Jukuri, open repository of the Natural Resources Institute Finland (Luke) All material supplied via Jukuri is protected by copyright and other intellectual property rights. Duplication or sale, in electronic or print form, of any part of the repository collections is prohibited. Making electronic or print copies of the material is permitted only for your own personal use or for educational purposes. For other purposes, this article may be used in accordance with the publisher’s terms. There may be differences between this version and the publisher’s version. You are advised to cite the publisher’s version. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): María Triviño, Mária Potterf, Julián Tijerín, Paloma Ruiz-Benito, Daniel Burgas, Kyle Eyvindson, Clemens Blattert, Mikko Mönkkönen & Rémi Duflot Title: Enhancing Resilience of Boreal Forests Through Management Under Global Change: a Review Year: 2023 Version: Published version Copyright: The Author(s) 2023 Rights: CC BY 4.0 Rights url: http://creativecommons.org/licenses/by/4.0/ Please cite the original version: Triviño, M., Potterf, M., Tijerín, J. et al. Enhancing Resilience of Boreal Forests Through Management Under Global Change: a Review. Curr Landscape Ecol Rep (2023). https://doi.org/10.1007/s40823-023-00088-9 Vol.:(0123456789) Current Landscape Ecology Reports https://doi.org/10.1007/s40823-023-00088-9 REVIEW Enhancing Resilience of Boreal Forests Through Management Under Global Change: a Review María Triviño1,2  · Mária Potterf3  · Julián Tijerín4  · Paloma Ruiz‑Benito4,5  · Daniel Burgas1,2  · Kyle Eyvindson6,7  · Clemens Blattert1,2,8  · Mikko Mönkkönen1,2  · Rémi Duflot1,2 Accepted: 15 March 2023 © The Author(s) 2023 Abstract Purpose of Review Boreal forests provide a wide range of ecosystem services that are important to society. The boreal biome is experiencing the highest rates of warming on the planet and increasing demand for forest products. Here, we review how changes in climate and its associated extreme events (e.g., windstorms) are putting at risk the capacity of these forests to continue providing ecosystem services. We further analyze the role of forest management to increase forest resilience to the combined effects of climate change and extreme events. Recent Findings Enhancing forest resilience recently gained a lot of interest from theoretical perspective. Yet, it remains unclear how to translate the theoretical knowledge into practice and how to operationalize boreal forest management to maintain forest ecosystem services and functions under changing global conditions. We identify and summarize the main management approaches (natural disturbance emulation, landscape functional zoning, functional complex network, and climate-smart forestry) that can promote forest resilience. Summary We review the concept of resilience in forest sciences, how extreme events may put boreal forests at risk, and how management can alleviate or promote such risks. We found that the combined effects of increased temperatures and extreme events are having negative impacts on forests. Then, we discuss how the main management approaches could enhance forest resilience and multifunctionality (simultaneous provision of high levels of multiple ecosystem services and species habitats). Finally, we identify the complementary strengths of individual approaches and report challenges on how to implement them in practice. Keywords Adaptive management · Biodiversity · Ecological modeling · Forest management · Silviculture · Socio- economic conditions Introduction Boreal forests, representing approximately one-third of the remaining global forests [1] (Fig. 1), provide a wide range of ecosystem services that are important to human well-being [2]. Among the most relevant services are timber production (boreal forests constitute approximately 45% of the world’s stock of growing timber) [3], climate change mitigation (they store about one-third of the global terrestrial carbon) [4], regulation of water, soil and air quality, non-wood for- est products (e.g., wild berries, mushrooms, and game), and recreation opportunities [5, 6]. Boreal forests also play a key role for biodiversity conservation as they provide critical habitats for many species [2]. Such multifunctionality, i.e., simultaneous provision of high levels of multiple ecosys- tem services and species habitat, is often conflicting with intensive exploitation of timber in boreal forest landscapes (e.g., [7]). While deforestation is not a major concern in the boreal forest biome, roughly half of its area has been subjected to human industrial activity, including forest management [8]. There is a long history of timber-oriented management in boreal forests, although there are regional variations: extensive management dominates in North-eastern Canada, whereas Fennoscandia mostly experiences intensive forestry [9]. Forest management is intensifying even more due to * María Triviño m.trivinocal@gmail.com; maria.trivino@jyu.fi Extended author information available on the last page of the article Current Landscape Ecology Reports 1 3 the pressure to use forest resources for bioenergy and bio- products to meet the challenging bio-economy policy goals, which are considered as an important strategy for climate change mitigation [10]. Intensive management can result in mono-specific, even-aged forests with considerable reduc- tion of structures that are critical for biodiversity: presence of large trees, old-growth forest area, deadwood volume and quality, and proportion of deciduous trees [11–13], thus threatening forest biodiversity [14]. Forest management also plays an important role in the provision of ecosystem ser- vices [15–18]. For example, diversification of management through modifying the rotation time, frequency, and inten- sity of thinning at the landscape scale affect timber produc- tion and carbon sequestration (e.g., [19, 20]). Forests ecosystems are increasingly affected by changes in climate and its associated extreme events [21, 22]. Boreal forests are expected to experience the largest temperature rise (4–11 °C by the end of the twenty-first century) of all forest biomes [23]. On the one hand, the direct and indirect cumula- tive effects of higher temperatures and CO2 concentrations, and of shifting precipitation patterns, are boosting tree growth and productivity in boreal forests [24]. On the other hand, cli- mate change is expected to increase the frequency, extent, and intensity of extreme events (i.e., windthrows, fires, and insect outbreaks), threatening the forest capacity to provide ecosys- tem services and suitable habitat for species [22, 25]. Large- scale and severe disturbances may lead to more homogenous forests (e.g., shifting the forest composition towards younger successional stages) [26], detrimental cascading effects (e.g., large-scale wind damage followed by a bark beetle outbreak) [22], and can offset the expected increase in productivity [27]. The combined pressures and impacts caused by intensive exploitation and multiple risks associated to rapid climate change [23, 28] can lead to even less resilient forest landscapes (e.g., [29, 30]). Therefore, several alternative forest manage- ment approaches have been suggested to account for and miti- gate the increased risks of natural disturbances. Such adaptive forest management planning aims at promoting forest resil- ience and multifunctionality. Here, we first review the con- cept of resilience in forest sciences, how extreme events may put boreal forests at risk, and how management can alleviate or promote such risks. Then, we identify and summarize the existing management approaches to enhance forest resilience. Finally, we discuss the future challenges and opportunities of managing boreal forest ecosystem to promote resilience under global change. Fig. 1 Map showing the global extent of the boreal zone. Darker green represents denser forest cover (Data source: Global Land Cover Facility, Tree Canopy Cover 2010; figure reused with permission from [5]) Current Landscape Ecology Reports 1 3 Background The Concept of Resilience in Forest Sciences The concept of resilience is widely used in ecology. It has evolved considerably since the seminal article by Holling [31], leading to multiple definitions from an engineer- ing to an ecological and socio-ecological point of view (Table 1) [32]. Here, we consider forest resilience as the ability of a system to reorganize itself after an external pressure (e.g., climatic extreme event) while maintaining the same functions, structures, identity, and feedbacks [33]. The pressures could be abiotic (e.g., heat wave) or biotic (e.g., insect outbreaks), which can have synergistic effects [34••]. To understand how forests will respond to future conditions, we need to quantify the interactions between natural and human systems as key determinants of extreme events [35]. Promoting forest resilience is key to adapt to global change [36•] and is frequently men- tioned as one of the main goals of forest management and restoration [37, 38]. Forest ecosystems are intrinsically resilient to natu- ral disturbances as they determine the natural succession dynamics of forests. Natural disturbances are key to pro- vide habitat (for early-stage species) and resources (e.g., deadwood), and they are followed by a re-organization phase that allows species colonization (recruitment of new species) and succession [41]. Moreover, large-scale disturbances can provide opportunities to quickly restore some of the resources lost from intensive forestry or even restore habitat types that are currently threatened (e.g., amount of deadwood) [11]. However, the changing distur- bance regime (in terms of frequency, severity, and extent) in comparison to their historical occurrence range [42] might endanger the ecosystem’s capacity to recover and the ecosystem might collapse [43]. How Extreme Events May Put Boreal Forests at Risk? Climate change is associated to more severe extreme events, such as longer periods with low precipitation and high tem- peratures, which could result in widespread reduction in productivity and increase tree mortality (e.g., [44]). There are numerous studies pointing out the positive and negative ecological responses of boreal forests due to climate change and its associated extreme events (e.g., [45–48]). On the one hand, warmer temperatures can prolong growing seasons, and increased atmospheric CO2 can improve soil fertiliza- tion, ultimately increasing forest biomass [49]. On the other hand, extreme events occurring in boreal forests can lead to decreased biomass, such as windstorms [50], insect out- breaks [51], fires [52], recurrent heat waves [46], and severe and/or sequential droughts [53] (Fig. 2). Therefore, climate change can affect tree species productivity and demographic processes such as growth, mortality, and regeneration (e.g., [54]) which can lead to changes in forest composition and structure (e.g., [55]) that determine forest resilience (Fig. 2). The effects of warmer temperatures on boreal forest produc- tivity are not evenly positive; they benefit forest growth in north- ern and wetter boreal regions [56] while mostly reduce forest productivity in southern and drier boreal areas [22]. For exam- ple, the heat waves in western Siberia in 2012 and in northern central Siberia in 2013 may have substantially decreased forest productivity in Russian boreal forests because of higher tem- peratures and greater water stress [57]. Water stress caused by droughts is one of the main drivers of large-scale tree mortality and, therefore, will impact the carbon cycle in the boreal region [58]. Indeed, there is evidence of forest dieback in boreal forest in relation with severe drought events (e.g., [58–60]). Warmer temperatures have also been associated to changes in insect outbreak regimes, both directly (e.g., new species coming from temperate zone and expanding into the boreal biome) and indirectly (e.g., increasing their capacity to spread Table 1 Definition and characteristics of the three most common and frequently used resilience definitions in forest sciences (see [36•, 39•]) Engineering Ecological Socio-ecological Brief definition Return to a single equilibrium state after a recovery time period Maintenance of the main functions, services, and structures, potentially as an alternative state Maintenance of functions, services, and structures and the adaptive capacity of a coupled human-natural system Equilibrium state Single Multiple Multiple Temporal extent Short From years to centuries From years to centuries Spatial extent Short Diverse range Diverse range Examples of indicators Basal area increment Vegetation cover Species composition Biomass Primary production Nutrient cycle Regeneration Mortality Socio-economic diversity Biodiversity Stocks of natural resources Ecosystem services Key reference Pimm [40] Holling [31] Walker et al. [33] Current Landscape Ecology Reports 1 3 because of weakened trees after a storm) [22]. Chen et al. [51] observed that warmer early spring temperature rather than droughts could promote insect outbreaks, suggesting continued warming springs may worsen growth decline and dieback events in North American boreal forests. Trân et al. [61] showed that the most relevant climatic driver controlling the population of bark beetle was low temperatures during the coldest part of the winter. With the right environmental con- ditions, bark beetle numbers can swiftly increase as warmer temperatures enable them to reproduce faster and produce two generations per year instead of one as currently [62]. In addition to the above-mentioned risks, large wild- fires in western North America have increased in recent years, a tendency that climate change is likely to aggravate [52, 63–65]. To meet this challenge, long-term adaption approaches to mitigate wildfire risk are needed, especially in areas with high fire risk. Techniques to mitigate wildfire risk include adaptive silvicultural approaches [66], wild- fire responses [67], or proactive controlled burning [68]. This change in wildfire risk may be different across boreal zones, as Drobyshev et al. [69] found that while fire hazard in spring increased in parts of North-West Russia, this trend did not seem to be reflected in European boreal forests. It is important to have a holistic view and consider jointly different disturbance types because they can accumulate over time and space. For instance, drought affects more strongly post-fire young forests than mature forests in Siberia, delaying their recovery [70]. As a result, very large areas of the boreal forests may experience at least one type of natural disturbance in the future (e.g., in Canada [30]). Inadequate management and lack of preventive mitigation actions may worsen the accumulated pressures and lead to widespread regeneration failure and changes in ecosystem state and dynamics [43, 71]. For example, more frequent fires can lead to post-fire recruit- ment failure and forest loss [72–74]. In particular, a lack of anticipation in increased natural disturbances may lead to overharvesting [29, 75], which in combination with increased natural disturbance pressures may generate “landscape traps” and possibly ecosystem collapse [43, 76]. Due to natural dis- turbances such as fire and insect outbreaks are spatial pro- cesses (contagions), landscape homogenization and impaired ecological functions caused by human and natural distur- bances may lead to feedback loops and cascading effects that further increase disturbance risks [76]. How Can Management Practices Alleviate Risks or Make Them More Severe in Boreal Forests? Forest management can alleviate or increase risks and pro- mote the resilience of forests stands to maintain the provi- sion of ecosystem services and biodiversity. Forest prac- tices can be split into management aiming at achieving long-term adaptation (i.e., anticipating disturbances) and short-term adaptation (i.e., recovering from disturbances). Fig. 2 Conceptual figure summarizing the interactions between changes in climate and extreme events, determining demographic processes, forest communities, and ecosystem services. We added an example of how the Triad functional zoning approach can help to enhance forest resilience Current Landscape Ecology Reports 1 3 Long‑Term Adaptation: Anticipating Disturbances Long-term adaptation involves promoting stand resilience before disturbances occur while maintaining main forest ecosystem functions and services. The main management actions to increase long-term adaptation are increasing species compositional, functional, and structural diversity (i.e., tree age, size, height) [77]. Compared to monospe- cific forests, forests with more tree species increase mul- tifunctionality (i.e., simultaneous provision of high levels of multiple ecosystem services and species habitats) [78], can be more productive [79], and are resistant to many natural disturbances and climate change [80]. For example, inclusion of birch trees within pure Norway spruce forests stands can reduce the volatile attractive to bark beetles and reduce the risks of bark beetle outbreaks [81]. Ikonen et al. [82] showed that planting Scots pine or birch after a clear- cut, rather than Norway spruce, reduced the probability of wind damage because lower wind speed is required to dam- age spruce compared with pine or birch of the same size. Delaying or excluding thinnings can promote carbon stor- age (e.g., [19, 20]) and formation of deadwood [83], which is a key resource for many endangered species [84]. Asyn- chrony of final harvests over time and space can limit the spa- tial aggregation of the clear cuts and reduce newly exposed edges that are the most susceptible to wind damage [85]. Increasing share of uneven-aged forestry over the landscape can increase multifunctionality [7, 86, 87] while reducing overall wind damage in case of windthrows [88, 89]. Long-term adaptation also requires proactive approaches to reduce fire risk, which is one of the most important natu- ral disturbances in the boreal region and which is expected to increase strongly because of climate change [73, 90]. The main strategies to reduce fire risk include modifying the vegetation composition [91], reducing the fuel avail- able to burn by harvesting the forest [92], or promoting the use of fire-resistant species [93]. Even tree species well- adapted to fire risks may suffer from increased frequency and severity of fires. The retention of coniferous trees during harvest can ensure that a sufficient seed bank is available to regenerate a stand adequately if it burns before the post-harvest new cohort reaches reproductive maturity, thereby increasing stand resilience to fire and avoiding the need for reforestation [71]. Short‑Term Adaptation: Recovering from Disturbances Salvage logging (i.e., removal of damaged trees) is a com- mon management practice used after a disturbance to miti- gate economic losses. However, wide-scale application of salvage logging can be detrimental for ecosystem services and biodiversity and can act as a second disturbance for some ecosystem processes (e.g., carbon sequestration, accelerated soil drying) [94, 95]. Salvage logging may even increase future risks, e.g., fire risk, if a large amount of dry wood debris is left on site [73]. In addition, the use of salvage logging as a mean to prevent bark beetle outbreaks has been shown to be rather ineffective under climate change [81, 96, 97]. Salvage logging has higher harvest- ing and logging costs compared to undisturbed stand [98], especially in areas with low accessibility [81], and cannot fully compensate for timber losses [75]. Therefore, we sug- gest considering carefully salvage logging at large spatial extents after disturbances, focusing on social and ecologi- cal objectives in addition to economic priorities. Post-disturbance treatments have also a strong influence on forest regeneration, which is a crucial aspect of recov- ery and represent opportunities to develop future resilience capacity. Salvage logging affects the regeneration process by removal of mature tree and their aerial seed banks, increased soil drying, and mechanical damages to saplings [94]. As a consequence, it modifies and homogenizes spe- cies composition (e.g., promoting trees with vegetative re- growth) and may increase the risks of regeneration failure. Post-disturbance reforestation may be used to boost forest recovery and prevent regeneration failure after intense or repeated disturbances, using tree species that are better adapted to fire, drought, insect outbreaks, or wind damages [71]. Post-disturbance tree planting may also be an opportu- nity for assisted migration to introduce new tree species or genetic variants that are adapted to expected future condi- tions or that will increase functional diversity [34••, 77, 99]. To enable coherent decisions, we suggest setting long- and short-term management objectives to ensure the main- tenance of forest ecosystems services and biodiversity. Achieving a high adaptation to climate change will require accounting for disturbances into the long-term forest plan- ning and increase social resilience of the local forestry sec- tors and forest economics [34••, 77, 99, 100••]. Not con- sidering impacts from disturbances when planning will lead to an optimistic expectation for economies revenues [71, 101], leading to further imbalances when managing forests for both economic and ecological objectives. In addition, the occurrence of disturbance events is unpredictable and often requires quick actions. Therefore, it is crucial to have appropriate forest policies and short-term adaptation strate- gies on how to deal with them (e.g., [11]). Management Approaches to Enhance Resilience in Boreal Forest Landscapes The main approaches proposed to manage boreal forests at the landscape level range from natural forest emula- tion and functional zoning to functional network and cli- mate-smart forestry (Table 2). While we recognize that the original goals of these management approaches were Current Landscape Ecology Reports 1 3 Ta bl e 2 C om pa ris on of th e b as ic pr op er tie s o f t he m ain fo re st m an ag em en t a pp ro ac he s i n t he bo re al zo ne Na tu ra l d ist ur ba nc e e m ul at ion La nd sc ap e f un cti on al zo ni ng Fu nc tio na l c om pl ex n etw or k Cl im at e-s m ar t f or es try M ain co nc ep t Re pr od uc e t he st ru ctu ral va rie ty of na tur al fo res ts th ro ug h m an ag em en t t o en ha nc e b iod ive rsi ty an d e co sy ste m fu nc tio nin g Co m bi ne in ten siv e a nd ex ten siv e m an ag em en t, an d f or es t r es er ve s t o in cr ea se la nd sc ap e m ul tif un cti on ali ty Pr om ote tr ee sp ec ies fu nc tio na l d ive rsi ty thr ou gh st an d- lev el en ric hm en t a nd lan ds ca pe co nn ec tiv ity to en ha nc e fo res t a da pti ve ca pa cit y Th e m ain fo cu s i s o n c lim ate ch an ge m iti ga tio n b y i nc re as in g c ar bo n se qu es tra tio n a nd st or ag e b y t re es an d wo od pr od uc ts Co ns id er ati on of di stu rb an ce s Di stu rb an ce re gi m es ar e u se d a s a re fer en ce to gu id e m an ag em en t; ex tre m e e ve nt s a re no t e xp lic itl y in clu de d Ca n b e u se d t o d ete rm in e t he pr op or tio n o f e xt en siv e, in ten siv e, an d p ro tec ted ar ea s Di stu rb an ce s c an be m iti ga ted an d re co ve re d t hr ou gh tr ee sp ec ies fu nc tio na l d ive rsi ty Im pr ov e r es ili en ce of fo re sts to di stu rb an ce an d f oc us in g o n b io m as s pr od uc tio n i n a re as su bj ec t t o a hi gh ris k a nd qu ali ty w oo d p ro du cti on in ar ea s w ith lo w ris ks Ec os ys tem se rv ice s A se m i-n atu ra l s tat e o f t he fo re st m ain tai ns ec ol og ica l p ro ce ss es an d its as so cia ted se rv ice s Co nfl ict in g e co sy ste m se rv ice s c an be pr ov id ed at th e l an ds ca pe le ve l Re sil ien t f or es t e co sy ste m s c an m ain tai n t he ir fu nc tio ns un de r un pr ed ict ab le ev en t Us in g w oo d r es ou rc es fo r c lim ate ch an ge m iti ga tio n i n c om bi na tio n wi th en ha nc in g o th er fo re st ec os ys tem se rv ice s Ad ap tat io n t o c lim ate ch an ge Di stu rb an ce s a re op po rtu ni tie s f or ec os ys tem re or ga ni za tio n a nd ad ap tat io n A div ers ity of ex ten siv e m an ag em en t an d t ree sp ec ies di ve rsi ty in pla nta tio ns off ers op po rtu nit ies fo r a da pta tio n/w ill be m or e r es ili en t Fo re sts ar e c on sid er ed as co m pl ex se lf- or ga ni zin g s ys tem s, co nd iti on al on st ru ctu ra l a nd fu nc tio na l d ive rsi ty En ha nc in g h ea lth an d r es ili en ce of fo re st by ad ap tiv e f or es t m an ag em en t Re gi on s m os tly us ed Fe nn os ca nd ia (A SI O m od el) Ca na da (E BF M ap pr oa ch ) No rth A m er ica (T ria d a pp ro ac h) Ca na da Eu ro pe Ke y r efe re nc e Be rg lu nd an d K uu lu va in en [1 06 •• ] Ga ut hi er et  al . [ 10 7] Hi m es et  al . [ 11 3• • ] M es sie r e t a l. [3 4• • ] Bo wd itc h e t a l. [1 08 •• ] Current Landscape Ecology Reports 1 3 not necessarily to promote forest resilience, we antici- pated these approaches would improve forest resilience and ecosystem services. Although all these approaches have attracted a lot of interest in the last decades, most of them remain largely theoretical as they have been mainly assessed using simulations. There are few exceptions to this; for example, the Triad approach has been applied in some forest landscapes in Canada [102], and it will be also tested at the Elliott State Forest (32,000 hectare) in south- western Oregon constituting the largest forest study in the USA [103]. Another exception is the ecosystem-based for- est management (an example of the natural disturbance emulation) that is applied on all public forests in Quebec (i.e., about 92% of the 905, 800 km2 of Quebec forests) [104]. In this section, we shortly summarize the practical and conceptual foundations of each of the approaches and critical points towards the boreal forest resilience. We acknowledge that adapting forest management to climate change and enhancing forests resilience is a fast growing field of research and we do not exhaustively cover all existing frameworks. A couple of relevant examples not explicitly included within the discussed manage- ment approaches are the framework by Nagel et al. [105] and Nikinmaa et al. [99]. On the one hand, Nagel et al.’s framework includes no action, resistance, resilience, and transition strategies; the resistance are similar to mitiga- tion actions, while the resilience and transition strategies can be considered adaptation actions [105]. On the other hand, Nikinmaa et al. propose a framework which includes a participatory process with stakeholders as an important step towards operationalizing social-ecological resilience of forests [99]. Natural Disturbance Emulation The natural disturbance emulation approach postulates that forest management should aim at reproducing the structure of natural forest, i.e., resulting from natural disturbances, to maintain and restore forest ecological conditions [41, 100••, 109]. The approach is based on the hypothesis that mimicking natural tree mortality patterns at multiple scales will recreate forest structures that support biodi- versity and ecosystem functioning and thus ecosystem services. A diversity of management actions is needed to reproduce the natural range of habitat variation and is expected to maintain various forest services, such as car- bon sequestration and recreation. An example of this approach is the ASIO model (acronym from the “Absent, Seldom, Infrequent, and Often” typical fire regimes), a guide for forest managers initially created in the 1990s and updated as knowledge of the forest system develops. ASIO aims to explain how the combination of natural fire frequency and gap dynamics affect the structure of European boreal forests, assuming that site type is the main determinant of natural disturbance dynamics [110]. The resulting management model may be easily implemented at the stand level and scaled up to landscape or regional levels [106••]. Based on known disturbance frequencies and site type distributions, Berglund and Kuuluvainen [106••] estimated the proportion of forest dynamic types and forest age classes in Fennoscandian forest landscapes, which should serve as guideline for application of manage- ment strategies locally (using a combination of even- and uneven-aged forestry). Using the natural disturbance emula- tion guidelines emphasized a lack of young deadwood-rich and old forests in commercial Fennoscandian and North American landscapes, as compared to the expected level in landscapes without human operations [9]. This implies that the timing of harvests and the post-harvest legacies (live or dead trees) are important besides the management style (even- vs uneven-aged forestry) [100••]. Originally the natural disturbance emulation approach did not explicitly refer to climate change adaptation or extreme disturbance events. However, the ecosystem-based forest management (EBFM), which represents another example of this approach [111], can help to enhance forest resil- ience under climate change conditions [112]. Moreover, in response to the criticism that current natural forest references may depart from the future state under climate change, it has been argued that the creation of landscapes with complex and heterogeneous habitats would increase the resilience and adaptive capacity for forest ecosystems [100••]. Indeed, pro- moting native biodiversity (including functional diversity) and post-disturbance legacies (e.g., canopy openings and deadwood) should support ecosystem self-reorganization and maintain key ecological functions. The natural distur- bance emulation approach could also account for increased extreme events in the management plan by considering that young successional stage will be generated by such events, while the conservation of late successional stages might be prioritized (e.g., [29]). Landscape Functional Zoning The landscape functional zoning management approach emphasizes the need to mitigate the potential conflicts between multiple socio-ecological objectives (timber pro- duction, biodiversity conservation, and non-wood ecosystem services) by allocating specific priorities to selected forest area that are managed to achieve them, thus, enhancing land- scape multifunctionality [113••]. The main example of this approach is the Triad model, which refers to management at the landscape level composed of three zones: (1) intensive management focusing on timber production, (2) protected areas (i.e., reserves) aiming at biodiversity conservation, and Current Landscape Ecology Reports 1 3 (3) a matrix of forests extensively managed for multiple pur- poses [34••, 114]. The rationale behind the Triad approach is that extensive (ecological) forest management cannot fully replicate the forest structure of natural forest, and, therefore, some unmanaged “natural” forests is required to safeguard overall biodiversity. In addition, the introduction of inten- sive, highly productive plantations can be used to satisfy timber demand, allowing for larger areas to be protected. The landscape functional zoning approach can be seen as a combination of land sparing and land sharing; however, the relative benefits of each management zone is likely variable across regions [115]. In that sense, the Triad approach is flex- ible in terms of the proportions of the landscape allocated to each zone and may adapt to local historical and ecological conditions and to the priorities and preferences of forest own- ers and stakeholders. For example, in a Canadian landscape, Côté et al. [116] found that the Triad scenario with 12% forest reserve and 60–74% extensive management outperformed the status quo and a governmental plan in terms of biodiversity outcomes, without losses in harvesting volumes. The Triad approach acknowledges the need to consider the uncertainty associated to climate change in each of the forest management zones. First, extensive management in forest reserves might be needed to promote forests adapta- tion to new conditions, e.g., facilitate migration of tree spe- cies or prevent insect outbreaks [113••]. From this perspec- tive, no action might lead to ecosystem collapse and shift to undesirable state [43]. Second, multi-species plantations should be preferred over monocultures to ensure long-term adaptability and productivity [77]. Such more structurally complex and intensively managed forest could also pro- vide ecosystem services to some extent. Third, Himes et al. [113••] highlight the value of management diversification in the extensive zone for testing novel management practices, as well as reducing overall risks, i.e., structural diversifica- tion of management across the landscape should support more adaptive and resilient forest systems. Functional Complex Network The functional complex network approach is based on stand- level functional and structural diversity and landscape-level connectivity as key forest characteristics for resilience towards climate change and extreme events [34••, 117•]. This approach acknowledges uncertainties and the neces- sity to manage forest as complex adaptive systems, capable of self-(re)organizing, e.g., through natural regeneration. Following the principles of the insurance hypothesis from functional ecology, tree species functional diversity and redundancy are expected to promote forest adaptive capacity and maintain forest functions, hence supporting resilience. However, high tree species richness does not always corre- late with high functional diversity, which can compromise resilience [118]. The second essential aspect of the method is to develop landscape connectivity to facilitate seed dis- persal and migration of tree species, which would support functional diversification (potentially even using assisted migration) [117•]. The objective of the functional complex network is to favor or plant tree species to maximize stand-level func- tional diversity or to add specific functional traits known to enhance resilience towards predictable stressors (e.g., drought) [34••, 119]. In practice these actions may include planting tree species from rare functional groups or harvest- ing tree species from predominant functional groups [118]. Emphasis is also put on the spatial organization of man- agement as these interventions are meant to be strategically located in the landscape to increase their long-term impact at the landscape level [117•]. Spatial habitat network analyses should be used to identify forest stands with high central- ity, i.e., stands that can potentially lead to high dispersal of implemented trees and functional traits. Such targeted func- tional enrichment is expected to ensure rapid colonization and self-reorganization of disturbed stands, swift regrowth of diverse tree communities, and thereby, increase long-term forest resilience [34••, 117•, 119]. The functional complex network can be used to evaluate the current state of forests and test the potential outcomes of new management practices or management scenarios by combining simulation models of forest growth, management, and disturbances. Specifically, Aquilué et al. [119] found that enrichment of less functionally diverse forest patches effectively increased functional diversity and connectivity and resulted in forest landscapes more resistant to drought and insect outbreaks. In addition, Mina et al. [117•] found that the functional complex network analyses allow creating forest landscape that tolerate better insect outbreaks and maintain productivity and carbon storage, as compared to business-as-usual management or climate adaptation man- agement (i.e., without spatial prioritization of functional diversification actions). The functional complex network is quite a recent approach. It builds on the widespread concept of green infrastructure, which aims at the spatial planning of interconnected networks of habitats to support biodiversity and ecosystem services. For example, Andersson et al. [120] applied this framework to the network of old forest types in Sweden and the provision of recreational services to map and prioritize forest conserva- tion and forestry operation. Climate‑smart Forestry Climate-smart forestry is an emerging branch of sustain- able forest management. The overall objective is to man- age forests in response to climate change by promoting for- est growth, increasing carbon sequestration, and reducing Current Landscape Ecology Reports 1 3 carbon emissions from non-renewable resources [1, 108••]. The climate-smart forestry approach uses adaptive manage- ment to increase the forests’ resilience to a range of climate change scenarios and climate-induced disturbances. The mitigation of climate change by forests can be achieved by enhancing carbon sequestration by trees, carbon storage in wood products, and carbon substitution (i.e., by replacing fossil fuels with bioenergy and by using wood to substitute for higher carbon footprint materials) [121]. The speed and efficiency of these processes depend on the environmental conditions affecting tree growth (e.g., climate, soil type), the type of forests (e.g., species composition and structure), and forest management regimes [122]. Even if initially the main aim of climate-smart for- estry was the mitigation of climate change, this approach has evolved to include adaptation measures and the social dimension of forestry. The adaptive capacity of the forests can be improved by promoting compositional, structural, genetic, and functional diversity at both stand and landscape levels. This consists of benefiting from natural regeneration, increase connectivity to assist migration of forest species and planting tree species, and genetic variants that are better adapted to warmer and drier conditions as well as to extreme events [108••]. Timber harvesting conflicts with carbon sequestration and may cause the release of CO2 to the atmosphere from disturbed soil [123]. Therefore, the most suitable timber har- vesting practice for climate-smart forestry is uneven-aged management, avoiding clear-cut areas in the forest stand. This selective system of timber harvesting, if done properly and repeatedly, results in the forest with a diverse canopy structure, high age diversity, and good potential for self- restoration. Thus, climate-smart forestry promotes mixed species forest stands or a mosaic of forest stands with a diversity of structures and species [124]. Future Challenges and Opportunities Integration of the Different Approaches into Ecological and Resilient Forest Management The main management approaches presented above (Table 2) share aims and have many elements in common. For example, the landscape functional zoning can incor- porate many different management styles aiming at bal- ancing ecological and social objectives, including some practices inspired from natural disturbance emulation and from climate smart forestry [113••]. In addition, the natural disturbance emulation and the landscape functional zon- ing approach can both be seen as a combination of land sparing and land sharing, where different management intensities are used across the landscape to create different forest structures and meet multiple objectives [100••, 115]. Another common feature to all approaches is management diversification and functional diversity which are needed to create structural variation in the landscapes and enhance forest resilience and multifunctionality [7, 18, 125]. Thus, we argue that the complementary strengths from all these approaches need to be integrated to develop complete and flexible forest guidelines for the Anthropocene. However, we are still missing a way to integrate them at an appropri- ate scale, where a combination of approaches could be opti- mized to enhance multifunctionality, while at the same time dealing with uncertainty and increasing or maintaining for- est resilience to global change [34••]. Another challenge is to make adequate stand-level decisions from a potentially very large portfolio of management options while account- ing for landscape-level objectives and processes. Even if the discussed management approaches provide some general guidelines, there is a need to account for the regional differences when applying these approaches. For example, the main climate-induced disturbances differ across regions; while recent large wildfires have mostly affected forests in Siberia and Canada (e.g., [73, 126]), severe windstorms, heavy snow loading, and insect out- breaks have caused major forest damages in Fennoscandia [22, 127, 128]. Spatial configuration such as a landscape connectivity also plays an important role. Tree species could be able to track climate change in well-connected regions [129] whereas assisted migration might be needed in more isolated regions (e.g., Fennoscandia) or for species with poor dispersal abilities [130]. Thus, different regions will require different adaptation and mitigation strategies according to their specific risks, spatial, and ownership characteristics. All the management approaches discussed above can be combined with multi-objective optimization [131], which provides a flexible approach to produce and com- pare the outcomes of individual management scenarios that consider different objectives and constraints. In addi- tion, multi-objective optimization could be used to iden- tify the optimal combination of management regimes for enhancing forest multifunctionality and resilience under global change. Through a simulation and multi-objective optimization framework, Pohjanmies et al. [132] assessed the resilience of boreal forests after intensive harvests. They found that forest multifunctionality was substan- tially decreased under intensive forest management and that forest multifunctionality was not resilient to inten- sive forestry. The justification is that the forest recov- ers slower when intensive forestry is applied for a longer time. Another example for improving long-term manage- ment planning was shown by Blattert et al. [86] who com- bined multi-objective optimization with forest governance research and provide novel insights into the design of Finnish forest management. Authors designed scenarios Current Landscape Ecology Reports 1 3 to study the effects of forest policies on forest manage- ment and the resulting trade-offs among forest ecosystem services. All scenarios suggested major changes in cur- rent boreal forest management compared with the cur- rent practices to meet the policy demands for ecosystem services. Their outcomes provide leverage points for bet- ter integration of multiple ecosystem services in future policies to overcome socio-ecological land-use conflicts in forests. The full integration of the multi-objective opti- mization and spatial prioritization requirement currently still faces computational and methodological challenges (but see [133, 134]). The importance of spatial organiza- tion and habitat connectivity are emphasized in both the Triad and the functional complex network approaches, as a means to maintain biodiversity and ecosystem services and facilitate the dispersion of tree species and their func- tional traits [34••, 113••]. Implementation: Planning and Just Governance Forest management planning requires clearly defined objec- tives to allow for its practical implementation. Yet, identifi- cation of the reference conditions (defining the natural state and typical disturbance regime) can be challenging due to lacking natural reference system, unknown historical distur- bance regimes, or inability to distinguish between human- made and natural disturbances due to long-term co-evolution [100••]. To overcome those challenges, we need, firstly, to apply adaptive and flexible management guidelines that take natural disturbance regimes into account. This includes more realistic harvest prospects that account for the inevitable tim- ber losses due to increased natural disturbances [43, 75]. The desired variation in forest structure across the landscape can be obtained by using variable cutting patterns which can be performed with existing sophisticated machinery [100••]. Secondly, the implementation of management plans criti- cally needs to shift from stand- or small-scale to landscape- level management planning to better address conflicting objectives [135]. Lastly, we need to improve the framework for an efficient implementation of advanced computational methods such as multi-objective optimization to evaluate complex outcomes of different management scenarios [136]. The implementation of novel managements requires fair governance structures and mechanisms to direct the deci- sions [137]. Regulative, financial, and informational instru- ments that limit transition towards more resilient forest sys- tems need to be updated. Forest policies have been often biased towards specific sector interests or views, bringing upon increasingly heated debates [138]. For instance, une- ven-aged forestry was forbidden for decades in some north European countries [138], or official management recom- mendations have been biased towards specific practices [139]. These governance instruments affect societal norms that are now challenging to shift swiftly. Inclusive and bal- anced discussions with stakeholders with transparency on the consequences of management options is essential, not only for more democratic processes but also to better engage stakeholders into novel practices. It is important that land- owners agree on the new management goals and that the management actions are logistically and economically feasi- ble [34••]. Forest ownership varies quite much among coun- tries: about 90% of forests are publicly owned in Canada [140], whereas in Finland, private individuals govern 60% of forest land [141]. Thus, private forest owner preferences can dictate to which extent a change in forest management paradigm is achievable. However, it can be challenging to coordinate forest management with multiple forest owners with different backgrounds and objectives. Facilitation of coordinated action towards novel conditions and stronger resilience require holistic planning of training and incentive schemes to effectively improve the capacity of stakeholders. Moreover, the boreal region hosts a great diversity of local and Indigenous communities that depend on forest ecosystem services for their well-being and cultural integ- rity [142]. With this, local and Indigenous communities have culturally embedded multifunctional use of forests; for instance, in northern Fennoscandia, Sami reindeer herders have been using for centuries forests for collectable goods, timber resources, and foraging for reindeer. Traditional knowledge of alternative values of forests and their resil- ience can provide invaluable insights [143]. The involvement of local and Indigenous communities in forest governance have increased since the 1980s, but they are still facing chal- lenges to have a real influence of forest-related decisions and to get tangible benefits from timber harvesting [144]. Inclusion of participatory processes influencing forest management is becoming more commonly established, such as co-designing mitigation actions with stakeholders [99]. For instance, several EU directives, national policies, and forest certification schemes (e.g., FSC, PEFC) require consultation of stakeholders when defining objectives and actions [145, 146]. Nonetheless, how participation is inte- grated into final decisions and whether power structures between stakeholders have been taken into account is yet far from transparent [145]. Only when all players in the socio-ecological system are properly acknowledged and their views and values are integrated into management decisions will forestry be able to keep the “license” to operate in the long run [34••]. Lack of Empirical Evidence and Tools to Monitor Resilience We currently identify two main limiting factors to evaluate the discussed management approaches from the practical and methodological perspectives. There is a general lack of Current Landscape Ecology Reports 1 3 experimental settings to monitor and test how efficient are the different approaches to achieve their main goals due to long- term development of forest ecosystems. The large-scale experi- mental case study for the “Triad” approach, recently proposed for the Elliott State Forest in Oregon (USA) [103] will provide one of the first empirical evidence of implementing landscape functional zoning into practice. The research site will be split into sub-watershed areas with each sub-watershed applying a specific combination of intensive reserves and multi-use for- ests with a replicated design. A common objective is to obtain an equal supply of timber from sub watersheds under different management plans. Yet long-term observation and evaluation of this practice is needed to fully understand the opportunities and limitations of the Triad approach. There have been several efforts in monitoring the effects of climate change on forests such as the Adaptive Silvicul- ture for Climate Change (ASCC) project in USA which established long-term research sites across the country to assess a range of adaptation management regimes [105]. Moreover, data from National Forest Inventories could be used to assess the effects of climate change (e.g., [49, 147]). However, we still need more guidance and good indicators to develop and implement long-term monitoring and evaluation schemes of forest resilience [36•]. There is high uncertainty and limited ability to predict future forest responses to global change mainly due to the unknown future socio-economic path of humans and the complex interactions among differ- ent pressures. Thus, the best strategy to deal with an uncer- tain future is to combine different approaches for different situations and consider management practices such as assist- ing species migration, increasing landscape connectivity, or species composition and genetic diversity [148]. Moreover, there is a need to incorporate stochastic variability in the projections of forest planning models to deal with uncertain future ecosystem conditions [149]. For forest managers to be able to adapt to uncertainty, decision support tools should identify actionable management options to reduce risk. This requires understanding of what sources of uncertainty are important to the forest managers and the options available to mitigate the risk [150]. Finally, in addition to prioritizing management according to specific guidelines, systematic monitoring of conservation objectives is essential. To ensure consistent and sustainable timber resources, foresters have established long-term national-level monitoring (i.e. [151]). Similar intensive long-term data collection and monitoring approaches should ensure environmental sustainability. Even with increased data collection, special attention should be made to avoid quantitative fallacies [152], by acknowledg- ing the importance of environmental issues that may not be easily measured. Evaluating the long-term impact of environmental change and potential adaptations could be addressed with the help of simulation models, which have become pivotal tools in forest resilience research [39•]. Conclusions The negative effects of climate change on boreal forest ecosystems are increasing over time due to the combined effects of increased warming and extreme events. Recent new approaches to forest management can prepare the boreal for- est to mitigate the impacts and uncertainties of global change. The reviewed management approaches share common aims and practical elements, all highlighting the need for manage- ment diversification, increase structural and functional diver- sity, and a reduction of human pressures. Landscape plan- ning, i.e., careful spatial organization of management actions, is also considered as one of the key elements to increase the adaptive capacity and resilience of boreal forests. How- ever, specific practical guidelines and anticipation of future changes are crucial to implement short- and long-term social- ecological adaptations. Adaptive boreal forest management requires clear objectives and inclusive debate across forest stakeholders to develop shared, acceptable, and flexible solu- tions that go beyond prioritizing economic objectives, to the benefit of social and environmental objectives. Author Contributions All authors conceived the research ideas. M.T. led the writing and revising of the manuscript. M.T. and R.D. wrote the main manuscript text. M.P., J.T., P.R.B., and D.B. wrote specific sections of the manuscript text. P.R.B. and M.T. prepared the Fig. 2. All authors reviewed the manuscript. Funding Open Access funding provided by University of Jyväskylä (JYU). M.T. and R.D. were supported by the Kone Foundation (appli- cation 201710545 and 202105759). M.P. was funded by the Bavarian State Ministry of the Environment and Consumer Protection. M.M., D.B., and C.B. were supported by the MultiForest project, which was funded under the umbrella of the ERA-NET Cofund ForestValue by the Academy of Finland (326321). K.E. was supported partly by the Nor- wegian Research Council (NFR project 302701 Climate Smart Forestry Norway) and by the Academy of Finland Flagship UNITE (337653). P.R.B. and J.T. were supported by the Community of Madrid Region under the framework of the multi-year agreement with the University of Alcalá (Stimulus to Excellence for Permanent University Profes- sors, EPU-INV/2020/010) and the Science and Innovation Ministry (subproject LARGE, Nº PID2021-123675OB-C41). Compliance with Ethical Standards Conflict of Interest Any author has no conflicts of interests to declare. Human and Animal Rights and Informed Consent This article contains no studies with human or animal subjects performed by the authors. Open Access This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will Current Landscape Ecology Reports 1 3 need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. References Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance 1. Hansen MC, Stehman SV, Potapov PV. Quantification of global gross forest cover loss. Proc Natl Acad Sci USA. 2010;107:8650–5. 2. Brockerhoff EG, Barbaro L, Castagneyrol B, et al. Forest biodi- versity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv. 2017;26:3005–35. 3. Gerasimov Y, Hetemäki L, Jonsson R, et al. Making boreal for- ests work for people and nature. IUFRO’s Special Project on World Forests, Society and Environment; 2012. 4. Pan Y, Birdsey RA, Fang J, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–93. 5. Mönkkönen M, Burgas D, Eyvindson K, Le Tortorec E, Peura M, Pohjanmies T, et al. Solving conflicts among conservation, economic, and social objectives in boreal production forest landscapes: Fennoscandian perspectives. In: Perera A, editor. Ecosystem services from forest landscapes: broadscale consid- erations. Springer; 2018. p. 169–219. 6. Saastamoinen O, Matero J, Haltia E, Horne P, Kellomäki S, Kniivilä M, et al. Concepts and considerations for the synthesis of ecosystem goods and services in Finland. 2013. Publications of the University of Eastern Finland. Reports and Studies in Forestry and Natural Sciences. No 10. 108 s. 7. Eyvindson K, Duflot R, Triviño M, Blattert C, Potterf M, Mönkkönen M. High boreal forest multifunctionality requires continuous cover forestry as a dominant management. Land Use Policy. 2021;100:104918. 8. Potapov P, Hansen MC, Stehman SV, Loveland TR, Pittman K. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sens Environ. 2008;112:3708–19. 9. Kuuluvainen T, Gauthier S. Young and old forest in the boreal: critical stages of ecosystem dynamics and management under global change. Forest Ecosystems. 2018;5:26. 10. Hetemäki L, Hanewinkel M, Muys B, Ollikainen M, Palahí M, Trasobares A. Leading the way to a European circular bioec- onomy strategy. From Science to Policy. 2017;5:52. 11. Mönkkönen M, Aakala T, Blattert C, Burgas D, Duflot R, Eyvindson K, et al. More wood but less biodiversity in forests in Finland: a historical evaluation. Memo Soc Fauna Flora Fenn. 2022;98:1–11. 12. Siitonen J. Forest management, coarse woody debris and sap- roxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull. 2001;49:11–41. 13. Vanha-Majamaa I, Lilja S, Ryömä R, Kotiaho JS, Laaka-Lindberg S, Lindberg H, et al. Rehabilitating boreal forest structure and spe- cies composition in Finland through logging, dead wood creation and fire: the EVO experiment. For Ecol Manage. 2007;250:77–88. 14. Hyvärinen E, Juslén A, Kemppainen E, Uddström A, Liukko U-M. The 2019 red list of Finnish species. Ympäristöministeriö & Suomen ympäristökeskus; 2019. 15. Eyvindson K, Repo A, Mönkkönen M. Mitigating forest bio- diversity and ecosystem service losses in the era of bio-based economy. Forest Policy Econ. 2018;92:119–27. 16. Pukkala T. Which type of forest management provides most eco- system services? Forest Ecosystems. 2016;3:9. 17. Schwenk WS, Donovan TM, Keeton WS, Nunery JS. Carbon storage, timber production, and biodiversity: comparing ecosys- tem services with multi-criteria decision analysis. Ecol Appl. 2012;22:1612–27. 18. Triviño M, Pohjanmies T, Mazziotta A, Juutinen A, Podkopaev D, Le Tortorec E, et al. Optimizing management to enhance multifunctionality in a boreal forest landscape. J Appl Ecol. 2017;54:61–70. 19. Roberge J-M, Laudon H, Björkman C, et al. Socio-ecological implications of modifying rotation lengths in forestry. Ambio. 2016;45:109–23. 20. Triviño M, Juutinen A, Mazziotta A, Miettinen K, Podkopaev D, Reunanen P, et al. Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosyst Serv. 2015;14:179–89. 21. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ. Increasing for- est disturbances in Europe and their impact on carbon storage. Nature Clim Change. 2014;4:806–10. 22. Venäläinen A, Lehtonen I, Laapas M, Ruosteenoja K, Tikkanen OP, Viiri H, et al. Climate change induces multiple risks to boreal forests and forestry in Finland: a literature review. Glob Change Biol. 2020;26:4178–96. 23. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. Boreal forest health and global change. Sci- ence. 2015;349:819–22. 24. D’Orangeville L, Houle D, Duchesne L, Phillips RP, Bergeron Y, Kneeshaw D. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat Commun. 2018;9:3213. 25. Hernández-Morcillo M, Torralba M, Baiges T, et al. (2022) Scanning the solutions for the sustainable supply of forest eco- system services in Europe. Sustain Sci. 2022;2:1–17. 26. Senf C, Sebald J, Seidl R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth. 2021;4:749–55. 27. Reyer CPO, Bathgate S, Blennow K, et al. Are forest distur- bances amplifying or canceling out climate change-induced productivity changes in European forests? Environ Res Lett. 2017;12:034027. 28. Moen J, Rist L, Bishop K, et al. Eye on the Taiga: removing global policy impediments to safeguard the boreal forest. Con- serv Lett. 2014;7:408–18. 29. Bergeron Y, Irulappa Pillai Vijayakumar DB, Ouzennou H, Raulier F, Leduc A, Gauthier S. Projections of future forest age class struc- ture under the influence of fire and harvesting: implications for forest management in the boreal forest of eastern Canada. For Int J For Res. 2017;90:485–95. 30. Boucher D, Boulanger Y, Aubin I, Bernier PY, Beaudoin A, Guindon L, et al. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol Appl. 2018;28:1245–59. 31. Holling CS. Resilience and stability of ecological systems. Annu Rev Ecol Syst. 1973;4:1–23. 32. Brand FS, Jax K. Focusing the meaning(s) of resilience: resil- ience as a descriptive concept and a boundary object. Ecol Soc. 2007;12:23. 33. Walker B, Holling CS, Carpenter SR, Kinzig A. Resilience, adaptability and transformability in social–ecological systems. Ecol Soc. 2004;9:5. https:// doi. org/ 10. 5751/ ES- 00650- 090205. Published online: Sep 16, 2004. 34.•• Messier C, Bauhus J, Doyon F, Maure F, Sousa-Silva R, Nolet P, et al. The functional complex network approach to foster forest resilience to global changes. For Ecosyst. 2019;6:21. This arti- cle provides an insightful overview of the functional complex network approach. Current Landscape Ecology Reports 1 3 35. Messier C, Puettmann K, Filotas E, Coates D. Dealing with non- linearity and uncertainty in forest management. Current Forestry Reports. 2016;2:150–61. 36.• Nikinmaa L, Lindner M, Cantarello E, Jump AS, Seidl R, Winkel G, et al. Reviewing the use of resilience concepts in forest sci- ences. Curr For Rep. 2020;6:61–80. This article reviews what resilience means in a forestry context. 37. Rist L, Moen J. Sustainability in forest management and a new role for resilience thinking. For Ecol Manage. 2013;310:416–27. 38. Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA. Search- ing for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol. 2016;53:120–9. 39.• Albrich K, Rammer W, Turner MG, Ratajczak Z, Braziunas KH, Hansen WD, et al. Simulating forest resilience: a review. Glob Ecol Biogeogr. 2020;29:2082–96. This article synthesizes the modelling literature on forest resilience. 40. Pimm SL. The complexity and stability of ecosystems. Nature. 1984;307(5949):321–6. 41. Kuuluvainen T. Natural variability of forests as a reference for restoring and managing biological diversity in boreal Fennos- candia. Silva Fennica. 2002;36:97–125. 42. Senf C, Seidl R. Mapping the forest disturbance regimes of Europe. Nat Sustain. 2021;4:63–70. 43. Lindenmayer D, Messier C, Sato C. Avoiding ecosystem col- lapse in managed forest ecosystems. Front Ecol Environ. 2016;14:561–8. 44. Buermann W, Parida B, Jung M, MacDonald GM, Tucker CJ, Reichstein M. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys Res Lett. 2014;41:1995–2002. 45. De Grandpré L, Kneeshaw DD, Perigon S, Boucher D, Marchand M, Pureswaran D, et al. Adverse climatic periods precede and amplify defoliator-induced tree mortality in eastern boreal North America. J Ecol. 2019;107:452–67. 46. Gagne MA, Smith DD, McCulloh KA. Limited physiological acclimation to recurrent heatwaves in two boreal tree species. Tree Physiol. 2020;40:1680–96. 47. Hogg EH, Michaelian M. Factors affecting fall down rates of dead aspen (Populus tremuloides) biomass following severe drought in west-central Canada. Glob Change Biol. 2015;21:1968–79. 48. Lu P, Parker WC, Colombo SJ, Skeates DA. Temperature- induced growing season drought threatens survival and height growth of white spruce in southern Ontario, Canada. For Ecol Manage. 2019;448:355–63. 49. Ruiz-Benito P, Madrigal-González J, Ratcliffe S, Coomes DA, Kändler G, Lehtonen A, et al. Stand structure and recent cli- mate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and mediter- ranean biomes. Ecosystems. 2014;17:1439–54. 50. Subramanian N, Nilsson U, Mossberg M, Bergh J. Impacts of climate change, Weather extremes and alternative strategies in managed forests. Ecoscience. 2019;26:53–70. 51. Chen L, Huang JG, Dawson A, Zhai L, Stadt KJ, Comeau PG, et al. Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada. Glob Change Biol. 2018;24:655–67. 52. Whitman E, Parisien M-A, Thompson DK, Flannigan MD. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci Rep. 2019;9:1–12. 53. Sánchez-Pinillos M, D’Orangeville L, Boulanger Y, Comeau P, Wang J, Taylor AR, et al. Sequential droughts: a silent trigger of boreal forest mortality. Glob Change Biol. 2022;28:542–56. 54. Astigarraga J, Andivia E, Zavala MA, Gazol A, Cruz-Alonso V, Vicente-Serrano SM, et  al. Evidence of non-stationary relationships between climate and forest responses: increased sensitivity to climate change in Iberian forests. Glob Change Biol. 2020;26:5063–76. 55. Boulanger Y, Taylor AR, Price DT, Cyr D, McGarrigle E, Rammer W, et al. Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone. Landscape Ecol. 2017;32:1415–31. 56. Andreassen K, Solberg S, Tveito OE, Lystad SL. Regional dif- ferences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. For Ecol Manage. 2006;222:211–21. 57. Gauthier S, Kuuluvainen T, Macdonald SE, et al. Ecosystem management of the boreal forest in the era of global change. In: Girona MM, Morin H, Gauthier S, Bergeron Y, editors. Boreal forests in the face of climate change: sustainable management. Cham: Springer International Publishing; 2023. p. 3–49. 58. Michaelian M, Hogg EH, Hall RJ, Arsenault E. Massive mortal- ity of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob Change Biol. 2011;17:2084–94. 59. Hogg T, Brandt JP, Michaelian M. Impacts of a regional drought on the productivity, dieback, and biomass of western Canadian aspen forests. Can J For Res. 2008. https:// doi. org/ 10. 1139/ X08- 001. 60. Trugman AT, Medvigy D, Anderegg WR, Pacala SW. Differen- tial declines in Alaskan boreal forest vitality related to climate and competition. Glob Change Biol. 2017;24:1097–107. https:// doi. org/ 10. 1111/ gcb. 13952. 61. Trân JK, Ylioja T, Billings RF, Régnière J, Ayres MP. Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecol Appl. 2007;17:882–99. 62. Jönsson AM, Bärring L. Future climate impact on spruce bark beetle life cycle in relation to uncertainties in regional climate model data ensembles. 2011;63:158–73. 63. Jain P, Wang X, Flannigan MD, Jain P, Wang X, Flannigan MD. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int J Wildland Fire. 2017;26:1009–20. 64. Jain P, Castellanos-Acuna D, Coogan SCP, Abatzoglou JT, Flan- nigan MD. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat Clim Chang. 2022;12:63–70. 65. Hanes CC, Wang X, Jain P, Parisien M-A, Little JM, Flannigan MD. Fire-regime changes in Canada over the last half century. Can J For Res. 2019;49:256–69. 66. Girardin MP, Terrier A. Mitigating risks of future wildfires by management of the forest composition: an analysis of the offsetting potential through boreal Canada. Clim Change. 2015;130:587–601. 67. y Silva FR, O’Connor CD, Thompson MP, Martínez JRM, Calkin DE. Modelling suppression difficulty: current and future applica- tions. Int J Wildland Fire. 2020;29:739–51. 68. Davim DA, Rossa CG, Pereira JMC, Fernandes PM. Evaluating the effect of prescribed burning on the reduction of wildfire extent in Portugal. For Ecol Manage. 2022;519:120302. 69. Drobyshev I, Ryzhkova N, Niklasson M, Zhukov A, Mul- lonen I, Pinto G, Kryshen A. Marginal imprint of human land use upon fire history in a mire-dominated boreal landscape of the Veps Highland, North-West Russia. For Ecol Manag. 2022;507:120007. https:// doi. org/ 10. 1016/J. FORECO. 2022. 120007. 70. Sun Q, Burrell A, Barrett K, Kukavskaya E, Buryak L, Kaduk J, Baxter R. Climate variability may delay post-fire recovery of boreal forest in Southern Siberia, Russia. Remote Sens. 2021;13:2247. 71. Cyr D, Splawinski TB, Pascual Puigdevall J, Valeria O, Leduc A, Thiffault N, Bergeron Y, Gauthier S. Mitigating post-fire regeneration failure in boreal landscapes with reforestation and variable retention harvesting: at what cost? Can J For Res. 2022;52:568–81. Current Landscape Ecology Reports 1 3 72. Burrell AL, Sun Q, Baxter R, Kukavskaya EA, Zhila S, Shestakova T, Rogers BM, Kaduk J, Barrett K. Climate change, fire return inter- vals and the growing risk of permanent forest loss in boreal Eurasia. Sci Total Environ. 2022;831:154885. 73. Kukavskaya EA, Buryak LV, Shvetsov EG, Conard SG, Kalenskaya OP. The impact of increasing fire frequency on forest transformations in southern Siberia. For Ecol Manage. 2016;382:225–35. 74. Burrell A, Kukavskaya E, Baxter R, Sun Q, Barrett K. Post-fire recruitment failure as a driver of forest to non-forest ecosystem shifts in boreal regions. In: Canadell JG, Jackson RB, editors. Ecosystem collapse and climate change. Cham: Springer Inter- national Publishing; 2021. p. 69–100. 75. Leduc A, Bernier P, Mansuy N, Raulier F, Gauthier S, Bergeron Y. Using salvage logging and tolerance to risk to reduce the impact of forest fires on timber supply calculations. Can J For Res. 2015;45:480–6. 76. Lindenmayer DB, Hobbs RJ, Likens GE, Krebs CJ, Banks SC. Newly discovered landscape traps produce regime shifts in wet forests. Proc Natl Acad Sci. 2011;108:15887–91. 77. Messier C, Bauhus J, Sousa-Silva R, et al. For the sake of resil- ience and multifunctionality, let’s diversify planted forests! Con- serv Lett. 2022. https:// doi. org/ 10. 1111/ CONL. 12829. 78. Gamfeldt L, Snäll T, Bagchi R, et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun. 2013;4:1340. 79. Forrester DI, Bauhus J. A review of processes behind diver- sity – productivity relationships in forests. Curr For Rep. 2016;2:45–61. 80. Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, et al. Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep. 2017;3:223–43. 81. Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J Appl Ecol. 2020;57:67–76. 82. Ikonen V-P, Kilpeläinen A, Zubizarreta-Gerendiain A, Strand- man H, Asikainen A, Venäläinen A, et al. Regional risks of wind damage in boreal forests under changing management and cli- mate projections. Can J For Res. 2017;47:1632–45. 83. Tikkanen O-P, Matero J, Mönkkönen M, Juutinen A, Kouki J. To thin or not to thin: bio-economic analysis of two alternative practices to increase amount of coarse woody debris in managed forests. Eur J Forest Res. 2012;131:1411–22. 84. Tikkanen O-P, Martikainen P, Hyvarinen E, Junninen K, Kouki J. Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Ann Zool Fenn. 2006;43:373–83. 85. Zeng H, Peltola H, Väisänen H, Kellomäki S. The effects of fragmentation on the susceptibility of a boreal forest ecosystem to wind damage. For Ecol Manage. 2009;257:1165–73. 86. Blattert C, Eyvindson K, Hartikainen M, Burgas D, Potterf M, Lukkarinen J, et al. Sectoral policies cause incoherence in forest management and ecosystem service provisioning. Forest Policy Econ. 2022;136:102689. 87. Peura M, Burgas D, Eyvindson K, Repo A, Mönkkönen M. Con- tinuous cover forestry is a cost-efficient tool to increase multi- functionality of boreal production forests in Fennoscandia. Biol Cons. 2018;217:104–12. 88. Potterf M, Eyvindson K, Blattert C, Burgas D, Burner R, Stephan JG, et al. Interpreting wind damage risk–how multifunctional for- est management impacts standing timber at risk of wind felling. Eur J Forest Res. 2022;141:347–61. 89. Pukkala T, Laiho O, Lähde E. Continuous cover management reduces wind damage. For Ecol Manage. 2016;372:120–7. 90. Héon J, Arseneault D, Parisien M-A. Resistance of the boreal for- est to high burn rates. Proc Natl Acad Sci. 2014;111:13888–93. 91. Girardin MP, Ali AA, Carcaillet C, Blarquez O, Hély C, Terrier A, et al. Vegetation limits the impact of a warm climate on boreal wildfires. New Phytol. 2013;199:1001–11. 92. Krawchuk MA, Cumming SG. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change. Ecol Appl. 2011;21:122–36. 93. Moris JV, Reilly MJ, Yang Z, Cohen WB, Motta R, Ascoli D. Using a trait-based approach to asses fire resistance in for- est landscapes of the Inland Northwest, USA. Landsc Ecol. 2022;37:2149–64. 94. Boucher D, Gauthier S, Noël J, Greene DF, Bergeron Y. Sal- vage logging affects early post-fire tree composition in Canadian boreal forest. For Ecol Manage. 2014;325:118–27. 95. Leverkus AB, Rey Benayas JM, Castro J, et al. Salvage logging effects on regulating and supporting ecosystem services – a sys- tematic map. Can J For Res. 2018;48:983–1000. 96. Augustynczik ALD, Dobor L, Hlásny T. Controlling landscape- scale bark beetle dynamics: can we hit the right spot? Landsc Urban Plan. 2021;209:104035. 97. Havašová M, Ferenčík J, Jakuš R. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For Ecol Manage. 2017;391:349–61. 98. Kärhä K, Anttonen T, Poikela A, Palander T, Laurén A, Peltola H, et al. Evaluation of salvage logging productivity and costs in windthrown Norway spruce-dominated forests. Forests. 2018;9:280. 99. Nikinmaa L, Lindner M, Cantarello E, et al. A balancing act: principles, criteria and indicator framework to operational- ize social-ecological resilience of forests. J Environ Manage. 2023;331:117039. 100.•• Kuuluvainen T, Angelstam P, Frelich L, Jõgiste K, Koivula M, Kubota Y, et al. Natural disturbance-based forest manage- ment: moving beyond retention and continuous-cover forestry. Front For Glob Change. 2021;4:24. This article provides an insightful overview on how natural disturbance-based forest management can enhance resilience. 101. Zubizarreta-Gerendiain A, Pukkala T, Peltola H. Effects of wood harvesting and utilisation policies on the carbon balance of for- estry under changing climate: a Finnish case study. Forest Policy Econ. 2016;62:168–76. 102. Messier C, Tittler R, Kneeshaw DD, Gélinas N, Paquette A, Berninger K, et al. TRIAD zoning in Quebec: experiences and results after 5 years. For Chron. 2009;85:885–96. 103. Tollefson J. Controversial forestry experiment will be largest-ever in United States. Nature. 2021;594:20–1. https:// doi. org/ 10. 1038/ d41586- 021- 01256-9. 104. Landry G, Thiffault E, Cyr D, Moreau L, Boulanger Y, Dymond C. Mitigation potential of ecosystem-based forest management under climate change: a case study in the boreal-temperate forest ecotone. Forests. 2021;12:1667. 105. Nagel LM, Palik BJ, Battaglia MA, et al. Adaptive Silviculture for Climate Change: a national experiment in manager-scien- tist partnerships to apply an adaptation framework. J Forest. 2017;115:167–78. 106.•• Berglund H, Kuuluvainen T. Representative boreal for- est habitats in northern Europe, and a revised model for eco- system management and biodiversity conservation. Ambio. 2021;50:1003–17. This article provides an insightful overview on natural disturbance emulation approach. 107. Gauthier S, Vaillancourt M-A, Leduc A, De Grandpré L, Kneeshaw D, Morin H, et al. Ecosystem management in the boreal forest. QC: Les Presses de l’Université du Québec; 2009. p. 539. Current Landscape Ecology Reports 1 3 108.•• Bowditch E, Santopuoli G, Binder F, et al. What is climate- smart forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosyst Serv. 2020;43:101113. This article provides an interesting overview on the different definitions of climate-smart forestry. 109. Long JN. Emulating natural disturbance regimes as a basis for forest management: a North American view. For Ecol Manage. 2009;257:1868–73. 110. Angelstam PK. Maintaining and restoring biodiversity in Euro- pean boreal forests by developing natural disturbance regimes. J Veg Sci. 1998;9:593–602. 111. Landres PB, Morgan P, Swanson FJ. Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl. 1999;9:1179–88. 112. Boulanger Y, Arseneault D, Boucher Y, Gauthier S, Cyr D, Taylor AR, et al. Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada. Landscape Ecol. 2019;34:159–74. 113.•• Himes A, Betts M, Messier C, Seymour R. Perspectives: thirty years of triad forestry, a critical clarification of theory and recommendations for implementation and testing. For Ecol Manag. 2022;510:120103. This article provides an interest- ing overview on triad forestry (which is a specific case of landscape functional zoning). 114. Seymour RS, Hunter ML Jr. Principles of ecological forestry. In: Hunter ML, editor. Maintaining biodiversity in forest ecosystem. Cambridge: Cambridge University Press; 1999. p. 22–61. 115. Betts MG, Phalan BT, Wolf C, et al. Producing wood at least cost to biodiversity: integrating Triad and sharing–sparing approaches to inform forest landscape management. Biol Rev. 2021;96:1301–17. 116. Côté P, Tittler R, Messier C, Kneeshaw DD, Fall A, Fortin M-J. Comparing different forest zoning options for landscape-scale management of the boreal forest: possible benefits of the TRIAD. For Ecol Manage. 2010;259:418–27. 117.• Mina M, Messier C, Duveneck MJ, Fortin MJ, Aquilué N. Man- aging for the unexpected: building resilient forest landscapes to cope with global change. Glob Change Biol. 2022;28:4323–41. This article highlights that by adopting a landscape-scale perspective is possible to enhance resilience. The authors apply the functional complex network approach. 118. Aquilué N, Messier C, Martins KT, Dumais-Lalonde V, Mina M. A simple-to-use management approach to boost adaptive capacity of forests to global uncertainty. For Ecol Manage. 2021. https:// doi. org/ 10. 1016/J. FORECO. 2020. 118692. 119. Aquilué N, Filotas E, Craven D, Fortin M, Brotons L, Messier C. Evaluating forest resilience to global threats using func- tional response traits and network properties. Ecol Appl. 2020;30:e02095. 120. Andersson K, Angelstam P, Elbakidze M, Axelsson R, Degerman E. Green infrastructures and intensive forestry: need and opportu- nity for spatial planning in a Swedish rural–urban gradient. Scand J For Res. 2012;28:143–65. https:// doi. org/ 10. 1080/ 02827 581. 2012. 723740. 121. Brnkalakova S, Melnykovych M, Nijnik M, Barlagne C, Pavelka M, Udovc A, et al. Collective forestry regimes to enhance transi- tion to climate smart forestry. Environ Policy Gov. 2022;32:492– 503. https:// doi. org/ 10. 1002/ eet. 2021. 122. Nijnik M, Pajot G, Moffat AJ, Slee B. An economic analysis of the establishment of forest plantations in the United Kingdom to mitigate climatic change. Forest Policy Econ. 2013;26:34–42. 123. Korkiakoski M, Tuovinen J-P, Penttilä T, Sarkkola S, Ojanen P, Minkkinen K, et al. Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting. Biogeosciences. 2019;16:3703–23. 124. Hetemäki L, Verkerk H. Climate-smart forestry approach. In: Hetemäki L, Kangas A, Peltola H, editors. Forest bioeconomy and climate change. Springer; 2022. p. 165–72. 125. Duflot R, Eyvindson K, Mönkkönen M. Management diver- sification increases habitat availability for multiple biodiver- sity indicator species in production forests. Landscape Ecol. 2022;37:443–59. 126. Walker XJ, Baltzer JL, Cumming SG, et al. Increasing wild- fires threaten historic carbon sink of boreal forest soils. Nature. 2019;572:520–3. 127. Korhonen K, Ahola A, Heikkinen J, et al. Forests of Finland 2014–2018 and their development 1921–2018. Silva Fennica. 2021. https:// doi. org/ 10. 14214/ SF. 10662. 128. Hahn T, Eggers J, Subramanian N, Toraño Caicoya A, Uhl E, Snäll T. Specified resilience value of alternative forest manage- ment adaptations to storms. Scand J For Res. 2021;36:585–97. 129. García-Valdés R, Svenning J-C, Zavala MA, Purves DW, Araújo MB. Evaluating the combined effects of climate and land-use change on tree species distributions. J Appl Ecol. 2015;52:902–12. 130. Leech SM, Almuedo PL, O’Neill G. Assisted migration: adapt- ing forest management to a changing climate. J Ecosyst Manag. 2011. https:// doi. org/ 10. 22230/ jem. 2011v 12n3a 91. 131. Miettinen K. Nonlinear multiobjective optimization. Boston: Klu- wer Academic Publishers; 1999. 132. Pohjanmies T, Eyvindson K, Triviño M, Bengtsson J, Mönk- könen M. Forest multifunctionality is not resilient to intensive forestry. Eur J For Res. 2021;140:537–49. 133. Heinonen T. Developing landscape connectivity in commercial boreal forests using minimum spanning tree and spatial optimi- zation. Can J For Res. 2019;49:1198–206. 134. Mazziotta A, Borges P, Kangas A, Halme P, Eyvindson K. Spatial trade-offs between ecological and economical sus- tainability in the boreal production forest. J Environ Manage. 2023;330:117144. 135. Pohjanmies T, Eyvindson K, Triviño M, Mönkkönen M. More is more? Forest management allocation at different spatial scales to mitigate conflicts between ecosystem services. Landscape Ecol. 2017;32:2337–49. 136. Eyvindson K, Kangas A. Guidelines for risk management in forest planning – what is risk and when is risk management useful? Can J For Res. 2018;48:309–16. 137. Larson AM, Mausch K, Bourne M, et al. Hot topics in gov- ernance for forests and trees: towards a (just) transformative research agenda. Forest Policy Econ. 2021. https:// doi. org/ 10. 1016/J. FORPOL. 2021. 102567. 138. Siiskonen H. From economic to environmental sustainability: the forest management debate in 20th century Finland and Sweden. Environ Dev Sustain. 2013;15:1323–36. 139. Isoaho K, Burgas D, Janasik N, Mönkkönen M, Peura M, Hukkinen JI. Changing forest stakeholders’ perception of ecosystem services with linguistic nudging. Ecosyst Serv. 2019;40:101028. 140. National Resources Canada. The state of Canada’s forests – annual report 2021 Natural Resources Canada. National Capital Region, Ottawa, ON: Canadian Forest Service; 2022. 141. Vaahtera E, Tuomas N, Peltola A, Räty M, Sauvula-Seppälä T, Torvelainen J, et al. Metsätilastot – Finnish forest statistics. Hel- sinki: Luonnonvarakeskus (Luke); 2021. in Finnish and English. 142. Chapin FS, Peterson G, Berkes F, et al. Resilience and vulner- ability of northern regions to social and environmental change. Ambio. 2004;33:344–9. 143. Angelstam P, Axelsson R, Elbakidze M, Laestadius L, Lazdinis M, Nordberg M, et al. Knowledge production and learning for sustainable forest management on the ground: Pan-European landscapes as a time machine. Forestry. 2011;84:581–96. 144. Teitelbaum S, Asselin H, Bissonnette J-F, Blouin D. Govern- ance in the boreal forest: what role for local and indigenous Current Landscape Ecology Reports 1 3 communities? In: Girona MM, Morin H, Gauthier S, Bergeron Y, editors. Boreal forests in the face of climate change: sustain- able management. Cham: Springer International Publishing; 2023. p. 513–32. 145. OECD. Better regulation practices across the European Union 2022. Paris: OECD Publishing; 2022. https:// doi. org/ 10. 1787/ 6e4b0 95d- en. 146. McDermott CL, Elbakidze M, Teitelbaum S, Tysiachniouk M. Forest certification in boreal forests: current developments and future directions. In: Girona MM, Morin H, Gauthier S, Bergeron Y, editors. Boreal forests in the face of climate change: sustainable management. Cham: Springer International Publish- ing; 2023. p. 533–53. 147. Triviño M, Morán-Ordoñez A, Eyvindson K, Blattert C, Burgas D, Repo A, et al. Future supply of boreal forest ecosystem ser- vices is driven by management rather than by climate change. Glob Change Biol. 2023;29:1484–500. 148. Millar CI, Stephenson NL, Stephens SL. Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl. 2007;17:2145–51. 149. Daniel CJ, Ter-Mikaelian MT, Wotton BM, Rayfield B, Fortin M-J. Incorporating uncertainty into forest management planning: timber harvest, wildfire and climate change in the boreal forest. For Ecol Manage. 2017;400:542–54. 150. De Pellegrin LI, Eyvindson K, Mazziotta A, Lämås T, Eggers J, Öhman K. Perceptions of uncertainty in forest planning: contrast- ing forest professionals’ perspectives with the latest research. Can J For Res. 2023. https:// doi. org/ 10. 1139/ cjfr- 2022- 0193. 151. Kangas A, Astrup R, Breidenbach J, et al. Remote sensing and forest inventories in Nordic countries-roadmap for the future. Scand J For Res. 2018;33:397–412. 152. Basler MH. Utility of the McNamara fallacy. BMJ. 2009;339:312. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Authors and Affiliations María Triviño1,2  · Mária Potterf3  · Julián Tijerín4  · Paloma Ruiz‑Benito4,5  · Daniel Burgas1,2  · Kyle Eyvindson6,7  · Clemens Blattert1,2,8  · Mikko Mönkkönen1,2  · Rémi Duflot1,2 Mária Potterf maria.potterf@tum.de Julián Tijerín julian.tijerin@uah.es Paloma Ruiz-Benito paloma.ruizb@uah.es Daniel Burgas daniel.d.burgas@jyu.fi Kyle Eyvindson kyle.eyvindson@nmbu.no Clemens Blattert clemens.blattert@wsl.ch Mikko Mönkkönen mikko.monkkonen@jyu.fi Rémi Duflot remi.r.duflot@jyu.fi 1 Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, P.O. Box 35, FIN-40014 Jyväskylä, Finland 2 School of Resource Wisdom, University of Jyväskylä, Survontie 9, P.O. Box 35, FIN-40014 Jyväskylä, Finland 3 Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany 4 Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio Ciencias, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain 5 Departamento de Geología, Geografía y Medio Ambiente, Environmental Remote Sensing Research Group, Universidad de Alcalá, Calle Colegios 2, 28801 Alcalá de Henares, Spain 6 Natural Resources Institute Finland (LUKE), Laatokartanonkaari 9, 00790 Helsinki, Finland 7 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway 8 Forest Resources and Management, Swiss Federal Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland