envelopment approach. Empirical Economics, 54(1), 189–206. https:// doi. org/ 10. 1007/ s00181- 016- 1135-z Chambers, R. G., Serra, T., & Oude Lansink, A. (2014). On the pricing of undesirable state-contingent outputs. European Review of Agricultural Economics, 41(3), 485–509. https:// doi. org/ 10. 1093/ erae/ jbu018 Chavas, J. P. (2008a). A cost approach to economic analysis under state-contingent production uncertainty. American Journal of Agricultural Economics, 90(2), 435–446. https:// doi. org/ 10. 1111/j. 1467- 8276. 2007. 01118.x Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51(3), 229–240. https:// doi. org/ 10. 1006/ JEMA. 1997. 0146 Assessing the contribution of farmers’ working conditions… 1 3 Coelli, T., Lauwers, L., & Van Huylenbroeck, G. (2007). Environmental efficiency measurement and the materials balance condition. Journal of Productivity Analysis, 28(1–2), 3–12. Cummings, R. G., & Taylor, L. O. (1999). Unbiased value estimates for environmental goods: A cheap talk design for the contingent valuation method. American Economic Review, 89, 649–665. https:// doi. org/ 10. 1257/ aer. 89.3. 649 Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2016). Modelling pollution-generating technologies in perfor- mance benchmarking: Recent developments, limits and future prospects in the nonparametric frame- work. European Journal of Operational Research, 250, 347–359. https:// doi. org/ 10. 1016/j. ejor. 2015. 07. 024 Delecourt, E., Joannon, A., & Meynard, J. M. (2019). Work-related information needed by farmers for changing to sustainable cropping practices. Agronomy for Sustainable Development, 39(2), 981. https:// doi. org/ 10. 1007/ s13593- 019- 0571-5 Diazabakana, A., Latruffe, L., Bockstaller, C., Desjeux, Y., Finn, J., Kelly, E., Ryan, M., & Uthes, S. (2014). A Review of Farm Level Indicators of Sustainability with a Focus on CAP and FADN. Available Online: https:// Www. Flint- Fp7. Eu/ Downl oads/ Repor ts/ FLINT% 20WP1% 20_ D1_2. pdf, 20. Dubois, J.-L., & Mahieu, F.-R. (2002). La dimension sociale du développement durable: réduction de la pauvreté ou durabilité sociale? Développement Durable? Doctrines, Pratiques, Évaluations, 73–94. Dumont, A. M., & Baretv, P. (2017). Why working conditions are a key issue of sustainability in agricul- ture? A comparison between agroecological, organic and conventional vegetable systems. Journal of Rural Studies, 56, 53–64. https:// doi. org/ 10. 1016/J. JRURS TUD. 2017. 07. 007 Dyllick, T., & Hockerts, K. (2002). Beyond the business case for corporate sustainability. Business Strat- egy and the Environment, 11(2), 130–141. https:// doi. org/ 10. 1002/ bse. 323 Eurofound. (2017). Sixth European Working Conditions Survey — Overview report (2017 update). European Commission. (2008). European Union Directorate-General for Agriculture and Rural Devel- opment. Statistical and Economic Information. Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. The Review of Economics and Sta- tistics, 71(1), 90. https:// doi. org/ 10. 2307/ 19280 55 Fare, R., Grosskopf, S., Lovell, C. A. K., & Yaisawarng, S. (1993). Derivation of shadow prices for undesirable outputs: a distance function approach. The Review of Economics and Statistics, 75(2), 374. https:// doi. org/ 10. 2307/ 21094 48 Feder, G. (1985). The relation between farm size and farm productivity. The role of family labor, super- vision and credit constraints. Journal of Development Economics, 18, 297–313. https:// doi. org/ 10. 1016/ 0304- 3878(85) 90059-8 Førsund, F. R. (2009). Good modelling of bad outputs: Pollution and multiple-output production. Inter- national Review of Environmental and Resource Economics, 3(1), 1–38. https:// doi. org/ 10. 1561/ 101. 00000 021 Garcia-Castro, R., Ariño, M. A., & Canela, M. A. (2010). Does social performance really lead to finan- cial performance? Accounting for endogeneity. Journal of Business Ethics, 92(1), 107–126. García-Cornejo, B., Pérez-Méndez, J. A., Roibás, D., & Wall, A. (2020). Effciency and sustainability in farm diversification initiatives in northern Spain. Sustainability (Switzerland), 12(10), 3983. https:// doi. org/ 10. 3390/ SU121 03983 Gereffi, G., Humphrey, J., & Sturgeon, T. (2005). The governance of global value chains. Review of International Political Economy, 12(1), 78–104. https:// doi. org/ 10. 1080/ 09692 29050 00498 05 Gray, M. (2013). Labor and the locavore: The making of a comprehensive food ethic. University of Cali- fornia Press. Hailu, A., & Veeman, T. S. (2001). Non parametric productivity analysis with undesirable outputs: An application to the canadian pulp and paper industry. American Journal of Agricultural Economics, 83(3), 605–616. https:// doi. org/ 10. 1111/ 0002- 9092. 00181 Hallam, D., & Machado, F. (1996). Efficiency analysis with panel data: A study of Portuguese dairy farms. European Review of Agricultural Economics, 23(1), 79–93. https:// doi. org/ 10. 1093/ erae/ 23.1. 79 Hoang, V.-N., & Coelli, T. (2011). Measurement of agricultural total factor productivity growth incorpo- rating environmental factors: A nutrients balance approach. Journal of Environmental Economics and Management, 62(3), 462–474. https:// doi. org/ 10. 1016/J. JEEM. 2011. 05. 009 Hutchins, M. J., Richter, J. S., Henry, M. L., & Sutherland, J. W. (2019). Development of indicators for the social dimension of sustainability in a U.S. business context. Journal of Cleaner Production, 212, 687–697. https:// doi. org/ 10. 1016/j. jclep ro. 2018. 11. 199 Ioannou, I., & Serafeim, G. (2012). What drives corporate social performance? The role of nation-level institutions. Journal of International Business Studies, 43(9), 834–864. A. Ait Sidhoum 1 3 Johnson, A. L., & Kuosmanen, T. (2012). One-stage and two-stage DEA estimation of the effects of contextual variables. European Journal of Operational Research, 220(2), 559–570. https:// doi. org/ 10. 1016/j. ejor. 2012. 01. 023 Jones, A., Jakob, M., McNamara, J., & Teutenberg, A. (2020). Review of the future of agriculture and occupational safety and health (OSH). Foresight on New and Emerging Risks in OSH. https:// doi. org/ 10. 2802/ 769257 Karasek, R., Brisson, C., Kawakami, N., Houtman, I., Bongers, P., & Amick, B. (1998). The Job Content Questionnaire (JCQ): An instrument for internationally comparative assessments of psychosocial job characteristics. Journal of Occupational Health Psychology, 3(4), 322. Kumbhakar, S. C., & Malikov, E. (2018). Good modeling of bad outputs: editors’ introduction. Empiri- cal Economics, 54(1), 1–6. https:// doi. org/ 10. 1007/ s00181- 017- 1231-8 Kuo, R. J., & Lin, Y. J. (2012). Supplier selection using analytic network process and data envelop- ment analysis. International Journal of Production Research, 50(11), 2852–2863. https:// doi. org/ 10. 1080/ 00207 543. 2011. 559487 Langfred, C. W., & Moye, N. A. (2004). Effects of task autonomy on performance: An extended model considering motivational, informational, and structural mechanisms. Journal of Applied Psychol- ogy, 89(6), 934–945. https:// doi. org/ 10. 1037/ 0021- 9010. 89.6. 934 Lansink, A. O., & Carpentier, A. (2001). Damage control productivity: An input damage abatement approach. Journal of Agricultural Economics, 52(3), 11–22. https:// doi. org/ 10. 1111/j. 1477- 9552. 2001. tb009 35.x Latruffe, L., Balcombe, K., Davidova, S., & Zawalinska, K. (2004). Determinants of technical efficiency of crop and livestock farms in Poland. Applied Economics, 36(12), 1255–1263. https:// doi. org/ 10. 1080/ 00036 84042 00017 6793 Lebacq, T., Baretv, P., & Stilmant, D. (2013). Sustainability indicators for livestock farming a review. Agronomy for Sustainable Development, 33(2), 311–327. Lehtonen, M. (2004). The environmental–social interface of sustainable development: Capabilities, social capital, institutions. Ecological Economics, 49(2), 199–214. https:// doi. org/ 10. 1016/J. ECOLE CON. 2004. 03. 019 Li, J., & Macan, X. (2015). Econometric analysis of industrial water use efficiency in China. Environment, Development and Sustainability, 17(5), 1209–1226. https:// doi. org/ 10. 1007/ s10668- 014- 9601-2 Li, Q. (1996). Nonparametric testing of closeness between two unknown distribution functions. Economet- ric Reviews, 15(3), 261–274. https:// doi. org/ 10. 1080/ 07474 93960 88003 55 Lima Crisóstomo, V., de Souza Freire, F., & Cortes de Vasconcellos, F. (2011). Corporate social responsi- bility, firm value and financial performance in Brazil. Social Responsibility Journal, 7(2), 295–309. https:// doi. org/ 10. 1108/ 17471 11111 11415 49 LunnerKolstrup, C., Kallioniemi, M., Lundqvist, P., Kymäläinen, H. R., Stallones, L., & Brumby, S. (2013). International perspectives on psychosocial working conditions, mental health, and stress of dairy farm operators. Journal of Agromedicine, 18(3), 244–255. https:// doi. org/ 10. 1080/ 10599 24X. 2013. 796903 Lusk, J. L. (2003). Effects of cheap talk on consumer willingness-to-pay for golden rice. American Journal of Agricultural Economics, 85(4), 840–856. https:// doi. org/ 10. 1111/ 1467- 8276. 00492 Mallawaarachchi, T., Nauges, C., Sanders, O., & Quiggin, J. (2017). State-contingent analysis of farmers’ response to weather variability: Irrigated dairy farming in the Murray Valley, Australia. Australian Journal of Agricultural and Resource Economics, 61(1), 36–55. https:// doi. org/ 10. 1111/ 1467- 8489. 12193 Margolis, J. D., Elfenbein, H. A., & Walsh, J. P. (2009). Does it pay to be good and does it matter? A meta- analysis of the relationship between corporate social and financial performance. SSRN Electronic Jour- nal, 25, 641. https:// doi. org/ 10. 2139/ ssrn. 18663 71 Murty, S., Robert Russell, R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management, 64(1), 117–135. https:// doi. org/ 10. 1016/j. jeem. 2012. 02. 005 Murty, S., & Russell, R. R. (2018). Modeling emission-generating technologies: Reconciliation of axi- omatic and by-production approaches. Empirical Economics, 54(1), 7–30. https:// doi. org/ 10. 1007/ s00181- 016- 1183-4 Nadvi, K. (2008). Global standards, global governance and the organization of global value chains. Journal of Economic Geography, 8(3), 323–343. https:// doi. org/ 10. 1093/ jeg/ lbn003 Nauges, C., O’Donnell, C. J., & Quiggin, J. (2011). Uncertainty and technical efficiency in Finnish agri- culture: A state-contingent approach. European Review of Agricultural Economics, 38(4), 449–467. https:// doi. org/ 10. 1093/ erae/ jbr014 Assessing the contribution of farmers’ working conditions… 1 3 Nollet, J., Filis, G., & Mitrokostas, E. (2016). Corporate social responsibility and financial performance: A non-linear and disaggregated approach. Economic Modelling, 52, 400–407. https:// doi. org/ 10. 1016/j. econm od. 2015. 09. 019 Ødegaard, F., & Roos, P. (2014). Measuring the contribution of workers’ health and psychosocial work- environment on production efficiency. Production and Operations Management, 23(12), 2191–2208. https:// doi. org/ 10. 1111/ poms. 12242 O’Donnell, C. J., Chambers, R. G., & Quiggin, J. (2010). Efficiency analysis in the presence of uncertainty. Journal of Productivity Analysis, 33(1), 1–17. Oladeebo, J. O., & Fajuyigbe, A. A. (2007). Technical efficiency of men and women upland rice farmers in Osun state Nigeria. Journal of Human Ecology, 22(2), 93–100. https:// doi. org/ 10. 1080/ 09709 274. 2007. 11906 006 Pérez Urdiales, M., Lansink, A. O., & Wall, A. (2016). Eco-efficiency among dairy farmers: The impor- tance of socio-economic characteristics and farmer attitudes. Environmental and Resource Economics, 64(4), 559–574. https:// doi. org/ 10. 1007/ s10640- 015- 9885-1 Pickett, W., Day, L., Hagel, L., Brison, R. J., Marlenga, B., Pahwa, P., Koehncke, N., Crowe, T., Snodgrass, P., & Dosman, J. (2008). The Saskatchewan farm injury cohort: Rationale and methodology. Public Health Reports, 123(5), 567–575. https:// doi. org/ 10. 1177/ 00333 54908 12300 506 Puggioni, D., & Stefanou, S. E. (2019). The value of being socially responsible: A primal-dual approach. European Journal of Operational Research, 276(3), 1090–1103. https:// doi. org/ 10. 1016/j. ejor. 2019. 01. 065 Regulation, C. (2005). Council Regulation (EC) No 1698/2005 of 20 September 2005 on support for rural development by the European agricultural fund for rural development (EAFRD). Official Journal of the European Union L, 277, 10–21. Regulation, C. (2006). Commission Regulation (EG) No 1974/2006 of 15 December 2006 laying down detailed rules for the application of Council Regulation (EC) No 1698/2005 on support for rural development by the European agricultural fund for rural development (EAFRD). Official Journal of the European Union L, 368, 15. Rodríguez-Soler, R., Uribe-Toril, J., & De Pablo Valenciano, J. (2020). Worldwide trends in the scien- tific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy,. https:// doi. org/ 10. 1016/j. landu sepol. 2020. 104787 Saeidi, S. P., Sofian, S., Saeidi, P., Saeidi, S. P., & Saaeidi, S. A. (2015). How does corporate social responsibility contribute to firm financial performance? The mediating role of competitive advan- tage, reputation, and customer satisfaction. Journal of Business Research, 68(2), 341–350. https:// doi. org/ 10. 1016/j. jbusr es. 2014. 06. 024 Schuh, B. (2019). The EU farming employment: current challenges and future prospects. Research for AGRI Committee. Brussels, Belgium: European Parliament, Policy Department for Structural and Cohesion Policies. https://wwweuroparl.europa.eu/regdata/etudes/STUD/2019/629209/IPOL_STU. (2019), 62920. Serra, T., Chambers, R. G., & Oude Lansink, A. (2014). Measuring technical and environmental effi- ciency in a state-contingent technology. European Journal of Operational Research, 236(2), 706–717. Shreck, A., Getz, C., & Feenstra, G. (2006). Social sustainability, farm labor, and organic agriculture: Findings from an exploratory analysis. Agriculture and Human Values, 23(4), 439–449. https:// doi. org/ 10. 1007/ s10460- 006- 9016-2 Simar, L., & Zelenyuk, V. (2006). On testing equality of distributions of technical efficiency scores. Econometric Reviews, 25(4), 497–522. https:// doi. org/ 10. 1080/ 07474 93060 09725 82 Singbo, A. G., Lansink, A. O., & Emvalomatis, G. (2015). Estimating shadow prices and efficiency anal- ysis of productive inputs and pesticide use of vegetable production. European Journal of Opera- tional Research, 245(1), 265–272. https:// doi. org/ 10. 1016/j. ejor. 2015. 02. 042 Skevas, T., & Lansink, A. O. (2014). Reducing pesticide use and pesticide impact by productivity growth: The case of dutch arable farming. Journal of Agricultural Economics, 65(1), 191–211. https:// doi. org/ 10. 1111/ 1477- 9552. 12037 Skevas, T., & Serra, T. (2017). Derivation of netput shadow prices under different levels of pest pres- sure. Journal of Productivity Analysis, 48(1), 25–34. https:// doi. org/ 10. 1007/ s11123- 017- 0507-5 Skevas, T., Skevas, I., & Cabrera, V. E. (2021). Examining the relationship between social inefficiency and financial performance evidence from wisconsin dairy farms. Sustainability, 13(7), 3635. https:// doi. org/ 10. 3390/ su130 73635 Skevas, T., Stefanou, S. E., & Lansink, A. O. (2013). Do Farmers internalise environmental spillovers of pesticides in production? Journal of Agricultural Economics, 64(3), 624–640. https:// doi. org/ 10. 1111/ 1477- 9552. 12007 A. Ait Sidhoum 1 3 Tajbakhsh, A., & Hassini, E. (2018). Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis. Energy Economics, 74, 154–178. https:// doi. org/ 10. 1016/j. eneco. 2018. 05. 032 Van Calker, K. J., Berentsen, P. B. M., De Boer, I. J. M., Giesen, G. W. J., & Huirne, R. B. M. (2007). Modelling worker physical health and societal sustainability at farm level: An application to con- ventional and organic dairy farming. Agricultural Systems, 94(2), 205–219. van Haaster, B., Ciroth, A., Fontes, J., Wood, R., & Ramirez, A. (2017). Development of a methodologi- cal framework for social life-cycle assessment of novel technologies. The International Journal of Life Cycle Assessment, 22(3), 423–440. https:// doi. org/ 10. 1007/ s11367- 016- 1162-1 Veltri, S., D’Orio, G., & Bonanno, G. (2016). Measuring managerial ability using a two-stage SFA-DEA approach. Knowledge and Process Management, 23(4), 247–258. https:// doi. org/ 10. 1002/ kpm. 1528 Wang, K., Xian, Y., Lee, C. Y., Wei, Y. M., & Huang, Z. (2019). On selecting directions for directional distance functions in a non parametric framework: a review. Annals of Operations Research, 278, 43–76. https:// doi. org/ 10. 1007/ s10479- 017- 2423-5 White, G., & Cessna, A. (1989). Occupational hazards of farming. Canadian Family Physician Medecin De Famille Canadien, 35, 2331–2336. White, L., & Lee, G. J. (2009). Operational research and sustainable development: Tackling the social dimension. European Journal of Operational Research, 193(3), 683–692. https:// doi. org/ 10. 1016/J. EJOR. 2007. 06. 057 Yue, P. (1992). Data envelopment analysis and commercial bank performance: a primer with applications to Missouri banks. IC^2 Institute Articles. Zhang, C., Hu, R., Shi, G., Jin, Y., Robson, M. G., & Huang, X. (2015). Overuse or underuse? An observa- tion of pesticide use in China. Science of the Total Environment, 538, 1–6. https:// doi. org/ 10. 1016/j. scito tenv. 2015. 08. 031 Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The origins, development and future directions. In European Journal of Operational Research, 264(1), 1–16. https:// doi. org/ 10. 1016/j. ejor. 2017. 06. 023 Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.