Northern Timberline Forests: Environmental and Socio-economic Issues and Concerns Edited by Sakari Kankaanpää, Ludger Muller-Wille, Paulo Susiluoto and Marja-Liisa Sutinen The Finnish Forest Research Institute 2002 Metsäntutkimuslaitoksen tiedonantoja 862 The Finnish Forest Research Institute, Research Papers 862 Kolari Research Station METSÄNTUTKIMUSLAITOKSEN TIEDONANTOJA 862, 2002 THE FINNISH FOREST RESEARCH INSTITUTE, RESEARCH PAPERS 862, 2002 Northern Timberline Forests: Environmental and Socio-economic Issues and Concerns Северная Граница Леса - Вопросы по Окружающей Среде и Социально-экономические Вопросы Edited by Sakari Kankaanpää, Ludger Miiller-Wille, Paulo Susiluoto and Marja-Liisa Sutinen KOLARI RESEARCH STATION 2 Kankaanpää, S., Muller-Wille, L., Susiluoto, P. and Sutinen, M-L. (eds.). 2002. Northern Timberline Forests: Environmental and Socio-economic Issues and Concerns. The Finnish Forest Research Institute, Research Papers 862. 289 pages. ISBN 951-40-1844-3. ISSN 0358-4283 Copy editor: Paulo Susiluoto Layout: Jari Flietanen Address of copy editor: The Finnish Forest Research Institute. Kolari Research Station, Muoniontie 21 A, 95900 Kolari, Finland. Email: Paulo.Susiluoto@metla.fi Publisher: The Finnish Forest Research Institute, Kolari Research Station, Finland. Accepted by research director Kari Mielikäinen 5.9.2002. Keywords: aboriginal peoples, ecosystem management, northern timberline, tree line, subarctic, sustainable development Distribution: The Finnish Forest Research Institute, Vantaa Research Center, Library, P.0.80x 18, FIN 01301 Vantaa, tel. +358 9 8570 5580, fax. +358 9 8570 5582 Cover photo: "Kylä Tunturi-Lapissa'XVillage in Fell-Lapland). A watercolor painting by Eila Heino 2002. Reproduced by painter's permission. © Finnish Forest Research Institute ISBN 951-40-1844-3 Gummerus Kirjapaino Oy Jyväskylä 2002 3 Contents Оглавление Preface 7 Introductory Remarks 9 Recommendations on Environmental and Socio-economic Issues and Concerns in Northern Timberline Forests Ludger Mtiller-Wille 14 Sustainable Development of the Lesotundra Zone in Russia: Problems and Opportunities Tatiana Kouzminichna Vlassova 19 Living at the Timberline - The Sami and the Mountain Birch Forests in Northernmost Europe Maria Sofia Aikio and Ludger Miiller- Wille 40 Modeling Forestry Resources with Remote Sensing and Geographic Information Systems Shivanand Balram and John E. Lewis 57 The World Reindeer Livelihood - Current Situation, Threats and Possibilities Johan Mathis Turi 70 Nordic Mountain Birch Forests Frans-Emil Wielgolaski 76 The Spatial Structure of the Timberline Landscape and Its Relation to Climate and Permafrost in the Usa Basin, NW Russia Tarmo Virtanen, Kari Mikkola and Ari Nikula 91 Russian Forest Industry and Its Threats to Timberline Forests Alexander. I. Voropaev 96 Assessment of Recent and Possible Future Forest Responses to Climate in Boreal Alaska Valerie Barber, Glenn Patrick Juday, Ed Berg and Martin Wilmking 102 Global Warming and Regional Tree-ring Growth Response in the Kola Peninsula, North-West Russia Oleg M. Raspopov, Т. Kolström, O.L. Shumilov, I. Ju. Kirtsideli, V.A. Dergachev, M. Lindholm, J. Meriläinen, O. Eggertsson, E. A. Kasatkina, A.V. Kuzmin, G.G. Matishev, and S.L. Dzhenyuk 106 Appendices 113 4 A: Paper and Poster Abstracts of the Northern Timberline Workshop in Rovaniemi, 23-25 May 2002 113 B: Northern Tree Line: The Location of the Tree Line and Its Implications for Humans 128 Предисловие 133 Приветственные слова 135 Рекомендации по природоохранным и социально-экономическим вопросам на северной границе леса Люгер Мюллер-Вилле 140 Устойчивое развитие зоны лесотундры в России: проблемы и перспективы Татьяна Кузьминична Власова 146 Жизнь на Eранице Леса - Саамы и Горные Березовые Леса Крайнего Севера Европы Мария София Айкио и Людгер Мюллер-Уилле 170 Моделирование Лесных Ресурсов с Помощью Дистанционных Методов и Геоинформационных Систем Шивананд Балрам и Джон E Левис 189 Мировое оленеводство - современная ситуация, трудности и перспективы Йохан Матис Тури 203 Северные Г орные Березовые Леса Франс-Емил Виелголаски 210 Пространственная структура ландшафта на границе леса и её отношение к климату и мерзлоте в бассейне р. Уса, северо-запад России Тармо Виртанен, Кари Миккола и Ари Никула 225 Лесопромышленный комплекс России и угрозы северным лесам A. И. Воропаев 230 Оценка современной и возможных будущих реакций на климат в бореальной Аляске Валери Барбер, Еленн Патрик Джуди, Эд Берг и Мартин Вилмкинг 238 Eлобальное потепление и региональная реакция роста годовых колец на Кольском полуострове, Северо-запад России О.М. Распопов, Т. Колстрём, О.И. Шумилов, И.Ю. Киршидели, B.А. Дергачев, М. Линдхольм, Й. Мериляйнен, О. Эггертссон, Е.А. Касаткина, А.В. Кузьмин, Е.Е. Матишев, С.Л. Дженюк, 243 5 Приложения 250 Приложене А Тезисы докладов и постерных выступлений на рабочей группе «Северная граница леса» в Рованиеми, 23-25 мая 2002 года 250 Приложене В Северная линия лесов: положение линии лесов и его значение для жизни людей 266 С: List of Participant and Addresses / Список Участников и Адресы 272 D: Color Figures / Цветные рисунки 279 6 7 Preface Forests - their ecosystems, trees and timber - have been a lifeline for human kind's existence and survival globally right to modern times when, now, the extensive human utilization pushes their being to the edge. Thus questions are raised how humankind is able to attain or even maintain the reproduction of forest resources world-wide to continue their utilization through so-called sus tainable forest management and its application adapted to specific ecosystem. Despite all technological advances humankind's needs and demands for wood is increasing beyond nature's capacity to replace the yield. These pressures, along with natural events such as fires (often caused by humans), have created a 'global forest crisis' on our planet whose proportions are difficult to grasp if one realizes that in Canada alone one acre of forest is felled every 13 seconds! The Northern Timberline Forests, the focus of this book, represent only a small areal portion of the world's forests, however, their geographic location, their envi ronmental and ecological conditions and their human land use and occupancy in the northern circumpolar tier make them particularly vulnerable under expanding industrial and commercial resource exploitation. Therefore interested scientists and concerned local residents have established partnerships under the Sustainable Development Working Group of the Arctic Council to create a forum in which the conditions of the Northern Timberline Forests could be studied and high lighted. A series of events and workshops have been organized to allow the ex change of ideas and the formulation of recommendations to enhance appropriate forest management policies, which particularly reflect the points of view pre sented, by local residents and users of the Northern Timberline Forests. This vol ume is one of the results of these international efforts. The Northern Timberline Forests Workshop, held in Finland at the Arktikum in Rovaniemi from 23 to 25 May 2002 and whose deliberations are included in this volume, was organized by the Finnish Forest Research Institute, Arctic Centre (University of Lapland, Rovaniemi), Finnish Forest and Park Service and the University of Joensuu. The workshop was well attended. The keynotes, papers, posters and structured discussions in working groups led to the formulation of recommendations submitted to the Sustainable Development Working Group of the Arctic Council for discussion at the occasion of its Ministerial Meetings in Saariselkä (Finland) in October 2002. The volume editors would like to recognize the financial support of this work shop by the following institutions: Finnish Ministry of Agriculture and For estry, Ministry of the Environment, and Academy of Finland. Furthermore, we 8 like to extend our gratitude to the members of the workshop's International Scientific Program Committee and the Local Organizing Committee and the support staff from the Finnish Forest Research Institute and the Arctic Centre at the University of Lapland - their contributions were invaluable. The editors would like to extend their appreciation to the translators and language editor: from English to Russian: Galina Rybkina and Sergey Volkov, from Norwegian to English: Inga-Ellen Turi, and English language editing: Erkki Pekkinen. Furthermore, the ambience of the Arktikum and its surroundings provided an important element in the success of this meeting. Montreal/Kolari/Rovaniemi, 1 July 2002 Ludger Muller-Wille, Sakari Kankaanpää, Paulo Susiluoto and Marja-Liisa Sutinen International Scientific Program Committee Ludger Muller-Wille (chair, Canada) Valerie Barber (USA) Oddvar Skre (Norway) Sune Sohlberg (Sweden) Brynjar Skulason (Iceland) Marja-Liisa Sutinen (Finland) Tatiana Vlassova (Russia) Local Organizing Committee and Support Staff Marja-Liisa Sutinen (chair, Finnish Forest Research Institute) Sakari Kankaanpää (Finnish Forest Research Institute) Raija Kivilahti (Arctic Centre) Taneli Kolström (University of Joensuu) Jaana Ojuva Sinikka Rovaperä (Finnish Forest Research Institute) Eero Tikkanen (Finnish Forest and Park Service) Minna Turunen (Arctic Centre) Mervi Väisänen Arktikum, Rovaniemi, 23 May 2002 9 Introductory Remarks Madame Chair! Ladies and gentlemen! This Northern Timberline Forests Workshop is an Arctic Council project - a building block in the Council's Sustainable Development Program (SDP). On the 14th of May, the Arctic Council Sustainable Development Working Group held its meeting in Oulu, and three new project proposals were dis cussed and evaluated for approval. Two projects got the green light and one got the red one. The discussions on these project proposals showed that there is an urgent need for criteria for approval. The chair and two vice-chairs of the working groups had prepared a draft of guidelines for SDWG projects, but these guidelines were not accepted. It seems, however, that there is a common understanding as to what kind of requirements the AC projects should meet. Firstly: Circumpolar coverage and an Arctic added value. There should be broad interest among the Arctic countries regarding the problems in question. Bilateral projects are most welcome. This timberline project has a very good circumpolar coverage. Secondly: Participation of the indigenous peoples in the whole life-cycle of the project - from the early planning phase and all thorough its implementation phase. This project (NTF) seems to meet this criterion very well, too. Thirdly: Capacity-building focus. The project should contribute to the well being and the empowerment of northern countries and their inhabitants - espe cially women. The project should strengthen the social and human capital of the indigenous and other local people. It seems that pure research projects meet resistance among the AC delegations. The projects should be targeted at policy recommendations - be they proposals to the Arctic Governments or more practical plans for networking between northern institutions, communities and experts. 10 This workshop has gathered high-level experts in dealing with problems in the Northern Timberline regions. I hope, and I am convinced, that you have the knowledge and political experience needed for meaningful policy recommen dations. The Finnish chairmanship in the Arctic Council and in its SDWG is in its final straight. 1 hope that this workshop has a tangible contribution to make for its success. Dear friends! Have a productive workshop inside and outside this beautiful Arctic Centre! Sauli Rouhinen Chair, Sustainable Development Working Group, Arctic Council 11 Mr. Chairman, Ladies and Gentlemen, Scientists On behalf of the Arctic Centre, I am happy to welcome you all to the meeting on Northern Timberline Forests Workshop by the Arctic Council here in the Arctic Centre and Rovaniemi. It is important that the scientific community communicates with outside world and also across scientific sectors. This workshop is organized for that purpose and that is what makes it special and interesting. One of the goals of the work shop is to prepare recommendations to ministers of the Arctic states to be taken into consideration when developing national and international Arctic politics. This is an effective way to popularize the most updated scientific results for the use of decision makers. It is a good possibility to raise issues about timberline forests for common consciousness in order to promote the welfare of the nature and peoples of this special northern ecological zone. I think that this is an ex cellent and worthwhile effort for researchers as in this way circumpolar scien tific efforts can gain high-level political support, which may help in efforts when seeking funding. The Arctic Center (www.arcticcentre.org) of the University of Lapland is Finland's national institute for multidisciplinary research which works in the arctic timberline zone. Furthermore, one of the core functions of the Arctic Center is to act as an active all-around information channel between science and wide audience through its science center exhibition, electronic information cervices and library. That is why I think the Arctic Center is the most suitable to host your conference here. I sincerely wish that your conference will be productive and informative and hope that you enjoy your stay here in Arctic Centre and in Rovaniemi. Thank you for your attention. Paula Kankaanpää Arctic Centre, University of Lapland 12 Ladies and Gentlemen, Colleagues and Friends, On behalf of the International, in fact circumpolar, Scientific Steering Commit tee I like to welcome you to this workshop on "Northern Timberline Forests". This workshop is a project under the Sustainable Development Working Group of the Arctic Council. We meet here at the Arktikum which as an institution represents an expanding focus on the north and which will celebrate its 10th anniversary this year. For as long as its existence, humankind has relied, among other matters, on plant life and in particular on forest resources globally, i.e. in any corner of the world where trees grow. This almost paramount reliance has continuously ex panded and has resulted - historically and currently - in human-induced erosion and often depletion of these resources in specific environments. This is not to say that climatic change and variations do not have an impact as well. In this respect the northern timberline forests are no exception. They have ex perienced the presence of humankind and thus of specific land-use patterns with varying degrees of influence at the edge of the northern extension of these forests. Globally and locally, changing demographic, socio-economic and po litical conditions have made it compulsory today to reflect not only upon the ecological basis of forests and their continued existence, but particularly upon human skills to design management schemes and policies to maintain the re source and, at the same time, allow its continued utilization by humankind. The challenges to modern forest utilization are crystal clear - what reproductive cycles do support expanding exploitation rationally, economically feasible and socio-culturally justifiable and in what ecosystem and what are, in fact, the thresholds of tolerance defined by humankind? The terms "timber forest" and, indicating its altitudinal and latitudinal location, "timberline forest" clearly identify - through its Indo-European linguistic and cultural origins - the intensive use by humans for the construction of any type of utilitarian items based on wood. Therefore "timber", or in its variations in other languages such as in German "Timber" (becoming "Zimmer" = room), in Swedish "timmer" or in Norwegian "tommer", is in almost all its meanings the felled or dead tree, the trunk destined for specific usages. Applied to the north ern extension of trees the use of the term "timberline forest" must then imply that these forests are firmly integrated into the land use and occupancy patterns which local populations have developed in relation with their acquired knowl edge of what resources and how much of them are to be utilized for their own purposes to sustain basic levels of well-being - see for example the Aboriginal Forest Strategy put forward by the Assembly of First Nations in Canada in the late 19905. Under rapidly changing conditions for the ever growing quest for resources, expressed internally but mainly externally, these forests at the northern timber line are under increased pressures of commercial and industrial exploitation, 13 which go far beyond the reproductive cycles of specific species under existing environmental conditions. This workshop is designed to tackle some of these issues through keynotes, papers, posters and focused discussions in workshops with the ensuing plenary for a, which should lead to conclusions and recommendations for coping with the apparent "timberline conflicts" that are ongoing throughout the circumpo lar north today they need attention and sensible recommendations and solu tions which respect the northern environment and their human occupants. I am not a resident at or along the "northern timberline", however, having been, for over twenty years now, an owner and manager/user of a "wood lot" in Vermont's luscious Green Mountains for construction and fire wood as well as for tapping of maple sap to make syrup, and having studied for the last few years the socio-economic conditions and changes in the use of the "northern mountain birch forests" in northernmost Europe, I understand the urgency that is felt among northern residents about what will happen to the "northern tim berline forests" in the future. These peoples' attachment and commitment to their forests is real and their voices need to be heard and their recommenda tions turned into action. I hope that this workshop can meet some of these daunting challenges. It re mains for me to wish you all an interesting and successful meeting and a pleas ant stay here in Rovaniemi. Thank you! Ludger Miiller-Wille Department of Geography, McGill University, Montreal (Quebec) Canada 14 Recommendations on Environmental and Socio economic Issues and Concerns in Northern Timber line Forests Ludger Muller-Wille Ludger Miiller-Wille (chair), Valerie Barber, Sakari Kankaanpää, Brynjar Skulason, Sune Sohlberg, Oddvar Skre, Paulo Susiluoto, Marja-Liisa Sutinen and Tatiana Vlassova (members of the Steering Committee) with Timo Helle, Taneli Kolström, Sune Sohlberg as chairs of the Working Groups, and Maria Sofia Aikio, Thomas R. Allen, John E. Lewis, and other workshop participants Preamble The workshop participants, representing almost all regions in the circumpolar north, are in agreement that the "Northern Timberline Forests" should receive more attention with respect to environmental, socio-economic, cultural and po litical conditions, both internally and externally. The Northern Timberline For ests constitute the transition ecosystem between productive forest (commercial forestry) and the natural treeless areas (tundra), referred to as the forest tundra zone, or lesotundra in Russian. Due to its lower human population density, this zone has been the target of'more gentle' human impact. However, this situation is rapidly changing. Natural and human requirements meet in this zone; there fore, it should be possible to reconcile both. It was noted that this meeting allowed the broadening of the exchange of ideas among practitioners, users and scientists. The following recommendations are seen as contributing to the development of policies and their implementation with respect to urgent issues of concern to the peoples living in the Northern Timberline Forests. These recommendations are intended to reach the Minis tries of the Environment, and forestry, regional development, education and research along with other administrative realms within each of the polar coun tries in the Arctic Council. General Parameters It is noted ... that the Northern Timberline Forests are inhabited mainly by aboriginal peo ples, whose status is to be recognised through equal partnership (including pos 15 sible co-management regimes) in decision-making, concerning, among other aspects, property rights, governance, traditional knowledge, and general devel opment on the local and regional level; ... that the Northern Timberline Forests provide a functioning base for multi purpose resource utilisation related to the indigenous knowledge of flora and fauna whose maintenance is of paramount interests to both local and aboriginal residents; ... that there exists considerable regional variation throughout the circumpolar north and, in particular, within the belt of Northern Timberline Forests; ... that the emerging participatory process in research still shows discrepancies in the use of disparate language, i.e. jargon, terms and concepts between scien tists and local residents with respect to both 'scientific' and 'indigenous knowledge'; there is urgent need to overcome this gap through open communi cation and the use of plain language; ... that there is urgent need for alliances between local communities and re search communities to support the assessment of particular conditions that would lead to enhancing the cultural and economic diversity of the region. The NTF Workshop endorsed the request by the World Congress of Reindeer Herders (Johan Mathis Turi, president) to be a partner in an alliance of research activities focusing on the conditions and prospects of reindeer herding as a vi able economic and cultural expression by aboriginal peoples and local residents of the Northern Timberline Forests; ... that the exchange of information and knowledge and ways of communica tion among peoples within the Northern Timberline Forests should be in creased and enhanced; and that both linguistic and cultural diversity is main tained and reinforced through translation and interpretation among the lan guages; ... that there exist real and perceived regional and global threats to both the eco logical and human base of the Northern Timberline Forests, i.e. climate change (e.g. insect pest outbreaks, regional variations in changes in summer and winter temperatures, changes in the North Atlantic Oscillations), erosion (thawing of permafrost), pollution of different kinds, economic utilisation of various re sources by various interests for different purposes (resources exploitation, for estry, grazing by wildlife, reindeer and sheep, and tourism) and energy needs (firewood). Recommendations The following recommendations are based on the discussions that emerged from the "Timberline Workshop" held at the Arctic Council's "Sustainable De velopment Workshop" in Whitehorse (Yukon Territory, Canada) in May 1998 (published in the Finnish Forest Research Institute's Research Papers 734, 1999). These discussions continued during the 2002 workshop and led to the 16 formulation of focused recommendations expressly taking into account the conditions in the Northern Timberline Forests throughout the circumpolar north. Recommendations with respect to contaminants and pollution have been provided by AMAP. Based on the ACIA (Arctic Climate Impact Assessment) Scientific Report, which is due by the autumn of 2004, the AMAP and the CAFF will deliver policy recommendations to the Arctic Council regarding mitigation of climatic change impact in the northern circumpolar regions. General Recommendation Develop a permanent circumpolar monitoring network on human dimensions, i.e. living conditions and sustainable management of resources. Based on the integration of scientific and local knowledge, this network would serve as a complement to existing programs such as AMAP, CAFF, LULC and others. Specific Recommendations 1) The Human-Forest Interaction: the Socio-economic and Cultural Di mension It is recommended, in order to enhance and sustain the human conditions in the belt of northern timberline forests, to study the inhabitants' distribution, density and socio-economic conditions; ... assess the possibilities and prospects for local and regional economic devel opment including particular emphasis on energy requirements and alternate en ergy sources (wood, etc.), locally-based small-scale tourism, reindeer herding, fishing and hunting, and regional agroforestry; ... monitor and evaluate the expansion or restriction of commercial forestry, exploitation of hydropower, oil/gas and mineral resources, large-scale tourism, settlement patterns and infrastructure, as well as the impact of environmental conservation and protection policies and regimes (i.e. exclusion or inclusion of local interests) within the northern timberline forests; ... survey the consistent application of environmental protection laws through out the region; ... assess the varying regional and national definitions and levels of living stan dards and quality of life with emphasis on education and capacity building, physical and mental health, cultural and linguistic base, sense of belonging and commitment to place; ... evaluate the political developments towards local governance and control, legislative and administrative powers, decision-making processes, and commu nity building, territorial claims and title to land. 17 2) Resource Management in the Northern Timberline Forests There are already a number of monitoring systems in place documenting spe cifically environmental changes in the circumpolar north. It is suggested that these be expanded so that these monitoring schemes become more holistic in their approach and capabilities. It is therefore recommended to ... develop permanent circumpolar monitoring networks (including plot net works) on changes in Land Use and Land Cover (LULC) and environment as part of the AMAP/CAFF monitoring programmes and establish a new open and accessible data centre whose mandate is the collection, collation and co ordination of information concerning changes in environment and land use and their impact on the local communities in the circumpolar north; extend these data sets to include socio- economic and cultural aspects; ... establish a permanent working group on land use and land-cover change modelling in which the research focus is on the driving forces of change both on the local level and global level within the context of human dimensions; ... design models for the prediction of impacts by different land-use manage ment practices, including models on risk estimations by regionally and globally throughout the forest belt; ... develop spatial decision-making support systems for land use management with full involvement by local communities utilising tools as a Geographical Information System (GIS) and Global Positioning System (GPS) capabilities; ... support and press for the development of more efficient and effective legis lation and regulations focusing on the timberline forests; this also includes the requirement for Environmental and Socio-economic Impact Assessment stud ies in all areas of the belt of Northern Timberline Forests. 3) Forest and Reindeer Herding Economy in the Northern Timberline Forests Reindeer herding is exposed to changes, threats and pressures on the regional, national and international (global) scale. Specific attention is being given to the continued sustainability of reindeer herding, which today competes for space and resources along with other industrial interests. Here, sustainability includes the ecological, socio-cultural and economic aspects. For the enhancement of the reindeer herder's position throughout the Northern Timberline Forests, it is recommended to ... attain full integration and partnership of the reindeer herding communities in the decision-making process, which also fully respect for traditional knowl edge; 18 ... strengthen solidly the legal and political status of reindeer herders along with the requirement that the socio-cultural and linguistic environments are main tained and developed for reindeer herding communities; ... develop regimes to secure the economic feasibility of reindeer herding as a small-scale industry with permanent employment opportunities and stable in come levels; ... carry out monitoring and continuous mapping of reindeer herding land-use patterns and practices on a smaller scale locally, and develop explanatory mod els to include competing land use in the same territory at the same time. 4) Maintaining Biodiversity in the Northern Timberline Forests Maintaining biodiversity in the Northern Timberline Forests is a crucial ele ment. Therefore, it is recommended to ... develop and implement internationally compatible legislation and regula tions to protect the ecosystems in the Northern Timberline Forests and the ad joining areas as wide buffer zones to guarantee biodiversity; ... maintain natural forest structures and allow natural disturbances to preserve biodiversity and promote natural successions; ... avoid disturbances to and excessive utilisation of bio-resources respecting reproductive cycles; monitor the harvesting of bio-resources through estab lished and available techniques; ... use changes in the ecosystem as indicators of natural and human impacts, e.g. apply biodiversity as an indicator for climate change; ... guarantee that both scientific knowledge and traditional knowledge form the base for sustainable management of biodiversity; ... promote certification for eco-tourism (i.e. outdoor recreation) with minute affect and impact on natural conditions. 19 Sustainable Development of the Lesotundra Zone in Russia: Problems and Opportunities Tatiana Kouzminichna Vlassova Abstract The paper discusses the problems and opportunities of sustainable development of the lesotundra zone in Russia, broadly dividing them into five interrelated spheres: 1) Spiritual-cultural opportunities 2) Reduction of poverty and achievement of higher quality of life 3) Problems of an environmentally unsound economy and ways of re solving them 4) Ecosystem management perspectives in nature rehabilitation and pro tection 5) Participation of local population and various stakeholders in decision making and development of local programmes of sustainable devel opment. The changes in the lesotundra ecotone in Russia can be critical to the under standing of the important impacts of global environmental change and to the development of appropriate resource management strategies. This is why future international collaboration focusing on resolving many common problems of sustainable development in this zone on a global scale is of great importance. The author recommends that a permanent circumpolar monitoring network be developed to look into the living conditions and sustainability in the timberline forest ecosystem, and that its actions be based on the integration of science and local knowledge. Introduction I greatly appreciate the idea of the Arctic Council SDWG project on "Sustain able Development in Northern Timberline Forests" especially because it is based on the ecosystem approach to problems involving the environment and development facing all of us. 20 We are now discussing the problems and opportunities of sustainable develop ment of what is referred to as the "Northern Timberline Forest", "taiga-tundra", "forest-tundra", "boreal tundra woodland" and "lesotundra", as it is called in Russian. It is an ecosystem zone, stretching for more than 13 400 km all over the Arctic, between the tundra and the taiga. According to the Forest Encyclo paedia (1985), the lesotundra zone in Russia covers about 45 million hectares. It forms a narrow belt in the Kola Peninsula and along the Arctic Circle to the Urals. Beyond the Urals, the zone is fairly wide, stretching to the Pacific coast. In general, the lesotundra zone stretches up to 300 km between its northern and southern limits (Arctic Flora and Fauna 2000; Countries and Peoples 1983; FAO 2001). (see App.D. Fig. 1 and 2). On the continents of North America, Europe and Asia, this zone is exceptionally important as a zone of transitional ecosystems in terms of global vegetation, climate, biodiversity, human culture, economic activity, social peculiarities, human settlement, etc. I wish like to underline that all of us working together in the context of the lASC "Dynamics of the Tundra-Taiga Boundary" initiative in the papers pre sented in the special AMBIO Journal have recognised that the lesotundra eco system is a zone that has two boundaries - the northern and the southern. It cannot be regarded as being simple a tree line or timberline (Callaghan et al. 2002). On the global scale, this ecosystem zone has many common general natural features despite national and regional peculiarities. In many countries the lesotundra is a socially and economically fringe, marginal zone with spe cific environmental problems. Therefore, there are also some common prob lems involving ecological, economic, social, cultural and management sustain ability Its main common characteristic may be seen in that it serves the global envi ronment as an ecotone zone or transition belt, a zone of change in system prop erties, and one where tensions between its components are particularly stressed. The changes in lesotundra can be critical to the understanding of the impacts of global environmental change and to the development of appropriate resource management strategies. Sustainable development of this ecosystem zone re quires international collaboration and concrete responses at the local, national and international levels. Ecosystem management can act as a new tool in com bining many topics related to northern timberline forests, and it can have solid links with all aspects of sustainable development Both human and natural factors affect dynamics and modify the lesotundra zone, and they are powerfully interrelated. In the literature, most of the atten tion focuses on natural factors, less on human factors - i.e. socio-cultural, eco nomic and political factors. If we view these separately, it will be difficult to understand the complicated interacting impacts and to find constructive ways to regulate them. Only a holistic approach to the problem provides a basis for success. Each country must chart its own course in compliance with its culture, history, social and economic priorities, and prevailing institutions and political structures. The problems and opportunities of sustainable development of the lesotundra zone in Russia may be broadly divided into five interrelated spheres: 21 1) Spiritual-cultural opportunities 2) Reduction of poverty and achievement of higher quality of life 3) Problems of an environmentally unsound economy and ways of resolving them 4) Ecosystem management perspectives in nature rehabilitation and pro tection 5) Participation of local population and various stakeholders in decision making and development of local programmes of sustainable devel opment. 1 Spiritual-cultural Opportunities The lesotundra zone in Russia is home to many peoples and it is characterised by its high level of cultural and ethnic diversity. Komi, Yakut, Russians and many lesser indigenous peoples live within the lesotundra ecosystem - Samis, Nenets, Khants, Selcups, Kets, Dolgans, Enets, Evenks, Evens, Nganasans, Chukchis, Yukagirs. In cultural terms, the southern and northern boundaries of the lesotundra zone form rough ethnic boundaries. For example, the Nenets are reindeer herders, owners of large herds of reindeers, and they seasonally mi grate from the tundra to the northern parts of the lesotundra. The Komi, who are a forest-dwelling people, live closer to the southern border of the lesotun dra where it meets the taiga zone. Indigenous peoples living within the lesotundra zone have a cultural and spiri tual heritage going back thousands of years. For them, the subject of sustain able development cannot be discussed without first achieving an understanding of its traditional and cultural significance. Indigenous holistic approaches to sustainable development implies more than a linguistic or semantic analysis. It goes to the very heart of traditional indigenous cultural values. Nature, land, is related to all aspects of their lives. The concept of land being sacred provides the basis for indigenous religions. The existence of the least numerous of the indigenous peoples is under threat today. Now there are only 209 Ensi people, 1,113 Ket people, 1,140 Ukagir people, and 1,278 Nganasan people left. We have to recognize that cultural and ethnic-spiritual diversity is our global wealth, and this is now under threat in Russia. This is why the development of the spiritual and material culture pres ervation, the protection of traditions as the basis for self-identification and eth nic evolution, are seen as important opportunities for sustainable development of the lesotundra zone in Russia. 2 Reduction of Poverty and Achievement of Higher Quality of Life The lesotundra in Russia is a zone of social unsustainability. One indicator of this is a process of depopulation, which reflects a deep cultural, demographic and economic crisis in the tundra and lesotundra zones and in Russia as a 22 whole. Russia's population is expected to decrease by 30 % by the year 2050 if the current demographic trends continue; this new research finding was an nounced by Goskomstat, the State Statistics Committee in 2002. The popula tion can drop from 144 million to about 102 million people by the middle of the century. The most pessimistic prognosis considers a drop of as much as 47 % to be possible. No specific reasons were cited for the decline, although ear lier studies have attributed it to the bad economic situation, poor state of the environment, and high stress. According to the Committee, Russian men now have an average life expectancy of 59 years and women 72 years (Russian En vironment Digest 2002). The depopulation of the Russian North is due to both negative natural popula tion growth (falling births and rising deaths) and increasing net emigration. For example, the death rate has exceeded the birth rate in the Archangels Oblast since 1992 and in the Murmansk Oblast since 1993 (Lausala and Valkonen 1999). In 1989-1990, the average life expectancy in the Barents Sea territories was the same as in the Russian Federation as a whole, 69.4 years. In the period 1989-96, however, life expectancy has fallen to 66.0 years in the Russian Fed eration as a whole, and to 64.6 years in the Barents Sea territories (Lausala and Valkonen 1999). Unprecedentedly high levels of mortality prevail especially among the indige nous peoples living in the Arctic and Sub-arctic regions (where the lesotundra zone lies). Mortality among these indigenous peoples has grown by 35.5 % during the years 1990-1996 (Abdulatipov 1999). Also, the nature of mortality has changed during last decades: the main risk group is no longer that of chil dren, but that of people in reproductive age. The main cause of death is no longer sickness, but death as a result of injuries, accidents and suicide. It is evident now that the main cause is the destruction of the traditional lifestyles of the indigenous peoples. This applies particularly to the traditional reindeer herding occupation in the tundra and lesotundra zones. The crucial blow to their traditional way of life and their traditional subsistence system was in flicted by the State in the 1 960 s when the public policy resulted in the resettle ment of the inhabitants from their small settlements into large villages. This coercive resettlement of the population signalled the beginning of the destruc tion of the historical and ecological balance in the structure of the indigenous peoples' settlements and subsistence lifestyles. Resettlement, their being forced to live in large villages as national minorities, the massive separation of chil dren from their parents in favour of educating them in community homes, the preservation orders on the vital grasslands, and the reduced possibilities to en gage in their traditional activities, all these changes led to a spiritual and social crisis among the indigenous peoples. Since the 19705, hidden unemployment and alcoholism have become wide spread, and families and traditional culture are beginning to be destroyed. These problems have led to a reduction of the natural increase in population and its total size. In recent years, the destruction of traditional subsistence ac tivities, especially of reindeer herding, continues. This has led to a radical in crease in unemployment and a decline in living standards and quality of life. 23 Between 1994 and 1996, the number of working indigenous people in the North fell to an average of 32.5 %, and now, according to official figures, 25- 30 % of the population (of the physically and mentally able group of indige nous peoples) are unemployed, with young people below the age of 25 contrib uting a large proportion (for some indigenous peoples the figure is 35-40 %). Additionally, the number of people and the density of the population in the le sotundra zone are now decreasing due to emigration from the Russian North in general. A special study should be carried out to quantify the numbers of peo ple emigrating from the lesotundra zone. Current available statistics show that one million people of working age left the Russian Arctic and Sub-arctic re gions between 1992 and 1998. This is about 10 % of the total population inhab iting these regions (Goscomsever report 1999). For example, a cumulative net emigration from the Barents Sea territories between 1993 and 1997 was 169,700 people. Thus, 75 % of the population decrease in these regions in the same period was due to net emigration, and only 25 % to natural population decrease (Lausala and Valkonen 1999). Social ills associated with unemployment, poverty, diseases, family break down, crime, suicide, and alcoholism are in the rise in the lesotundra zone. This is why the goal of sustainable development in the social sphere lies in the enhancement of the quality of life, well-being and health, particularly among the most vulnerable population groups. This should be done in the face of growing environmental pressure, notably in the form of polluted air, water and soil, the effects of climate change, and other factors. 3 Problems of an Environmentally Unsound Economy and Ways of Resolving Them It can be seen that economic activity, population density, the degree of urbani sation, and overall human pressure on nature, all rapidly increase in the direc tion north to south, i.e. from the tundra zone through the lesotundra towards the taiga. The density of land and water transport communication, the number of towns and cities, and other permanent settlements also increase in this direc tion (see Resources ... 1998). We can also see the general correlation of the borders of the lesotundra zone with densities of one or fewer people per square kilometre (Geographical Atlas 1980). The isoline of 1 person per square km is usually considered to be the fringe between economically developed, settled regions and undeveloped or sparsely populated ones (with occasional perma nent human settlements). Thus, the lesotundra zone could be considered to be a fringe zone from the socio-economic point of view. The delineation of the southern and northern borders of this intermediate zone is not only a theoretical, but a practical issue. Special social, economic and en vironmental policies are needed with respect to the "Northern Regions" in gen eral, i.e. taiga, lesotundra and tundra. For many years, scientists sought to es tablish and elaborate integrative socio-natural criteria for the delineation of the boundary of the "North". In the 19705, it was proposed both in Russia and 24 Canada to delineate the southern border of the North according to the agro climatological boundary of permanent open-ground farming (the sum of effec tive temperature sum of the growth period exceeding 1600° C). This boundary correlates with the southern boundary of the lesotundra zone in general (Mor ton 1970; Agranat 1984). The northern boundary of lesotundra zone (the boundary with tundra) coincides with the tree line. Trees usually begin to occur when effective temperature sum exceeds 700° C, but tree growth is also deter mined by regional differences in humidity (Puzachenko 1985). In order to gain a better picture of the contemporary problems of the environ ment and development in the lesotundra zone, it is useful to spend some time examining the historical features of the settlement and economic occupation of this zone. Human pressure on the nature of the lesotundra zone and the transformation of its ecosystems increased significantly in the 16th century. It was due to more extensive settlement than earlier, in times associated with the Russian State policy of territorial expansion and the development of the new frontier lands in Western Siberia, previously very sparsely settled. However, the traditional cul tures of the peoples living there were relatively well adapted to the natural pe culiarities of this marginal zone and people were flexible and able to adapt and respond to changes in their environment and to seasonal conditions. This is well illustrated by the traditional practices and organisation of reindeer herd ing, local farming, hunting, gathering, etc. For example, being nomads was the most culturally and ecologically adaptable traditional way of life of several peoples living in the tundra and lesotundra zones. The lifestyle and the culture of the northern peoples, their values, needs and beliefs were also well adapted to the uncertainties of life in this fragile and sensitive environment. G. I Tan filiev (1953), the well-known Russian pre-revolutionary scientist, considered that the settled way of life was absolutely impossible in the tundra zone and that seasonal migrations of people with their reindeer herds to the lesotundra zone was the optimal life style. This life style meant reduced impact on the le sotundra, but there were likely to be local impacts around settlements and in the grazing lands, albeit these were minor compared to modern-day impacts. The industrial impact on the lesotundra zone has accelerated since the begin ning of the 20th century. At first it was particularly due to the development of forestry, which was followed about 50-60 years ago by large-scale extraction and processing of mineral and petroleum resources. Taking into account the ecological significance of the lesotundra zone and the increasing human pres sure on it, a Protection Belt of Pretundra Forests (PBPF), amounting to 21.1 million hectares, was established in Russia by a special Government bill in 1959 (Forest Encyclopaedia 1985). Consequently, about half of the territory of lesotundra is intend to be protected. A strategy for ending the nomadic way of life of the indigenous peoples was developed in the 20th century within the framework of "socialist reconstruc tion" of the rural economy. From 1968 to 1989, about 23,300 nomadic herders were forced to discard their traditional migratory way of life and move to set 25 tlements (AMAP 1998). Such policy led to serious social and economic prob lems in the lives of the indigenous peoples. Although this state policy against the nomadic mode of life was discontinued in 1990, the number of herders has not increased. Along with the continuing social deprivation of the lesotundra zone, the pres sure of human activity upon the environment in many of its localities greatly exceeds the carrying capacity of the territory. This is evident in areas of vast exploitation of oil and gas resources, forestry, industrial metallurgy and wood processing plants, and also in several regions with reindeer pastures within this zone. There is much evidence of deforestation and ecosystem degradation in different parts of the lesotundra zone and the northern taiga bordering on the lesotundra zone. Forest fragmentation and the expansion of treeless areas have occurred along the southern border of the lesotundra zone and in the northern parts of the taiga zone. These have been caused both by the destruction of ecosystems and by direct impacts of pollutants originating from industrial activities. One indicator of such impacts is that the observed current southern border of the lesotundra zone in the Archangelsk Region and the Komi Republic lies 40-100 km to the south of the southern boundary of the Protection Belt of Pretundra Forests (PBPF) (Semenov and Ogibin 1998). Human impact has also displaced the northern boundary of the lesotundra zone to the south. As a result, accord ing to published estimates, the total area of man-made tundra and lesotundra stretching from the Kola Peninsula to Chukotka embraces about 470-500 thou sand sq. km. (Kryuchkov 1991). The heaviest pressure on the nature of the tundra, lesotundra, and taiga zones is caused by industry, although the impacts on renewable resources, especially those of forestiy, are becoming increasingly severe. The significance of im pacts such as those of tourism and recreation (including sport-hunting and - fishing) are also rising and in the very near future they can impose pressures on ecosystems comparable to the effects of these activities in the northern regions of North America and Western Europe. In the year 2000, more than 1.5 million tourists visited the Arctic as a whole (Arctic Flora and Fauna 2000). The lesotundra zone is deteriorating as a result of pollution of the air, soil, wa ter and the ecosystems in general caused by industrial emissions from local mining and metallurgy plants, exploitation of oil and gas fields, by wood indus try plants, isolated northern settlements, by transportation, and by acid deposi tion from the west. These impacts of the mining and metallurgical industries on the ecosystems of the lesotundra were analysed in several hot spots including the region of Norilsk and the Kola Peninsula. The degree of ecosystem distur bance has been found to depend on the volume of industrial emissions, their chemical composition, the time of service of the plant, the characteristics of the soil and vegetation cover, the topography and climate, as well as emission con trol and recovery systems. 26 Most pollutants emitted into the atmosphere come from three processing plants situated in the lesotundra zone or near its boundaries with the taiga and tundra zones. They are the Norilsky plant in the district (the town of Norilsk) with atmospheric emissions amounting to about 2.140 million tonnes (as recorded in 1998), and two plants on the Kola Peninsula in the Murmansk district, the "Pechenganickel" plant (the settlement of Nickel) with emissions of 0.197 million tonnes and the "Severonikel" plant (the town of Monchegorsk) with emissions of 0.099 million tonnes (State Report ... 1999). New data on the impact of the largest plant - among them Norilsky - has become available (Integrated Ecosystem ... 2000). Annual waste of this plant is estimated to amount to 2.3-2.5 million tonnes, 90 % of this being sulphur dioxide. As a re sult of the long-standing impact of such wastes on the Taimir (Dolgano- Nenets) Okrug territory, 45 million hectares of hunting grounds, arable lands, as well as reindeer pastures have become unviable according to data obtained from satellite surveys (Integrated Ecosystem ... 2000). Results of the impact of this plant on Arctic vegetation can be obtained through remote sensing images (Toutoubalina and Rees 1999). Comprehensive studies of the impacts of mining and metallurgical plants situ ated just on the border of the taiga zone with the lesotundra (Monchegorsk), and closer to the tundra zone within the lesotundra zone (Nikel) have identified 4-5 zones of disturbed and transformed ecosystems surrounding the plants (Kryuchkov 1991; Kravtsova et al. 1996; AMAP 1998; Integrated Ecosystem ... 2000). Various systems of classifying ecosystem damage were integrated to delineate these zones of lesotundra and tundra degradation (Vlassova 2002). The formation of such zones of ecosystem degradation causes the northern and the southern borders of the lesotundra zone to move southwards. Northwards, the lesotundra zone becomes man-made tundra landscape, while southwards the man-made lesotundra and sometimes tundra (especially in the zone of in dustrial wasteland) " invades " the taiga zone, forming what is called "anthro pogenic tundra and lesotundra The stabilisation of ecological conditions in the industrial Kola region requires that emissions from "Severonikel" and "Pechenganikel " be reduced by as much as 10 000 tonnes per year in each plant (Kryuchkov 1997). In the Mur mansk district as a whole, no more than 25 000-30 000 tonnes should be emit ted into the atmosphere. However, according to our estimates based on the data of the last "State Report on Environment" (1999), the emissions from these plants are about 20 times larger than they should be for re-vegetation of the area to begin. The impacts of the exploitation of oil and gas fields pose a serious threat to the lesotundra zone. An important factor related to the oil and gas industries' im pact is the pollution of the ecosystems by various toxicants. These industries pollute the atmosphere with aromatic hydrocarbons, oxides, heavy metals (re sult of unorganised burning of oil and gas), gas-compressor stations, boiler plants, transportation, and oil pumping. The foremost toxic substances are oil and gas products. Their ability to migrate through food chains creates serious ecological consequences. Oil causes injuries to plants, inhibiting growth and 27 disrupting photosynthesis and respiration, and disturbing root systems, leaves and reproductive organs. Its impact upon phytocoenoses results in the degrada tion of the vegetation cover, impoverishment of species variety, and reduction in plant productivity. Roads, pipelines and transmission lines associated with oil and gas exploration and development cause fragmentation of large intact areas and habitats into smaller units, isolating flora and fauna populations (Arctic Flora and Fauna 2000). Losses due to spillage of oil during the transportation are colossal. At a press conference at the Interfax head office on March 19, 2002, it was stated that oil losses during transportation in Russia vary between 3 % and 7 % of production, whereas international standards allow losses no greater than 0.1 % of all oil extracted. A member of the Russian Academy of Sciences and vice-president of the Russian Academy of Ecology, Viktor Danilov-Danilyan, said 73 % of all Russian main pipelines have been operating for over 20 years and 41 % of the pipelines are older than 30 years, while their standard service life is set at 33 years. (Russian Pipelines ... 2002). In the Hanti-Mansiysk and Yamalo- Nenetskiy districts alone, the development of petroleum and gas deposits and all manner of negative impacts have resulted in these fragile arctic ecosystems loosing irrevocably 11 million hectares of reindeer pastures in the lesotundra and tundra zones, and the pollution of more than 100 large and small rivers (Draft of the Federal ... 2000). Such large-scale degradation is the result of am plification of the direct effects of the industries. Zones of oil and gas exploita tion usually coincide with areas of natural pastures which, when damaged, lead to more grazing pressure, and even overgrazing, being exerted on pastures out side the industrial zones. The impacts of industrial wood-industry plants and the pulp and paper industry plants are huge because of the large concentration of these industries in the taiga zone near to the lesotundra zone. Of the pollutants emitted by them, ni trogen oxides, sulphurous anhydrite and inorganic dust cause most of the dam age to forests and ecosystems as a whole. The single greatest polluter among them is situated in Sevorodvinsk (in the Arhangelsk district), near the border of the lesotundra with the taiga zone. Here, emissions of pollutants into the at mosphere amounted to 49,300 tonnes in 1998. The next biggest source of emis sions is the town of Koriayama in the taiga zone, also in the Arhangelsk dis trict, where the Kotlasskiy pulp and paper plant emits 26,200 tonnes of pollut ants. The third is the Syctyvkar wood-industry plant in the Komi Republic, which emitted 25,000 tonnes of pollutants in 1998 (State Report ... 1999). The impact of the Syctyvkar industries, situated in the taiga zone with predomi nantly pine and spruce forests covering about 74 % of the territory, was ana lysed by scientists from the Komi Science Centre, Russian Academy of Sci ences. Forests within a radius of 50 km around Syctyvkar were then considered to be severely degraded. The zone of primary impact, with industrial pollutants exceeding the minimum level by 100-150 times, extends within a radius of 3.5 km from the Syctyvkar industries. The zone of the next most severe impact, with pollutants exceeding the minimum level by 20-100 times, includes an 28 area covering 3 km from the first zone's boundary along the line of the domi nant wind direction. Then comes the zone of moderate impact, with industrial pollution exceeding the minimum level by 4-20 times. The extent of this zone has not yet been fully determined (Development of the North ... 1997). Areas around these industrial centres form a kind of man-made lesotundra and tundra ecosystems within the taiga zone. Impacts of isolated northern settlements and infrastructure on the lesotundra must not be ignored. Northern settlements are supplied with energy, heat and light in the form of coal, fuel oil and firewood. Crises in energy supply mainly associated with the unreliable delivery of coal lead to increasing needs for firewood and thereby to felling of forest in the lesotundra and taiga near set tlements and villages. A settlement with 10,000 inhabitants usually has no less than 10 primarily coal-fired boiler rooms emitting large quantities of sulphur dioxide, nickel, dust and other pollutants into the atmosphere. Local air pollu tion within a radius of several kilometres of such a settlement equals that of the mining and metallurgical plants in the second and third zones of degradation. High pressure on the lesotundra ecosystem and on the traditional lifestyle of the indigenous peoples is produced by the hydroelectric power stations situated in the mountainous regions of the lesotundra zone. As a result of the impact of one of them, situated on Kolima River, large tracts of reindeer pastures were flooded. Moreover, local peoples of the national settlement of Orotuk, Tenkin sky region, situated near to this power station do not have permanent access to the electricity supply and sometimes for several months a year they have no electricity supply to their homes. Taking into account the deficit of energy supply in remote settlements in the lesotundra zone and northern taiga and the increasing needs for firewood, hunters and reindeer herders should be supplied with balloon gas. It will also help to stop the retreat of forests to the south and will promote stabilisation of the environment in the North as a whole. The use of tracked vehicles also aggravates the situation. The surroundings of most northern settlements usually have a hilly and eroded relief and patchy growth of small plants, mostly grasses. Tracked vehicles basically destroy the soil and vegetation of the tundra and lesotundra zones. Previous studies have shown that 15 %of the tundra in Russia has been destroyed by various trans portation vehicles. This in turn leads to the melting of permafrost, erosion and thermokarst development. In some regions in the southern tundra and lesotun dra, the rate of the thermokarst surface sinking is taking place at the rate of 10- 12 cm per year. Dust, covering soils near settlements, also causes the develop ment of thermokarst (Arctic Research 1990). Investigations should be done to see where thermokarst sinking is induced by human impacts and where it is due to natural processes, especially climate warming. The volume of emissions (sulphur dioxide, nitrogen oxides, hydrocarbons, carbon monoxide and some times lead) from motor vehicles in the lesotundra zone is also high and should be considered as a significant form of human impact on lesotundra and taiga zones. For example, the emissions from motor vehicles in the Murmansk dis trict is estimated at 160 600 tonnes, which is almost as much as emissions from the Pechenganikel plant (State Report ... 1999). 29 Problems of sustainable development involving the forest resources of the leso tundra zone are important issues despite the fact that the lesotundra is typically less exploited for forestry than the taiga zone, largely because the trees and shrubs of the lesotundra are smaller and thus less desirable as raw material for wood products, and wood resources have less commercial value. Lesotundra forests have an important protection function and play a significant role in the traditional livelihoods of the indigenous peoples inhabiting these areas. How ever, in recent decades, commercial logging operations have advanced closer to the lesotundra across much of the boreal region. For example, in northwest Russia, logging operations were extended close to the lesotundra between the 1960 s and the 1990 s (Arctic Flora and Fauna 2000). If a system of measures aimed at preserving the valuable native forests in the northwest of Russia is not introduced within a couple of decades, "native for ests will turn into a gigantic plantations of birch brooms," claims Greenpeace Russia co-ordinator Alexei Yaroshenko (Greenpeace Protests ... 2002). Great progress in the sustainability in the lesotundra zone could be made if the ex perience of the Svetogorsk paper mill, where it has been decided not to use timber from virgin forests, were to be followed at other Russian and foreign owned paper mills (O'Flynn 2002). Modern-day forestry has been an impover ishing factor for both biological diversity and reindeer grazing. Since the 19605, forest management practices consisting of clear-fell logging have pre dominated in Russia. These practices, especially on the border with the leso tundra zone, and sometimes even within it, are extremely damaging, and the rate of recovery is slow or impossible because of the presence of permafrost and thermokarst erosion. Areas harvested often become irreversibly swampy. Consequently, the deforestation of the northern boreal zone under the impact of commercial forestry causes the man-made lesotundra zone to move to the south and into the taiga. The transformation of the northern parts of the taiga zone into a man-made lesotundra zone is going on in Russia. There are no statistics on the impact of forestry upon the lesotundra zone. However, it is evident that logging will expand from the taiga to the lesotundra zone, where large "islands" of old-growth pre-tundra forests still exist This process will occur mostly in the north of European Russia where less than approx. 13 % of the old-growth boreal forests remain (Aksenov et al. 1999). The romantic image of an endless expanse of unspoiled forest taiga stretching across Russia is no longer true, is the warning of researchers as set out in the spring 2002 presentation of the first atlas of the country's forests (O'Flynn 2002). The "New Atlas" (see O'Flynn 2002) embodies information gathered from thousands of satellite images and hundreds of field trips to the remotest parts of the country to provide an overview of the country's remaining virgin forests. A virgin forest is defined as an area not smaller than 50,000 hectares not affected by human activity, it is home to wildlife, and usually supports a number of ecosystems. Just 9 % of the forested area of European Russia re mains intact. According to the authors of the atlas, approximately 50 % of the remaining virgin forest is confined to five regions in Siberia. 30 The report points to man-made fires, logging and mining as typical examples of the ways in which human activity is impinging on virgin forests (O'Flynn 2002). Forestry in the Russian North is becoming more and more profitable, economically attractive, and timber production is increasing. During one year alone (the logging year 1998-1999), the amount of timber production increased by 20-30 %. In the Arkhangelsk, Komi, and Irkutsk districts (these having convenient access to sea and thereby export facilities), timber production in creased by 25-35 % percent (Report on ... 2000). In the work entitled "The Last of the Last" the stress in on the observation that "most of the timber cur rently harvested from old-growth forests, and even in the sub-tundra forest belt (lesotundra zone), of the European Russia is exported to Western Europe, par ticularly to the Nordic countries. The foreign importers and consumers share with Russian loggers and authorities the responsibility for the destruction in Russia of the last old-growth forests of Europe. Therefore, the protection of the remaining old-growth forest areas in European Russia should also become their shared responsibility" (Aksenov et al. 1999). The environmental organisation Greenpeace says that Western European firms make good business profits from the 30 million cubic metres of wood they im port annually from Russia, but care little for the consequences despite the stringent standards applied in their own countries (Europe's Timber ... 2002). "The Germans are characterised by high ecological awareness at home; it would be good for them to export it," said Stephan Huettner, a Greenpeace volunteer from Berlin. He joined 15 Russian, German and Austrian activists, who protested in March 2002 at the German Embassy in Moscow and at saw mills in Arkhangelsk. Russian experts are also concerned by the double stan dards of countries benefiting from Russia's natural wealth. "It's normal for the West to see Russia as a source of raw material - the offence lies in it expecting only to get rich quick by exploiting Russia and without thinking of the future," said Dr. Alexei Yablokov, adviser to former president Boris Yeltsin on eco logical matters. Greenpeace believes that the administration of the Arkhangelsk region "is pur suing an irresponsible and short-sighted policy, failing to pay attention to the barbaric methods used in cutting down trees in these unique forests." In addi tion, according to the environmentalists, the local authorities have stopped cre ating new natural reserves such as the Onezhskoye Pomorye and Belomorsko- Kuloyskoye Plato National Parks. As a result, old stands of spruce are being replaced by secondary birch-aspen stands, and so-called 'forest villages' are left without any means of subsistence or hope for the future (Greenpeace Pro tests ... 2002). Local woodsman Anatoly Spitsin, 46, who supports his wife and one child on a monthly wage of RUR 2,500 (about USD 85) considers that if companies continue to cut old-growth forests, "they will have to resettle all of us somewhere else, because this is what we live off' (Europe's Timber ...2002). The further forestry-related use of the lesotundra and the northern taiga zones will have a negative impact on the traditional lifestyle of the permanent resi dents and the indigenous peoples of the zone since the forests and pastures of 31 the lesotundra also comprise most of the land base for traditional activities, including hunting, gathering and reindeer herding. Environmentalists are now seeking a practical solution suitable for all parties. Thus far, the suggestions made include encouraging Russian forest managers and companies to work to wards earning the Forest Stewardship Council (FSC) certificate, which is re garded worldwide as credible, independent proof of ecologically sound use of forests. Under the FSC system, forest tracts are not simply cut clear regardless of the age of the trees, but logged selectively, taking the older trees first, and safeguarding other areas. In another 30 years, the next generation of trees will offer better-quality wood, and the forest cover is retained. Ecologists see hope for the forests in the heightened awareness among consumers on the Western markets. More companies are starting to ask for the origin of their wood and how it has been managed, and more and more customers want FSC-certified products. The German family company HDM-Holz-Dammers from the Rhine region is a pioneer of the FSC system in Russia, having introducing it into the operation of the three small logging companies it bought in Arkhangelsk and 75 % of whose production is exported (Europe's Timber ...2002). Problems faced by reindeer herding. In contrast to forestry, reindeer herding is one of the oldest and most resilient forms of livelihood of the indigenous peo ples of Northern Russia. Today, reindeer herding, albeit a small element in re gard to its contribution to the gross national product in monetary terms, is still a viable branch of traditional economy and the lifestyle of many indigenous people's living in the tundra and lesotundra zones. By 1998, the population of domestic reindeer had been reduced to almost half of the 1990 level. (Draft of the ... 2000; Report on the socio-economic ... 2000). One of the main causes of this fall in reindeer numbers is the degrada tion of the lesotundra winter reindeer pastures by deforestation caused by for estry and industrial pollution. The indigenous peoples' traditional way of life is characterised by close contact with nature, following the path of reindeer be tween summer grazing lands in the tundra and mountains and winter grazing lands in the lesotundra. Winter pastures are of great importance for reindeer herding. During the long Arctic winter, reindeer depend upon access to range that is rich in ground lichens, which are their basic food. In the autumn, rein deer start to move to forested areas that provide layers of soft snow that they can dig through to again find the ground lichens. Epiphytic lichens found on old trees are important as reserve fodder when the lichens on the ground can not be reached due to ice layers on or within the snow. The lichens almost ex clusively provide these animals with the carbohydrates they need to maintain their body temperature in winter (Vlassova and Volkov 2001). Another cause of the decrease in reindeer numbers is the overgrazing of tundra and lesotundra pastures. Fewer and fewer winter pastures are available for reindeer herding as large territories are being occupied by mining and petro leum industries. This leads to an increased pressure by domesticated reindeer on the tundra and lesotundra ecosystems, and thereby to further degradation. 32 Ecosystems are completely overgrazed by reindeer in many areas. For exam ple, in the Yamal Peninsula, the reindeer population exceeds the carrying ca pacity of the pastures by a factor of 1.5, with 70 % of registered pasturelands belonging to a low quality category (Nature of Yamal 1995). The overgrazing of reindeer pastures certainly leads to deforestation of the lesotundra, espe cially because of the damage caused to shrubs by reindeer. This has the effect of pushing the treeline south in many areas (Arctic Flora and Fauna 2000). An urgent problem is to normalise grazing and the rational use of pastures. In May 2001, a law called "Territories of Traditional Nature Use" was passed in Rus sia, and this will help to protect pastures traditionally used for reindeer herding from invasions by industry. The poaching associated with the poverty of the population is becoming a sig nificant social and economic factor in the environmental degradation of the le sotundra ecosystem and its biodiversity. According to The Record (Hungry Russian ... 2002), hungry Russian soldiers helped poach wild reindeer to ex tinction. "We haven't seen a single reindeer," said Vladimir Fil, one of the Ecology and Nature Use Institute's scientists, who inspected the northern end of the Kamchatka Peninsula last week in a four-day helicopter expedition. "Anecdotal evidence is that there still are 30 to 40 individuals, but these would be too few for these wild reindeer to survive (as a species)," Fil reported. He said reindeer in the area numbered as much as 5,000 before 1991. Poachers from Vladivostok have wiped out wild reindeer in one of their habitats in Rus sia's Far East, a scientist reported and claimed that the Russian military was mostly to blame. Most of northern Kamchatka is occupied by Russia's Strategic Missile Forces, according to Fil. He said the reindeer population in that area began to shrink in the 1990 s following the demise of the Soviet Union and a sharp decrease in Russia's military spending. Financial problems prompted lo cal commanders to look for ways to supplement rations, he said. "They took to shooting reindeer when soldiers went hungry," Fil said, adding that he often witnessed the poaching when based in the area a few years ago (Hungry Rus sian ... 2002). The opportunities for farming and husbandry. Although the southern border of the lesotundra zone is considered to be the boundary of permanent open ground farming, local and interzonal (along river valleys) and semi-open ground farming is possible to the north within the overall lesotundra zone. The exploitation of natural resources in the lesotundra zone by farming and hus bandry (especially dairy husbandry) and their impact on ecosystems is locally important. Farming and forage lands are located mostly around the towns and isolated settlements in the lesotundra, and they are oriented to local markets to provide food for the local population employed in industry, forestry and trans portation. The most severe thermokarst erosion develops here, and this covers between 10 % to 40 % of the farming land (State report ... 1999). The pauperi sation of the population in the Russian North has led to increased pressure by local subsistence farming, especially potato growing. In some cases, this trend leads to further deforestation of the lesotundra zone, and to thermokarst ero sion and paludification (State Report ... 1999). 33 More intensive development of agriculture in the lesotundra zone is highly problematic. Soil amelioration is needed, especially in the European part, as the soil moisture level is very high, and paludification is the main factor limit ing farming development. While drainage should be implemented, the problem is that most drainage techniques have been developed for use in temperate re gions and are not suitable for the northern zones. In contrast, in a more conti nental climate, for example in Yakutia, irrigation is necessary. However, irriga tion leads to salinisation of the soil, and to the rise of the permafrost level, and to soil cooling. The most useful and ecologically sound way to ameliorate such soils is through agro-forestry improvement. The costs of planting forest belts are covered eco nomically within 5-7 years. Staff at the Yamal agricultural experimental sta tion has demonstrated that 100 metres of the forest line containing 200 trees increase the yields of potatoes by kg when compared to growing potatoes without trees (Agricultural ... 1969). This is explained by the effect of the trees catching snow and providing wind shelter, the improvement of the water-air regime of the soil, and the increase in its overall productivity. Problems of self-sufficiency in food supply and opportunities for the agricul tural development. Agricultural production volumes in the North of Russia, including the lesotundra zone have continually decreased in the 19905, and thus this region of Russia has become increasingly dependent on food imports from other parts of Russia and foreign countries. These circumstances are very serious from the point of sustainable development of the region as the self sufficiency of the population of the region in regard to food is very low, al though some reindeer meat, which is important in the diet of many indigenous peoples, is already exported from the region to the west. Large amounts of food and medicinal aid have been provided from the Nordic countries and the EU. The possible effects of climate change on human activities and health in the lesotundra zone are not yet evident. They are now being investigated in inter national initiatives, particularly within the framework of the "Arctic Climate Impact Assessment" (ACIA) project and the the UNEP Grid/Arendal project "Local Health and Environment Reporting for Arctic Indigenous Peoples." During the 1 9905, some extremely optimistic estimates were presented regard ing the impact of climate change on the wood resources of the Russian taiga and lesotundra zones. The Federal Research Programme of Russia (1997) made various predictions in their report entitled "Global Changes of Environ ment and Climate". One of these predictions was that climate warming is pow erfully going to affect the forests and wood resources on the Pomorsky low lands north of Narian-Mar (which is situated in the lesotundra zone near to the border with the tundra zone). Currently, the wood resources of the lesotundra there are insignificant because forests only occur on the south-facing slopes and in some large valleys. As a result of predicted warming (I.5°C in 50 years), all slopes and valleys, and parts of some watersheds, will become for ested. The effect will be at its maximum on the south-facing slopes, now occu pied by the lesotundra zone, and a significant stock of commercial forests 34 could develop. The area of mires will be reduced by a factor of more than 2.5 times over the next 50 years (Federal Research ... 1997). Much of the risk to the lesotundra and boreal forest from climate change involves decrease in the moisture available for tree growth, tree mortality due to outbreaks of insect pests, the increased probability of major fires, and changes caused by thawing of the permafrost. However, these prognoses did not address many climate related factors such as fire, insects and diseases, all of which play key roles in the health of the existing stands and in forest regeneration. One cannot, there fore, predict with any assurance that climate warming in the lesotundra zone will lead to a northward shift of the boreal forest tree line. In fact, one also needs to consider the human impacts discussed above, which could actually lead to a southward shift of the lesotundra zone. Another important man-related and natural driving force in the degradation of the forests and pastures of the lesotundra is that of fires, the frequency and scale of which have lately increased. Fires are either natural or man-made. To day it is estimated that in the Tyumen region alone, which is now being inten sively explored for natural resources, over 1.5 million hectares of reindeer pas tures have been destroyed by fire (Arctic Research 1990). One of the causes of escalation of fires in the tundra and lesotundra zones might also be climate warming. Climate change could increase the frequency and severity of fires, which could further accelerate permafrost thawing. In the system of lesotundra ecosystem management it should be taken into ac count that fires play an important role in the forest regeneration process as they provide massive dozes of important minerals and free soils from leaf litter and ground vegetation cover, which in certain natural lesotundra conditions inhibit forest growth (Sedyh 1996). It is believed that a decline in reindeer herding could also have a negative impact on the reforestation process as reindeer pro mote the removal of leaf litter and thereby the ability of new trees to become established. When leaf litter accumulates in great volumes, it disturbs the tem perature-moisture regime of the soil and promotes the paludification process and the disappearance of forested lesotundra areas. 4 Ecosystem Management Perspectives in Regard to Nature Re habilitation and Protection Ecosystem management can act as a new tool in combining many of the aforementioned aspects of sustainable development of the lesotundra zone. When elaborating the ecosystem management strategy, it is absolutely neces sary to take into account not only values of nature conservation, but also the new possibilities of sustainable development of the traditional activities of northern peoples as well as alternative nature-promoting technologies and ac tivities. There should be a shift over from the concept of nature conservation or protection towards the concept of nature rehabilitation through ecosystem management. 35 Protection of the lesotundra zone should be considered as only one of the pos sible measures in overall ecosystem management strategy. In some regions of the lesotundra it is necessary to form a system of strict nature reserves when considering the ecological value of concrete local ecosystems and the overall level of their degradation and pollution. The priorities for localization of strict nature reserves were not determined. In this respect, the scientific community has to pay greater attention to lobbying decision-makers on the great signifi cance of the development of a network of protected areas in the lesotundra ecosystem. For example, the priority in the establishment of strict nature re serves should be given to areas where old-growth islands of virgin forests exist and which should not be cut down as the volume of wood to be obtained from them is very small. Under the framework of various forms of protected areas, the allocation of ar eas for traditional land-uses to the indigenous peoples can take place under the Federal Law "On territories of the traditional nature use of the indigenous peo ples of the North, Siberia and the Far East", which was adopted in 2001. The protection of the rights of indigenous peoples to natural resources can be also implemented in the form of ethno-ecological refugia - conservation areas per mitting traditional ecosystem uses by local communities. These can protect pat rimonial and community lands from industrial and commercial invasion. Three purposefully organized eco-ethnical territories exist in Nenets Autonomous District and one in Yamal-Nenets Autonomous District. Upon local initiatives, such refugia have been established and their effectiveness has been proven, e.g. in the Tygil district of the Koryak Autonomous District, which was established in 1998. But it lacks the Government's support and can be abolished. The sup port of such indigenous peoples' initiatives is very important for the overall ecosystem management perspectives in nature rehabilitation and protection. The historical experience of indigenous peoples demonstrates that the tradi tional ways of using nature have already preserved vast territories of the North and the lesotundra zone, which are most valuable in relation to biodiversity and ecological resources. When underlining environmental problems of the lesotundra zone's sustainable development, one must mention the following most common ones: 1. Overall predominance of the concept of economic growth (not devel opment) oriented at resource-consuming industries, and showing disre gard for environmentally sound sustainable economic development concepts. 2. Ignorance of existing projects on alternative energy production (supply ing people with the balloon gas, small hydroelectric power stations in mountainous regions, hot springs, and wind-power facilities) and ab sence of innovative technological developments and financial support in this field; 36 3. Intensified exploitation of highly profitable hydrocarbon deposits, which is not accompanied by visible improvement of social and eco nomic situation; 4. Disregards on part of the producing companies (including foreign com panies) for international environmental standards and norms. The prior ity is given to the cheaper technologies saving the costs of environ mental protective measures; 5. Negligence of environmental impact assessment procedures in the process of project implementation, assignment of lower protection status to territories having in mind their future industrial development, underestimation of environmental damage; 6. Allocation of revenues from the damages compensation to purposes other than environmental protection measures at the level of local ad ministration; 7. Ignorance of indigenous peoples' interests and their dependence on the state and conditions of the natural resources and ecosystems. The prior ity of rights of licensed users of mineral resources over traditional land users. 5 Participation of Local Population and Various Stakeholders in Decision-making and Development of Local Programmes of Sustainable Development Recent experiences with large-scale resources development initiatives in the lesotundra ecosystem provide dramatic illustrations of the risks of top-down decision-making and of the high costs of dealing with the conflicts. The leso tundra zone became the arena of the conflict interests of the short-term and strategic interests of society. The interests of a "barbarian economy", oriented only at the goals of natural resources exploitation, deprive the future genera tions of opportunities to satisfy their needs in regard to environmental and eco system services. It is definitely the case at the moment that the interests of the 'barbarian economy" prevail in the Russian North. The functioning of this type of economy is based on the consumption of natural resources' yield belonging to the future generations and its further (rather doubtful) reimbursement. This economy, which provides the resources-consuming stakeholders with extra benefits, is based on the discrimination approach to income distribution from ecosystem use sacrificing the indigenous population, especially those groups, living on and off the land. This type of economy ignores the costs of environ mental protection and is responsible for the predominance of the natural re sources export pattern of the Russian economy, which is, in turn, promoted by the overestimated domestic currency rate. Reaching a broad consensus on development of local plans and programs is not an option, but instead the precondition for the sustainable development of the 37 lesotundra zone. Involving broad groups of civil society, private sector, local and regional administration and services, and all the stakeholders in planning and decision-making, is costly and time-consuming, but the long-term benefits far outweigh the costs. Participation helps to mobilize stakeholders around agreed objectives and secure the resources (local and traditional knowledge, financial, labor, etc.) needed to carry out development initiatives. Last, but not least, participation helps to identify conflicts between local, national and global sustainable development priorities, especially in the short term. For example, the conservation of global biodiversity requires the preservation of natural habitats, while the needs of poor groups of local population can be satisfied by the intensification of hunting, firewood-gathering or reindeer herding, and the needs of timber or mineral companies, are in future resources extraction within the same territory. There are a lot of such contradictions within the lesotundra zone in Russia. Therefore, in the specific situation in Russia, there is the prin cipal important opportunity to promote the integration of global environmental and other issues of sustainability (climate change, biodiversity conventions) especially in the lesotundra ecotone zone in reducing poverty and improving peoples' quality of life. References Abdulatipov, R. 1999. Aboriginal Face of Russia. Independent Newspaper - Scenario N 5. p. 7. Agranat, G. A. 1984. Nature use and the development of the territory of the foreign North. Moscow. 263 p. (In Russian). Agricultural and subsistence economic system in the Far North. 1969. Kras noyarsk. (In Russian) Aksenov, D., Karpachevsky, M., Lloyd, S. & Yaroshenko, A. 1999. The Last of the Last. The Old-growth Forests of Boreal Europe. Taiga Rescue Network. 67 p. AMAP 1998 = AMAP Assessment Report: Arctic pollution issues. Arctic Monitoring and Assessment Program, Oslo. 859 p. Arctic Flora and Fauna. 2000. Status and Conservation. Edita, CAFF Helsinki. 272 p. Arctic Research: Advances and Prospects. Part 2. Proceedings of the Confer ence of Arctic and Nordic Countries on Coordination of Research in the Arctic, Leningrad, December 1988. 1990 Academy of Sciences of the USSR / Commission of the Arctic Research, Moscow. 448 p. Callaghan, Т. V., Crawford, R. M. M., Eronen, M., Hofgaard, A., Payette, S., Rees, W. G., Skre, 0., Sveinbjörnsson, В., Vlassova, Т. К. & Werk man, В. R. 2002. The dynamics of the tundra taiga boundary: an over view and a co-ordinated and integrated approach to research. Ambio Special Report 11 .In print. Countries and Peoples. The USSR. Russian Federation. 1983. Moscow. 461 p. Development of the North and Problems of Re-cultivation. 1997. Reports of the 111 International Conference. St- Petersburg, Syktyvkar. 453 p. 38 Draft of the Federal Special Programme "Economic and Social Development of the Small Indigenous Peoples of the North till 2010." 2000. Moscow. 52 p. (In Russian). Europe's Timber Demand Destroys Its Last Ancient Forests. 2002. Deutsche Presse-Agentur, March 30, 2002 FAO 2001 = Global Forest Resources Assessment 2000. Main Report. FAO forestry paper 14. Rome. The Federal Research Program of Russia: «Global Changes of Environment and Climate». 1997. Collection of selected scientific papers. Moscow. 434 p. (In Russian) The Forest Encyclopaedia: Vol. I-11. 1985. Moscow. 563 p. and 631 p. (In Rus sian). Geographical Atlas. 1980. Moscow. 237 p. (In Russian). Goscomsever Report 1999. State Support to the Northern Regions: Principles, Directions and Mechanisms. 124 p. (In Russian). Greenpeace Protests Cutting of Russia's Forests. 2002. Interfax News Agency, March 25, 2002. Hrushev, S. A. & Klokov, К. V. 2001. The Northern Nomadism in Russia Sankt-Petersburg. 32 p. Hungry Russian Soldiers Helped Poach Wild Reindeer to Extinction, Scientist Says. 2002. The Record (Kitchener-Waterloo), March 23, 2002. Integrated Ecosystem Approach to Conserve Biodiversity and Minimize Habi tat Fragmentation in the Russian Arctic. 2000. GEF Project. Workshop Report. Moscow 2-4 February 2000. 27 p. Kravtsova, V. I, Ressle, A. E. & Toutoubalina, О. V. 1997. Mapping of indus trial impact on northern taiga and tundra vegetation in Monchegorsk area. In: The development of the North and Problems of Recultivation. Reports of the 111 International Conference. St. Petersburg, Syktyvkar, 1996, p. 267-268. (In Russian and in English). Kryuchkov, V. V. 1991. Extreme Anthropogenic Loads and the State of Arctic Ecosystems. Ecology 3: (ln Russian). Lausala, T. & Valkonen, L. (eds.). Economic geography and structure of the Russian territories of the Barents Region. 1999. University of Lapland, Rovaniemi. 250 p. Morton, W. L. 1970 The «North» in Canadian Historiogeography. Trans. Roy. Soc. Canad., ser. 4, vol. 8. Nature of Yamal. 1995. Ekaterinburg. 435 pp. (In Russian) O'Flynn, K. 2002. New Atlas: Russia Wilderness No More. Moscow Times, April 4, 2002. Puzachenko Y. G. 1985. Climatic nature of southern boundary of tundra. In: Communities of the Far North and Man. Moscow. Nauka. 22-56 p. Report on the socio-economic situation and the effectiveness of Federal Sup port to the Northern Regions of Russia in 1999. 2000. Goskomsever, Moscow. Resources and Environment World Atlas. 2002. Hotzel, Vienna and IGRAS, Moscow, 1998. Russian Environment Digest, Vol. 3. 190 p. 39 Russian Pipelines Said to Be in Catastrophic State. 2002. Russian Environ mental Digest, Vol. 4, No. 12: 18-24. Sedyh, V. N. 1996. Forests of Western Siberia and the oil and gas complex. Ecology, Vol. 1. 36 p. Semenov B. A. & Ogibin B. N. 1998. Determination of the border between pretundra and taiga forest zones in the northeastern part of European Russia. In: Research and management of the northern timberline region. Finnish Forest Research Institute. Research Paper 677, Kolari, p. 103- 105. State Report on Environment of the Russian Federation in 1998. 1999. Mos cow. 573 p. (In Russian). Tanfdiev, G. I. 1953. Forests limits of the Polar Russia. In: Geographical works. Geographgis, Moscow, p. 146-149. Toutoubalina, О. V. & Rees W. G. 1999. Remote sensing of industrial impact on Arctic vegetation around Norilsk, Northern Siberia: preliminary re sults. International Journal of Remote Sensing 20: 2979-2990. Vlassova, Т. K. 2002. Human impacts on the tundra - taiga zone dynamics: the case of Russia with some international comparatives. Ambio Special Report 11. In press. Vlassova T. K. & Volkov S. G. 2001. Ecological condition of the reindeer pas tures in Russia and abroad . Russian Academy of Agricultural Sciences. Review. Vol. 2: 101-117. (in Russian) 40 Living at the Timberline - The Sami and the Mountain Birch Forests in Northernmost Europe Maria Sofia Aikio and Ludger Miiller-Wille Abstract This paper discusses the utilization of the northern birch timberline forests by the Sami and the arising conflicts with other interests in this wood resource. The research is based on intensive interviews with Sami focusing on their val ues, knowledge as well as relations with and holistic perception of the birch. The specific birch usages are explained such as the acquisition of birch for high quality firewood and wood material for art and handicraft. Finally, the birch use by Sami is connected with future management and control of birch forests and policy recommendations are suggested recognizing the high value given by the Sami to the mountain birch. Northern Birch Timberline Forests: Issues of Control, Access and Sustainability The mountain birch forests within Säpmi, the cultural and socio-economic home region of the Sami in northernmost Europe, have received much attention in aboriginal, scientific and industrial circles during recent times. This attention is clearly a reaction to the changing human dimensions and environmental conditions related to the utilization of a specific natural resource, the birch, as is expressed by different emerging internal and external interests which con verge in the same space at the same time. The shifting environmental circum stances caused by climatic and global change add an encompassing umbrella to the challenges which local peoples face in northern circumpolar regions. The evolving developments in the northern timberline forests (birch, pine or spruce) are part of a global process in which the diverse human-forest relation ships are examined in detail in various regions around the world (cf. Abramovitz 1998, Goenner 2002) stressing the value of indigenous or local knowledge and practices, renewed approaches to sustainable development and resource management as well as the effects of economic and political global ization. It is understood that forest environments have been and continue to be 41 one of the maintaining organic bases for human existence connected to security and safety. Thus they require careful attention and assessment if they should continue to be part of humankind's livelihood. The northern timberline forests are no exception. These boreal forests are an ecotone, a transitional zone. They are considered to be a distinct vegetational type divided into the upper timber line, between forest and tundra, and the lower timberline, between forest and shrubs or grasslands (Cox and Moore 1993). In northernmost Europe, as Lars-Anders Baer expresses it, the Sami have been "boreal forest dwellers" for time immemorial, i.e. after the last deglaciation, using the emerging forest resources in a variety of ways in "hunting, trapping, reindeer herding, for food and fuel gathering, and the extraction of raw materi als" (Baer 1996: 19). By today, times and conditions have changed considera bly with the immigration of other peoples and their different livelihoods into Säpmi. Northern forest resources gradually have become of interests not only to the local peoples but also to external, either public or private, commercial and industrial institutions which, next to northern agricultural expansion, pushed the limits of economic forestry farther and farther into the timberline forests (cf. Hustich 1946, 1979 for earlier discussions; Kalakoski 1999). By the late 20th and early 21st century, the issues around forest utilization have emerged into a full-scale "timber-line conflict" that alludes to "the societal transformation of nature", shifting concepts of "wilderness", "the conservation of wilderness and the industrial exploitation of natural resources" as well as the polarization of "ethnic tensions", i.e. between Sami and Finns locally as Ari Aukusti Lehtinen (1991) discusses these processes in his detailed study of con temporary Finnish forestry policies, their conceptualization and implementa tion. Within the broader context, a discussion has arisen that question the validity of the very concepts of "knowledge and science" in the interface between aborigi nal and western-oriented societies and their intellectual history and culture. In short, whose knowledge and science has the power of influence and shaping ideas and policies aiming at resource utilization. In Säpmi, among other Sami scientists, Elina Flelander (1992, 1996b) and John Klemet Hastta Kalstad (1996, 1997) have raised this issue highlighting the basis of holistic Sami knowledge and values by taking Sami concepts and contrasting them with the more rigid, systematic and linear approach of western-oriented science. In this discussion, both facts and arguments need to be carefully proven in their truthfulness to reality without falling into the trap of right and wrong or black and white. This paradigm holds particularly true when spirituality and intuition are seen as one way of explaining "scientific truth". This does not deviate from the assumption that "knowledge" among the Sami, as with other societies, is holistic in principle combining both nature and culture in a circular fashion in terrelating people and environment through the daily application of what is known in society (Aikio 1990). This approach accepts limitations set by na ture, thus knowledge and understanding are guided to attain survival in life at the minimum level achievable in situations where decisions are made inde 42 pendent from externally converging forces and interests. By the 21st century, the circumstances have changed to a mixture of internal and external ex changes of ideas and innovations and decision-making processes. In resource utilization, this means that integrating or collective models might be found to alleviate conflicts. Be it reindeer herding (Kalstad 1997), tourism (Aikio 1998) or birch utilizations the issues and concerns are fairly similar. In Finland since the 19905, the conditions for the utilization of timberline for ests throughout the circumpolar boreal belt have received detailed attention through the works by Pertti Veijola (1998), Sihvo (2000) and Sandström et ai. (1999) to mention a few. Some of these authors represent public institutions such as the Finnish Park and Forest Service (Metsähallitus). Throughout the northern circumpolar regions, the future of boreal forests is discussed within the context of rapidly expanding industrial forestry into these areas, particu larly in northern Russia (cf. Yaroshenko et al. 2001). Furthermore, international workshops, in fact forerunners to this very meeting (Kankaanpää et al. 2002), were held on "Sustainable development in the north ern timberline forests" (Kankaanpää et al. 1999) and on "Sustainable develop ment in the Arctic: Lessons learned and the way ahead" (Canada 1998) in Whitehorse (Yukon Territory, Canada) in May 1998. These meetings brought together a wide range of people representing aboriginal and local northern peo ples, scientists, and practitioners. The published contributions provide a clear and detailed picture of the diversity of views of what "sustainability" means for whom under what circumstances and in which specific area. The question of how, for example, the northern mountain birch forests should be used as a re source by whom and for what ends has not and cannot receive one solid an swer. The following discussion in this paper will make this diversity apparent by presenting the Sami points of views on these issues (also cf. Miiller-Wille et al. 2001). Background and Methodology This paper discusses some results of recent studies which were conducted by the two authors in cooperation with other researchers within an international project focusing on human-birch relations (see details: HIBECO 2000-2003). Almost 150 intensive interviews were held with individual local Sami and Finns, commercial companies, organizations and public authorities in small rural settlements and administrative centers in northernmost Finland (Ivalo, Gäregasnjarga (Karigasniemi), Guhtur (Kuttura), Njuorggän (Nuorgam), Ceavetjävri (Sevettijärvi), Ohcejohka (Utsjoki), and Vuohccu (Vuotso)) and in northern Norway (Maze, Olmmaivaggi (Manndalen)) between October 2000 and February 2002 (HIBECO 2000-2003). The survey questions were formulated in joint discussions between local resi dents and the research team. The following areas of inquiry emerged and were seen as a way to grasp the complexity of local birch utilization at the northern timberline (Miiller-Wille 2000). 43 1) General knowledge of birch forests and their environmental conditions; 2) policies, management practices and their applications; 3) legal, political and economic frameworks for birch use; 4) types of birch use: - firewood production and consumption, - recent and current acquisition of birch firewood, - birch use as wood for construction and handicraft, - uses for art, decoration, healing, rituals, traditions and spirituality; 5) perceptions of and reflections on birch forests. The survey questions were translated into the languages (Finnish, Northern Sami, and Norwegian) spoken in the regions and posed to all interviewees with the clear understanding that all questions did not have to be answered and that their anonymity was definitely maintained. The methodological approach was designed to eliminate the juxtaposition of external interviewer (researcher) and internal interviewee (resident) by includ ing local people in the survey team who clearly were part of and familiar with the communities. The participating local interviewees raised questions about who would benefit from the study and its results. They were assured that this research could only be successful with them as full and equal partners. Steps were taken that this was guaranteed through open cooperation, joint workshops and publications of results. Based on the answers to the survey questions it was apparent that the partici pating interviewees were not interested in the monetary value or the exact amount of the volume of birch culled from the forests, rather they were keen on the preservation of their own knowledge and its further application in the use and management of birch forests. They also stated strongly that their involve ment in this study should result in the discussion and revision of prevalent atti tudes and existing rules and regulations set by the state organizations to exploit the forest resources in Säpmi. The interviewees were Sami and Finnish house (and cabin) owners, entrepre neurs, and officials, men and women, usually older than 40 years with a fair representation of people above 70 years old who still had experienced a very close link with the surrounding landscapes and their natural resources during their life time. Some people were clearly suspicious about the survey saying: again another questionnaire without giving full credit to us. Most of them have had experiences in which researchers come, ask many questions, leave and one does not hear from them afterwards at all, not even receiving published results for the benefit of the "informants" who, in fact, are the experts in the knowl edge the researcher seeks to obtain. Because most of the researchers, like one of the authors - Maria Sofia Aikio - are part of the society in which the research was carried out, it made interviewees feel more confident with the expectation to see results returned. 44 In the case of the Sami interviewees from Ohcejohka on whose knowledge the following explanations and discussion are based, the interview sessions, espe cially with older people were quite time consuming but informative at the same time. They were willing to tell stories about and their viewpoints on birch and nature generally. They were not that much interested in the economic aspects of their work or the exact volume of their birch usage. They always knew how much wood (birch) they needed annually, e.g. for firewood or construction and how much work and energy were involved to acquire this product. These men tal calculations are part and parcel of the tasks one needs to follow and fulfil during an annual and seasonal cycle being knowledgeable and in tune with the physical environment. In general, most of the older Sami experts had a very solid recall of their tradi tional environmental knowledge, especially hunters, reindeer herders, fishers, and the ones who had lived and worked outdoors most of their life. They had a deep knowledge of the natural conditions generally and particularly with regard to the birch, the predominant tree species in Säpmi. It also did occur that some interviewees deferred to another person who would know better, or they men tioned stories about a person who was respected for her/his knowledge but al ready passed away. Traditional knowledge and values are of very great impor tance to the Sami people. Younger Sami seem still to have some of this knowl edge, but they are unsure about it and fear that, in fact, they lack too much knowledge when it comes to human-environmental interactions. This genera tional discrepancy in knowledge, as people suggested, needs to be overcome by preparing the research results fully expressing Sami knowledge to their satis faction and integrate it, for example, into school curricula at all levels (He lander 1999). Human-birch Relations: The Holistic Approach to the Environment The interviews focused on the continuing use and the importance of the moun tain birch forests to local Sami people who live in these forested areas and use these northern and altitudinal fringes of the birch timberline. An earlier study with a similar focus looking at human impact on the northern timberline forest was conducted in Ohcejohka in the mid-1980s drawing from interviews with local residents as well as interpreting map and air photo material to assess for est conditions and potential (Mattsson 1987, 1995). The recent surveys gave attention to both the general and specific Sami knowl edge of the birch forests and their environmental conditions such as healthy stands and decline and damage in vegetation. In addition, the precise terminol ogy in the Sami language related to birch was discussed and recorded. All Sami land-use practices are managed practically and spatially within "bäiki", the nu clear family, and "siida", the extended kinship unit (Helander 1996 a: 112-114). Here gender relations have an influence on equity in land-use practices and the ensuing results (Aikio 1990). In this respect the use of birch is also directly tied into the socio-spatial system by providing materials and fuel for running a 45 household unit and related activities, to traveling on land, water, or ice and to working in hunting, trapping, fishing and reindeer herding. Many interviewees, especially older men with a long background in Sami tradi tional livelihoods understood very well the changing aspects of the environ ment in their land-use area and even beyond in some neighboring regions. They stated that the amount of birch forests in Ohcejohka has declined during the last 50 years. This is illustrated by the Sami word "vuopmi" which de scribes especially forests with big, old trees, often growing fairly densely in river valleys. In 2001, for example, there was no "Geavovuopmi" anymore, this place name refers to the well-known "Geavvu (Kevo) Valley Forest". To day, a hiker can cut across the valley wherever s/he pleases without running into dense birch copses. This was not possible prior to the Epirrita autumnata epidemics of the 1960 s which destroyed many birch trees. To highlight this environmental change, one Sami expert mentioned that he skied there in 1947 and tried to make fire on the snow with dead trees, but it would not start. Ear lier one could easily start a fire, however, already then the wood was probably damaged by Epirrita autumnata and had become useless. After the 1 9605, he noticed that these dead trees would not burn easily at all. The only "vuomit" that still exist in Ohcejohka are in the valleys of Veahca johka and Ohcejohka, however, forests have declined there, too. Smaller copses with large numbers of birch such as in river valleys, called "leahki" (= valley), and on elevated terrain between river tributaries, "skäidi or "maras", are identified by "vuovdi" (= grove) or "soahkebohttut" (= birch copses) to dis tinguish them from "vuopmi". The combination of "vuopmi" (woods or forests) and "cähci" (= water) is the most important physical factor for locating human settlement in Säpmi. Many "vuopmi" areas in Ohcejohka have now changed into "duottar" (= treeless tundra) after the herbivore epidemic of the 19605. This event was an extreme ecological catastrophe that has had many long term effects which the local Sami still see and feel today. The increased growth and northerly expansion of pine trees have been very no ticeable in the timberline forests enticed by various plantation programs of the Finnish forest administration between the 1930 s and 19705. Local people do not value pine as much as birch. Still, pine is taken as timber for building houses and other structures, making boats and using them as shelter against wind. However, people prefer birch and miss it if it is not available wherever they are. The need for and the use of firewood has considerably declined in volume since the expanding road network and infrastructure allowed the import of oil, gas, and electricity for heating. Many traditional felling areas are not used anymore. They are now decaying and grown over with rather dense and twisted small birch because there is not enough light for the growth of new, stronger and higher quality birch. All Sami experts stressed that firewood forests require continued, diligent management to allow for proper growth and guarantee sus tainable use in the future. 46 The Sami interviewed expressed quite strongly that all areas within their reach have always been in use and that they do not know or have not seen any place that is not part of their land-use practices and pattern. Areas might be left idle or fallow for some time, however, they are always part of the holistic percep tion of the land. In Ohcejohka, people living on the Finnish side of the Deatnu (Teno or Tana) River have also used areas on the Norwegian side getting birch for firewood, material for handicraft and other purposes. Traditionally, each family or kinship unit had their own territory, areas for dif ferent needs such as firewood harvest, fishing, picking berries (cloudberry in particular), snaring of ptarmigan using birch copses and twigs as guides, hunt ing (especially during the snaring period in late winter), reindeer herding and other activities. For obvious reasons, grass sod cabins whose inner frame is constructed by birch wood were located near birch copses and a river or lake where ptarmigan could be snared (App. D. Fig. 3). These places were used also during fishing and reindeer herding activities. Snaring territories or trap lines were quite large and followed the distribution range of both ptarmigan and birch. Ptarmigan snaring, salmon fishing (i.e the tripod weir system in the Deatnu), reindeer herding, hunting, arts and crafts are still practiced in the Säpmi. All these activities are very much dependent on the mountain birch. Knowledge and Values: The Meaning and Usage of Birch Sami people still hold their inherited ways of thinking, that is the holistic un derstanding of life and nature which requires intensive studying, understanding and knowing of the physical environment before any action can be taken, even, for example, such seemingly minute tasks as felling trees. Furthermore, "[w]hen dealing with sustainability [of resources] from the Sami point of view, we are dealing with a holistic issue. Thus it is crucial to take into account that the concept of the environment consists of several elements such as ecological, cultural, social and linguistic factors. These elements make up the whole and must therefore be seen as one single entity." (Helander 1996b: 1). Elina He lander (1996b: 2) and also Johan Klemet Haetta Kalstad (1996, 1997) fully ac cept that contacts with other people and recent processes of modernization and globalization have forced the Sami to adopt values and ways foreign to them. In addition, it is argued that Sami institutions and authorities, the political and educational elite (e.g. members of Sami parliaments), are now in partnership with their former colonial establishment encompassing a living duality across cultural and linguistic lines. In fact, we would interpret, the Sami as other abo riginal peoples around the world are co-opted into external systems as ex pressed through co-management regimes to "negotiate and administer" the utilization of natural resources on "common" or "public" lands (cf. Kalstad 1997: 119-121). This interpretation of development and innovation forced upon by the outside is much debated if one considers also the open and free flow and exchange of ideas and goods across cultural boundaries having an impact internally and externally - nobody lives in isolation. However, this issue is rather a matter of power distribution and relation and how power is used in 47 unequal or asymmetric situations not only in resource management but also in science and research (Keskitalo 1994). In this context, the use of birch wood is only one of the many elements of the encompassing human and physical envi ronment in which Sami intend to function holistically. Firewood: Securing Heat and Warmth In Ohcejohka, all Sami interviewees used birch as firewood and stated that birch is always better than pine, even dry dead pine, "soarvi", which is used sometimes as kindling to start a fire. All households had a wood stoves and most also an open fireplace; some used mainly wood instead of oil or electric ity for their central heating system. In order to protect the continuation of the use of birch, firewood lots or so called "homestead birch forests" have to be looked after by applying thoughtful management practices to secure fuel and material (App. D. Fig. 4). These forest resources have been utilized in certain ways for centuries under an ancient, tra ditional, and precise model of actions. Under this model, various separate areas are used in temporal cycles, some short, 10 to 20 years, some long, up to 100 or more years. The length of the cycle depends on the substance growth of birch, types of landscape, soil quality, and climate conditions in that specific area. These cycling intervals also assume the availability of other wooded areas as a substitute resource. These shifting or rotating patterns reduce the pressures put on the essential and vital firewood lots. The very first step in the assessment is what trees are to be left standing for fu ture use. They are invariably the most healthy, straight, beautiful trees with no indication of viruses or any other physical damage. Furthermore, this decision rests also on the environmental conditions and the layout of landscape which might require that certain trees are left to grow and thus protect animals, other plants and soil against wind, snow and ice, water, erosion, sun exposure and other impact. The trees which are deemed to be left standing need optimal growth conditions such as light and nutrition but also the company of neighbor ing trees which provide support and protection. Thus never should all trees be cut down in a given at the same time. Once the selection of the trees to be felled is made, the old, sick, damaged, crooked ones are taken first. Sometimes only branches are cut to obtain more air and space for the surrounding trees. Of course, the best quality for firewood comes from a healthy, straight, thick trees. Other defining factors which contribute to the quality of firewood are the time of felling during the moon and annual cycle (i.e. before mid-summer) and the process of drying, e.g. leaving freshly leafed branches to pull the juice from the tree trunk. In Ohcejohka, traditional early summer felling without cutting limbs is still being practiced. During the summer season, it is very important to cut trees at the right time, e.g. when the moon is on the wane. At that time, the felled trees would not rot producing prime quality firewood. Early summer fell ing also encourages new growth to start at the proper time without impediment. Some people have tested the exact and appropriate timing of felling birch trees as they have learned it from older people. They found the times and dates to be correct, however, experts also stressed that normally sustainable felling can be 48 done within about one week after the birch leaves are fully visible at the start of the growing season. In such a case, branches are left on the trunk. Felling does also occur during the fall after the leaves have fallen of the trees. In the autumn before snowfall, the limbs are cut and the trunks are piled up for further drying and easy locating into a "soahttu" like the poles of a conical tent (App. D. Fig. 5). The "soahttu" is preferably placed on a hillock with rocky ground where water drains easily without being absorbed by the trunks. This way the wood dries faster and maintains its high burning quality much longer. Still, fresh or green birch does burn well during wintertime. Already in March birch draws much moisture from the soil and becomes heavy, still it burns. Depending on the location of the forest lots and their distance to the home steads trunks are taken once a full snow cover makes transportation easy. They are then stacked in horizontal piles or "soahttu" depending on how long the trunks are left before sawing and splitting. The "soahttu" is used for longer periods of storage. Productive domestic birch firewood areas have to be visited and cleared of un derbrush and sick trees regularly. After a period of 20 to 100 years these woods will produce high-quality firewood making it also available to the following generations, a long-term projection which always has been part of Sami phi losophy. This circumstance makes it obvious that large areas are needed so choices can be made based on the knowledge of the best conditions the forests should be in to supply firewood continuously. In this model, reserve areas are also necessary to cope with damages or catastrophes caused by natural proc esses or if a person for reasons of illness or age would be incapable to do the felling under these strict rules of local management. It is a rule that there has to be always firewood at home for ready use. The amount of dried firewood should usually be enough to last for the whole heat ing season, in fact, this can be all year round. Still many households have plenty of firewood stored to cover several years. During the warm summer season heating does not require so much energy, then smaller branches and remaining wood scraps are very suitable to burn. This way all available wood is utilized to the optimum. Sawing and splitting wood is done mostly during the winter months right into late winter while it is frozen. The best drying seasons for birch wood are late winter and all of summer. Once the firewood is dry, i.e. if it has been produced the way it should be done traditionally, it maintains its burning quality for many years, some interviewees said, in fact, forever if it is stored well, under a roof or in a woodshed with proper ventilation. Certain areas are protected and excluded from taking firewood such as places close to water springs where wood copses are left standing. Also along the shorelines of rivers such as the Deatnu birches are left as ice breakers. Such rules protect the trees themselves, but also provide protective habitats for birds, grouses, rabbits and many other animals. Another aspect is that birch forests 49 are also spiritual or holy places, which, as people among the Sami believe, are inhabited by spirits (trolls and gremlins alike) as part of the underworld. If in a certain area it is deemed that the underbrush vegetation or lichen cannot sustain the impact of firewood felling, then it is decided to avoid trampling and leave the trees standing. Anybody including children are taught to stick to established paths and not wander off into the forest to avoid damage. Generally, wood taken from dense forests does not provide the expected heat ing energy as trees which have grown under conditions with more light, air and space. Wood taken from areas close to or at the edge of open and treeless mountains, "vadda", burns much hotter. Old trees burn as well as younger ones if there are processed in the proper way described above. Straight trees or trunks, "riktes", are easier to handle, cut and split; they contain plenty of en ergy, burn hot and are the prime firewood. Birch has a short growing season, thus its fibers develop tighter and denser which in turn produces higher com bustion. Straight trees up to 15 cm in diameter, undamaged and with white bark are of highest quality and quite often left standing in the forest for later use. Sami stories also contain advice how to treat wood. The story of the spirit Ruoidna (= the lean one) provides a reflection on their knowledge of illnesses in trees caused by rotting, mould and mycelium. Cleanliness and observance are important factors in firewood production. The story advises not to take any rotten tree to the "goahti" (= homestead) because the Ruoidna spirit would bring "guorzzu" (= bad luck). Proper Birch Wood for Art and Handicraft In the selection of prime firewood many factors come to bear and are carefully considered. To identify the right and suitable wood that would fulfill the high requirements for art and handicraft products asks for even more detailed stud ies and research on the part of the artist or artisan. For example, the wooden sled runner requires a natural curve, thus a tree meeting this detail needs to be found in the wide forest, a meticulous and lengthy task. Sami still pursue this way, however, the availability of modern means to form, bend and glue wood have led people to buy commercially produced wood, materials and tools and thus forfeit this time-consuming task with its physical and mental demands and challenges. The search for quality wood grown in a certain way is always on a person's mind whenever s/he is in the forest looking for appropriate trees for art and handicraft (App. D. Fig. 6). When a tree is found, maybe it is not yet grown tall enough, or the moon is not right, or for some reason or another is not cut down, the location will be kept in mind and, perhaps, some trees around it will be felled to provide the selected tree with the optimal conditions for growth. The felling of the chosen tree has to be done at the right time of the annual and lu nar cycle. As a rule such trees are never cut during the "black moon" (or new moon which cannot be seen), also referred to as the "rotten moon" because wood cut during that time will rot. Rather trees should be felled during the last quarter of the cycle or during full moon. Timing is crucial to attain quality. 50 When Sami take wood from the forest they ask for it with the reasoning, if you take something, you have to leave something standing. This way of thinking is part of the spirituality and the respect shown to other living beings and to the world in general. The habit to knock slightly on the tree by axe or knife three times, as is also done with the marrow bone before splitting it for the delicacy inside, is clearly a remnant ceremonial behavior offering respect and permis sion to use the item and not a signal of property or marking. Other factors are noted and kept in mind, e.g. which side of the tree is exposed to the prevalent direction of wind and sun - to the south and north. These ob servations and the right timing of felling will guarantee that wood material will dry well and that the forest will be kept in proper conditions for new growth. The drying process is very important for wood used as working material, how ever, much also depends upon the professional and mental skills that differ from person to person. High quality and well dried wood can be stored for sev eral years; it will get better and better with time. Some of interviewees stated that it is not possible to buy the kind of wood they need for their art and handicraft because, to establish the necessary bond be tween artist and the wood (= nature), it has to be searched for, processed and prepared by themselves. In fact, the selection, acquisition and artistic shaping of wood are one continuous process, and these should not be separated. Gener ally, Sami artists and craftspeople do not trust commercial producers to process wood in the way they expect it although, as mentioned, they do rely on com mercial materials. Still in their outermost performance and achievement, they need to know the tree that provides the wood within its environmental setting including directions of wind and sun exposure, types of landscape, surrounding vegetation and soil conditions and how and when the tree was felled. All these attributes contribute to the ambience of the pieces which are produced as part of the cultural and social expression directly connected with the environment. By the early 21 st century, the use of birch wood for materials in art and crafts has decreased. The cultural environment, infrastructure, services, behavior and habits have changed under the influence of modernization and also globaliza tion - Sami are not excluded from these processes. As for other developed peo ples and nations modern infrastructure, communication and transportation, electricity, and other technical amenities are available throughout Säpmi (Kal stad 1996). Sami knowledge of wood handicraft is now, one should say fortu nately, stored in archives and publications which provide encyclopedic refer ences to the use of birch wood during historic times (for example cf. Nielsen 1932-1962). Still, there are many Sami working with birch wood producing intricate items of art and handicraft such as, most commonly, drinking vessels, bowls, boxes, laddies, handles and other small handy items. The most common larger product of application might still be the various types of sleds used nowadays behind snowmobiles. A number of very highly skilled craftsmen still know how to 51 make the "geres", the reindeer sled whose production requires special skills and knowledge. The Human Factor: Future Management of Birch Resources The interviews conducted in Ohcejohka have produced a holistic view of tradi tional and contemporary use of birch locally. The data collected serve as an encyclopedia of Sami cultural heritage providing historical and contemporary information on traditional ecological knowledge, practical aspects of resource management, quality of materials, ideas and rules concerning sustainable use of the surrounding northern timberline environment. Next to environmental and economic aspects, latter ones are not explicitly discussed here, Sami experts voiced their views on the place of birch in their culture, spirituality and liveli hood stressing, in their own words, the point that "... without birch life is empty. " The birch is an integral part of the physical environment in Säpmi. Therefore environmental conditions, volume, density and quality of available wood or timber resources are of paramount importance supporting the Sami in their economic activities and livelihood. In addition, cultural expressions and spiri tuality are important elements as symbols of life. The following quotes taken from Sami experts provide an insight into the in tense relationship between people and birch at the northern timberline. "... in summertime, there is such a nice smell and a sense of fresh air in the birch forest"; "... live would be very cold and uncomfortable without birch"; "... and without birch ... the environment would turn into tundra ..."; "... it feels so pleasant and refreshing to wander into a birch forest; ...a pine forest is so dry, birch gives full moisture - a sense offull life ...". These comments show the importance of birch not only as energy to heat houses and for people's physical exercise, but also for personal mental health and spirituality providing a focus for much needed refreshing contemplation. In fact, the birch is sensed to be the vehicle or means to ascertain cultural tradi tions through physical practice, storytelling, language, taxonomy, nomencla ture, and terminology. Furthermore, working with birch continues the richness of ecological knowledge through applying environmental observation of changes which occur in nature and with animals and plants. All these aspects contribute to the cultural and socio-economic well-being of people in their spe cific environments. Local Sami fully realize that there are increasing external, but also internal changes and pressures which northern peoples and environments are exposed to at the beginning of the 21st century. Certainly, the continuing use of the birch in the northern timberline forests for both firewood and wood products is seen of paramount importance by the local population. Therefore issues of 52 ownership, access, utilization and management of this specific resource is at the forefront of internal and public debate. Sami interviewees pointed to the omnipresent role of the Finnish Park and For est Service (Metsähallitus), the public forest authority in Finland representing the national interests in forest resources, as interference in local affairs in Säpmi that needed to be redefined, i.e. its influence on forestry management be decreased. The expanding commercialization of the birch resource as well as intense tourist activities are, in fact, a threat to the continuing integrity of Sami birch use locally. New infrastructure and industrial developments such as roads, industrial forestry, hydro-electric development, and mining need to be planned very carefully under impact assessment studies focusing on environ mental, socio-economic and cultural aspects. Comments to this effect have been voiced by the interviewees arguing in the following way. "We need to live in observance of the traditional rules, obtain more knowledge and skills, train our children. Use paths and avoid trampling all over. We have gone too far, too fast with the mainstream [of globalization] in a heavily competitive and competing world. We need to stop, think and go back to our traditional knowledge." "Sami people are the real protectors of their environment, not the authorities". "Values and regulations by others have influenced us. Their regulations stress protection and conservation, but it is something else they lead to. They cause competition [over resources] avoiding to take responsibility for the environment". If a Sami follows the rules set traditionally and uses knowledge that s/he has been taught by other Sami, this is seen being the real and true protection of na ture. The reverse can be seen in one of the latest examples of damage caused by the authorities a couple of years ago. A few kilometers from Ohcejohka vil lage downstream along the Deatnu, the public Environment Center decided to fell and thin out high standing birch between the Deatnu shore and the highway in autumn to open the view on to the river for people driven by. The spring af ter the felling the ice break-up in the Deatnu was very strong and many of the trees left could not resist and were swept away. In fact, the result was a clear cut area leaving the shoreline unprotected without trees. Clearly, Sami people with their knowledge and management skills would not have decided to go this path of event to satisfy just the viewing pleasures of travelers passing by for a short moment. The local Sami opinion and assessment of such events is clear, "... at the Park and Forest Service [Metsähallitus] or the Environment Center [Ympäristöke skus], they do know how to destroy. " This is what people have personally ex perienced in earlier times when, e.g., birch trees were eradicated by the authori ties to give space to pine which was planted with little success in the Ohcejo hka regions between the 1920 s and 19705. At that time, the birch was seen as an inferior tree versus the faster growing and higher volume pine or spruce 53 which were preferred. This attitude has shifted now slightly favoring birch again in places were it grows naturally. Still, damage had been done to the mountain birch forests at the timberline. Outlook: Prospects and Policy Recommendations How then can management and sustainability of birch resources be achieved under current socio-economic and political circumstances? Reflecting on such phrases as "... without birch, life is empty; ... we cannot get along without the birch; or ... the birch stands closest to us Sami" what can be done to have life continued to be filled with birch. It is accepted that regulations including man agement plans are needed because, in fact, more people, on the inside and from the outside, have shown different interests in the same resource in the same place at the same time. According to the statements given in the interviews, local people, be they Sami, Finns or others, need to be involved in the decision making process how local resources are to be exploited under current condi tions which possibly also allows projections into the future (cf. Nysto 1998). Because the birch is a crucial element of the timberline environment and of the local people's life and inherited knowledge, management proposals and policies have to derive from people living within the birch forests and not from civil servants' office desks from a distance. This type of management can be achieved through extended local guidance and control, such as the Sami siida system or local associations and governments, over the various types of land users in forestry, sports fishing and hunting, tourism and recreation (i.e. cabin owners) to mention a few. For example, programs setting aside so-called "wil derness" areas for nature protection and conservation need to accept and inte grate local traditional ecological knowledge, expertise and land-use practices. Both local knowledge and management models deserve inclusion in school curricula so not to loose the sense of place for pupils growing up in the north ern environment. Furthermore, knowledge and skills have to be acquired by each generation, in fact, a kind of re-education in the proper use of resources. As one Sami said, "... not all the old time hunters were skillful in grouse trap ping, if they were not careful enough to see which twig they should cut and use for a ptarmigan trap. " People do generally agree that restrictions are needed today. The times have changed and the old, time-worn models do not always apply anymore, how ever, they still are valid in their own ways. Modern society is guided more by money, material items, and communication than by nature and its signals. In the eyes of many Sami, these conditions and attitudes cause much irreparable damage to the natural environment. To come back to the birch: nowadays peo ple get into the habit to fell birch for firewood in any season, e.g. in late win ter, April and May, when snow is hard. Then it is easy to travel by snowmobile and transport the trunks immediately home disregarding the necessary drying process risking to obtain poor quality of wood for reasons of expediency and convenience. 54 The continuation of sustainable use of birch resources is extremely important locally. The Sami feel that "... birch gives so much: warmth, protection, pleas ure, company, medicine. It is beautiful and gives material for many things, green leaves and good smells." The symbolism which the birch, "soahki", holds in Sami culture and lives is intricately and succinctly captured and expressed in the poem by the renowned and highly esteemed Sami poet Paulus Utsi (1918- 1975) and should serve here as a fitting ending (Utsi 1970: 4; English version by authors). Reagganan rähkesvuohta Painful Love Nugo roatjke soahki orru duottarravddas, nu lea biegga botnjan mu nai eallima. Nugo soagi matta bievlla vuosta cuovgä, пи ohcalan väriide, laguide ja orohagaide. Dat lea mu eallin, man топ rdhkistan. Like a twisted birch at the fell's edge, so has the wind gnarled my life, too. Like the birch's trunk reflects towards the barren ground, such I yearn for the mountains, the plains and settlements. This is my life that I love. Acknowledgments The authors acknowledge the funding of this research project by the European Union Research Commission (see HIBECO 2000-2003), the openness and co operation of the local experts, and the collegiality of their colleagues in Work package 1 (Hamburg University). Special thanks go to Lilja Seppälä (Ivalo and Mustajärvi, Finland) for her unwavering hospitality towards the research team. Correspondence: Muller-Wille, Ludger, see Appendix C. References Abramovitz, J. N. 1998. Taking a stand: cultivating a new relationship with the world's forests. Worldwatch Paper 140. Worldwatch Institute, Washing ton, DC. Aikio, M. S. 1990. The Changing Role of Women in Sami Society. In: Muller- Wille. L. (ed.). Social Change and Space. Indigenous Nations and Eth nic Communities in Canada and Finland. Minor in Northern Studies Program, McGill University, Montreal, p. 13-17. Aikio, M. S. 1998. Tourism in the North and Sami Culture. Juridica Lapponica 19: 87-92. Baer, L-A. 1996. Boreal forest dwellers: the Saami in Sweden. Unasylva 186, 47:16-21. [Canada] 1998. Proceedings of'Sustainable Development in the Arctic: Les sons Learned and the Way Ahead. Circumpolar Conference and Work- 55 shop, Whitehorse (Yukon Territory) Canada, May 12-14, 1998. North ern Review 18: 1-256. Cox, C. B. & Moore, P. D. 1993. Biogeography. An Ecological and Evolution ary Approach. Blackwell, Oxford. Goenner, C. 2002. Forest Tribe of Borneo: Resource use among the Dayak De nuaq. Man and Forest Series 3.: D. K. Printworld, New Delhi. Helander, E. 1992. Sami knowledge - subjective opinion or science? Diehto giisä, Newsletter from [the] Nordic Saami Institute 1/92: 3-4. Flelander, E. 1996 a. Development, knowledge and Sami reindeer herding, in: Cultural and Social research in Greenland 95/96. Essays in Honour of Robert Petersen. Ilisimatusarfik / Atuakkiorfik, Nuuk p. 107-118. Helander, E. 1996b. Sustainability in the Sami area: The X-file factor. In: Helander, E (ed.) 1996. Awakened Voice. The Return of Sami Knowl edge. Diedut 1996: 4. Nordic Sami Institute, Guovdageaidnu/Kautokeino. p. 1-6. Helander, E. 1999. Traditional Sami Knowledge. Arctic Centre Reports 26: 25-27. Helander, E. (ed.) 1996. Awakened Voice. The Return of Sami Knowledge. Diedut 1996: 4. Nordic Sami Institute, Guovdageaidnu/Kautokeino. HIBECO (Human Interactions with the Mountain Birch Forest Ecosystem: Im plications for Sustainable Development.) 2000-2003. Workpackage 1: Socioeconomic Studies in Rural Communities, Department of Geogra phy, Hamburg University, Germany. Interviews and surveys conducted by Maria Sofia Aikio, Jorunn Eikjok, Heidi Kitti, Vesa Luhta, Ludger Miiller-Wille, Maiju Pasanen, C. Blair Stevenson, Maiju Pasanen and Astrid Solhaug, October 2000 to May 2002. Other participating re searchers: Dietbert Thannheiser (leader) and Pekka Aikio, John E. Lewis, Junhua Li, Karl-Dieter Meier, Linna Weber Miiller-Wille, Jan Wehberg. Program: "Quality of Life and Management of Living Re sources", Key Action 5.3. "Sustainable and multipurpose utilization of forest resources: integrated forest-wood chain". Funded financially by the European Union Research Commission, contract QLKS-CT-1999- 011515. Hustich, I. 1946. Lappland lever [Lapland lives.]. Holger Schildt, Helsingfors Hustich, I. 1979. Ecological concepts and biogeographical zonation in the North: the need for a generally accepted terminology. Holarctic Ecol ogy 2: 208-217. Kalakoski, M. 1999. The threats to the traditional sami livelihood in timberline forests in Finnish upper Lapland. In: Kankaapää et al. (eds.). Sustain able development in northern timberline forests. Finnish Forest Re search Institute. Research Papers 734. p. 157-163. Kalstad, J. K. H. 1996. Modern Challenge Facing Knowledge in Sami Subsis tence. In Helander, E. (ed.). 1996. Awakened Voice. The Return of Sami Knowledge. Diedut 1996: 4. Nordic Sami Institute, Guovdageaid nu/Kautokeino. p. 21-30. Kalstad, J. K. H. 1997. Aspects of Managing Renewable Resources in Sami Areas in Norway. In: Gaski, H. (ed.). Sami Culture in a New Era. The Norwegian Sami Experience. Davvi Girji OS, Käräsjohka. p. 109-126. 56 Kankaanpää, S., Tasanen, T. & Sutinen M-L. 1999. Sustainable development in northern timberline forests. Proceedings of the Timberline workshop, May 10-11, 1998 in Whitehorse, Canada. Finnish Forest Research In stitute. Research Papers 734. Kankaanpää, S., Muller-Wille, L., Susiluoto, P. & Sutinen, M-L. (eds.) 2002. Northern Timberline Forests. Finnish Forest Research Institute. Re search Papers. In print. Keskitalo, A-I. 1994. Research as an inter-ethnic relation. Arctic Centre Re ports 11 / Diedut 7/1994: 7-31. Lehtinen, A. A. 1991. The northern natures - a study of the forest question emerging within the timber-line conflict in Finland. Fennia 169, 1 : 57- 169. Mattsson, J. 1987. Ihmisen vaikutus Utsjoen metsärajametsiin [Human impact on the timberline forests in Utsjoki], Pro gradu thesis. Department of Geography. University of Turku. Mattsson, J. 1995. Human impact on the timberline in the Far North of Europe. Zeszyty Naukowe Uniwersytetu Jagiellonskiego MCLVI, Prace Geograficzne - Zeszyt 98: 41-55. Muller-Wille, L. 2000. Human-birch relations in northern Fenno-Scandian eco systems. Survey questions, HIBECO, Workpackage 1. Manuscript. 8 p. Muller-Wille, L., Eikjok, J. & Thannheiser, D. 2001. People and Birch: The Sami Perspective of the Environment and its Sustainability. In: Wielgo laski, F. E. (ed.) Nordic Mountain Birch Ecosystems. Man and the Bio sphere Series 27: 369-376. Nielsen, K. [and Nesheim, A.] 1932-1962. Lappisk ordbok - Lappish diction ary. Vol. 1-4. Institutt for sammenlignende kulturforskning, Oslo. Nysto, S-R. 1998. Decision-Making and Priority-Setting in the Circumpolar. Northern Review 18: 119-128. Sandström, O. et ai. 2000. Ylä-Lapin luonnonvarasuunnitelma [Natural Re source Plan for Upper Lapland], Metsähallituksen metsätalouden jul kaisuja 38. Sihvo, J. 2000. Mountain birch forests in Northern Lapland. Paper given at the HIBECO workshop "People and Birch - Human environmental interac tions in northern forest systems", Siida - Sami Museum, Inari, October 21-23, 2000. Utsi, P. 1970. Reagganan rähkesvuohta - Smärtande kärlek. in: Dikter. Fran Bygd och Vildmark. Luleä stiftelse ärbok 61: 4. [also in: Utsi, Paulus and Inger Utsi 1980. Giela gielain, divttat/dikter. Alltryck, Luleä. p. 9], Veijola, Pertti 1998. Suomen metsänrajametsien käyttöjä suojelu [Utilization and Protection of Finland's Timberline Forests], Metsäntutkimus laitoksen tiedonantoja / Finnish Forest Research Institute. Research Pa pers 692. Yaroshenko, A. Y., Potapov, P. V. & Turnbanova, S. A. 2001. The Last Intact Forest Landscapes of Northern European Russia. Mapping of intact for est landscapes in northern European Russia using high-resolution satel lite images. Greenpeace Russia, Moscow: www.globalforestwatch.org (accessed April 26, 2002). 57 Modeling Forestry Resources with Remote Sensing and Geographic Information Systems Shivanand Balram and John E. Lewis Abstract Remote sensing and geographic information systems (GIS) techniques provide a spatial analysis and management framework that can incorporate the multiple factors required for the effective assessment and management of forest re sources. Remote sensing and GIS are broad-based technologies and their utility in a discipline may not be readily apparent. There are many published articles on remote sensing and GIS applications in forest management and a common core of spatial modeling techniques can be identified. This article presents a classification of the dominant remote sensing and GIS techniques in the litera ture on forest ecosystem management. These techniques have been classified as providing support in data integration and management; inventorying and as sessment; spatial analysis, modelling and visualization; change detection; and socio-economic integration and public participation. Some error assessment issues are also mentioned due to their consequences in forest decision-making and planning. An awareness of these techniques can reduce duplication of ef forts and provide a foundation for more advanced research leading to greater opportunities for sustainable forest management. Keywords: forest modeling, remote sensing, geographic information systems, spatial modeling. 1 Introduction Forests represent a significant economic and ecological asset that must be managed in a sustainable way for the benefit of society. Timber, non-timber forest products, shelter and habitat, source of carbon sequestration, protection to soil and water resources, and biodiversity are some of the many goods and services essential for human existence that are provided by forests (Lund and Iremonger 2000). However, agricultural expansion, socio-economic factors, and political interests are imposing radical transformations on many forest eco systems. The consequences of these changes are poorly understood but the general consensus is that they may be profound. Hence, conservation of eco 58 logical integrity is now an urgent goal. The management of forest ecosystems usually include the following considerations (Church et al. 2000): • an understanding of the natural processes and cycles involved, • adequate representation of commercial forest interests, • systems to enforce and assess decision impacts, • risk assessment procedures and error management methods, • public and stakeholder participation, and • frameworks and protocols for policy evaluations. As the competition between users and uses for forest resources increase, the need for more inclusive and consensus oriented decision-making frameworks will become greater. This will place greater demands on spatial management and integrating technologies such as geographical information system (GIS), remote sensing, and global positioning systems (GPS). The process has already begun with these integrating technologies being widely adopted by forest re searchers and managers (Lachowski et al. 1992) as a key complementary tool to monitor, map, quantify, and model forest processes and patterns at multiple spatial and temporal scales (Fig. 1). Figure 1. The Integrated Forest Resource Management Process. 59 Remote sensing, because of its synoptic, multispectral, and multitemporal ca pabilities, is one of the most cost-effective tools available to provide data for forest management and analysis. Remote sensing is a technique for obtaining information about a target by analysing data acquired from controlled electro magnetic interactions between a target (usually an earth-based feature) and sensor(s) that are not in direct physical contact with the target (Lillesand and Kiefer 1994). A geographical information system (GIS) is considered as a tool and a process consisting of an organized collection of computer hardware, software, and trained personnel designed to efficiently capture, store, manipu late, visualize, and analyse geographically referenced data to provide informa tion and knowledge in an institutional setting to solve unstructured manage ment and planning problems (Maguire 1991). The GIS process is data intensive and gathering data on forest ecosystem attributes is a challenging exercise due to rugged terrains, extensive areas, physical limitations of the landscape, and human resource shortages among other factors. As such, remote sensing and GIS are complementary technologies used in forest management. This primary aim of this paper is to identify and classify the dominant remote sensing and GIS techniques that are currently being used to address issues of sustainable forest ecosystem modeling and management. An analysis of the literature is used to illustrate the diversity of analytical capabilities these tech niques are providing to forest management. Further, some error assessment is sues are mentioned due to their importance in forest decision-making and plan ning. For general literature reviews on remote sensing and forestry for Scandi navia please see Jaakkola et ai. (1988) and Holmgren and Thuresson (1998). For a Canadian perspective on this topic refer to the literature review con ducted by Pitt et al. (1997). Also the entire June issue of Journal of Forestry, (2000) is devoted to remote sensing and forestry. 2 Method A comprehensive survey of peer-reviewed journals using standard keyword search techniques was employed. Books, government publications, and Internet sources with substantive content on the use of remote sensing and GIS in forest ecosystem management were also reviewed. Table 1 presents a classification of the dominant GIS and remote sensing techniques and their role in supporting forest ecosystem management. These techniques have been categorized as pro viding support in data integration and management; inventorying and assess ment; spatial analysis, modelling and visualization; change detection; and socio-economic processes and public participation. Specific spatial techniques are listed together with the forest ecosystem management area for which they provide support. This classification is generic and non-exhaustive, and it is possible to mix techniques in order to address the diverse circumstances of the forest ecosystem management problem. 60 Table 1. A Classification of GIS and Remote Sensing Techniques in Forest Ecosystem Management. I Data Integration and Management GIS and Remote Sensing Social Processes, Public Participation i HHHHHHHHHHIflHIB IMAGE ANALYSIS AND DATA CLASSIFICATIONS; WEIGHTED OVERLAYS, BUFFERS. SEGMENTATION; CONNECTIVITY, CONTIGUITY. AND SPATIAL ANALYSIS; NEIGHBOURHOOD. NETWORK AND POINT ANALYSIS; SPATIAL FREQUENCY ANALYSIS; SPATIAL DATA SAMPLING; HIERARCHICAL STRUCTURING; VISUALIZATION AND MAP PRESENTATION; GPS MEASUREMENTS; ERROR MANAGEMENT. IMAGE AND REGRESSION ANALYSIS; EXPLORATORY STATISTICS; KNOWLEDGE-BASED, RULE-BASED, INDUCTIVE-SPATIAL, AND GEOGRAPHIC MODELLING; VISUALIZATION AND MAPS; QUERIES: ERROR MANAGEMENT. IMAGE DIFFERENCING. IMAGE RATIOS; CVA. PCA; REGRESSION METHODS: TIME SERIES ANALYSIS; MARKOV MODELLING; CELLULAR AUT OMAT ON;VlSUALIZATI ON AND MAP PRESENTATION; ERROR MANAGEMENT. SDSS; DECISION MODELS; OBJECT- ATTRIBUTE RELATIONS; RESOURCE ECONOMICS MODELS; MULTIMEDIA PRESENTATIONS; VISUALIZATION AND MAPS; ERROR MANAGEMENT. Forest Ecosystem Metrics STRUCTURE IDENTIFICATION OF THE SPATIAL PATTERNS. ORIENTATION, AND ARRANGEMENT OF THE ECOSYSTEM OR LANDSCAPE FUNCTION ASSESSING THE INTERACTIONS BETWEEN COMPONENTS OF THE ECOSYSTEM OR LANDSCAPE CHANGE OETECTING CHANGES AND TRENDS IN THE ECOSYSTEM OR LANDSCAPE MANAGEMENT ESTABLISHING A FRAMEWORK FOR SUSTAINABLE FOREST MANAGEMENT 2 9 t O o PATTERN | o a. r 5 GC CAUSE/ EFFECT SPATIAL TEMPORAL OATA DECISION Representative Sourees Atkinson. P.M. 19% X m ■n ■ bhhh H ■ ■ ■mm X Ecliavania. P. 1996 X X X X X X X Frohn. R.C. 1998 X X X X X X X X Klopatck. J.M. and J.M. Francis 1999 X. X X X ■ m ■ ■ IBBIBilBifllilllf TiHIHI enroiH«i$HE5* ■■■■■ ■■■ ■■1 X ■■■ ■■■ ■1 ■ X m Griffiths, ct. ai. 1993 X X m X mm Skidmore, et a!. 1996 X X Eastman. RJ. and M. Falk 1993 ■ X X Lamhin. F..F. 1996 X X imrmniMH ■ ■ mmm HHH mm ■ ■ mum HHDBH X Senav. G.B. and R.I.. Elliott 2000 ■ X X ■ Church et. al. 2000 n Nacssct et. al. 1997 X X Naesset. E. 1997 X X Vertinsky. et. al. 1994 X X 61 3 Forest Resources Modeling and Management 3.1 Data Integration and Management In forest ecosystem management, GIS has been widely used for data manage ment, planning, visualization, and spatial analysis whereas remote sensing has been used primarily as a data source for monitoring and assessment. Remote sensing is a relatively costly technology, but accurate and timely data about the spatial composition of forest resources is needed for modelling socio-economic and biogeochemical changes at local, regional and global scales. In this regard, during the 1990 s a variety of new satellites sensors (with improved spatial, spectral and temporal resolutions) were deployed and the data from these are rapidly being used in modelling and analytical forest studies. A listing of these satellite sensors, their physical characteristics, and forestry-related parameters they can measure are presented in Davis and Simonett (1991) and more re cently in Franklin (2001). But the widespread availability of satellite data with different sensor characteristics has raised issues concerning data integration, suitability, relevant scales and resolutions for forestry studies. Comparative studies on the usability of different remote sensing data for the evaluation of forest ecosystems are still lacking in the literature (Hyyppä et ai. 2000). The inherent capability to store and quantify hierarchical spatial data has made GIS technology an appropriate tool to support data integration and manage ment in developing information infrastructures to guide forest ecosystem man agement. Local and international frameworks developed around GIS are now providing new avenues for cooperative approaches in forest management. At an organisational level, a decentralised GIS approach can have many advan tages for improved data access, communications and decision-making in forest management (Bettinger 1999). In addition, the GIS data model facilitates the integration or separation of ecological data at any level of the hierarchy by us ing data selection, query, buffering, and overlays. Geographical location is an important quantity in associating measured eco logical attributes with the forest landscape (Greer 1993). In forest research, sampling locations are recorded by traditional surveying methods but are gradually being complemented with Global Positioning System (GPS) technol ogy. GPS technology uses a ground receiver to intercept signals transmitted from a series of satellites, and uses the intercepted signal to determine earth surface positions in a variety of coordinate systems (Johnston 1998). Although forest canopy, tree trunk size and topography changes can contribute to signal loss in GPS measurements (Allen 1998), the use of differential corrections have significantly improved their accuracy for forestry studies. 62 By using a geographical referencing framework disparate data sets can be inte grated into a common GIS database thereby providing many opportunities for integrated analysis (Townshend 1991; McGhie et al. 1996). The spatial integra tion effort not only provides a comprehensive database, but also facilitates ho listic forest ecosystem management as compared to stand and individual spe cies management using traditional methods. Integrating data from a wide vari ety of sources has often been cited as one of the significant benefits of imple menting a GIS. But these approaches require a commitment in addressing data ownership, copyright, data protocols, administrative, and training issues. Fur ther, integrating spatial data and producing meaningful results is dependent on our understanding of the errors involved in each stage of the integration proc ess. Hence, quantitative and qualitative error management and accuracy as sessments are needed to understand the quality of maps, compare results, and minimize risks in resource allocation and decisions using GIS-based informa tion (Congalton and Green 1999). 3.2 Assessment and Monitoring GIS and remote sensing has played an important role in elucidating forest eco system structure and patterns. Image analysis techniques applied to forest clas sification analysis, the development of vegetation indices, temporal and spatial analysis of vegetation dynamics (Senay and Elliott 2000), and species occur rence (Aspinall and Veitch 1993) are widely reported in the literature. Spatial heterogeneity is a natural characteristic of forest ecosystems and landscape metrics based on ecotopes, ecotones, corridors, and the landscape matrix are used in GIS frameworks to derive quantitative measures to study the spatial structure of ecosystems (Frohn 1998). Natural and induced disturbances to for est ecosystem have also been studied spatially by including attributes such as canopy structure, weather, wind direction, and topography in the GIS analysis. The relative unavailability of continuous fine spatial resolution satellite data suitable for forest management has been a source of concern among forest re searchers. In many studies the data from the coarse spatial resolution (I.lkm LAC and Bkm GAC) and fine temporal resolution (daily) AVHRR sensor has been used extensively for global forestry assessments. Long time-series fine temporal resolution data has been crucial in monitoring local and global changes in forest cover (Eastman and Toledano 1996). However these studies required extensive and rigorous validations, corrections for topographic shad ows, minimization of atmospheric influences and cloud cover. In tropical areas, the effects of cloud cover on satellite data in the visible electromagnetic spec trum is even more pronounced. In these areas, strategies such as using radar data and image fusion are providing new ways to minimize cloud cover effects. The recent implementation of high-resolution satellites holds great promise for forest management. Even with these new high-resolution satellites, however, aerial photography will still be a mainstay for certain type of forest manage ment applications. 63 3.3 Spatial Analysis, Modeling and Visualization The assessment of ecosystem functions are based on spatially distributed point and patch data measured at a variety of spatial and temporal scales. Homoge neous units of soil attributes traditionally delineated from aerial photographs and ground surveys are normally used as the basis to derive ecosystem interac tions and processes. Forest canopy effects on the soil response and spatial reso lution issues have resulted in many approaches to mapping soil units for use in spatial analysis. One approach has been to use spatial aggregation procedures to derive ecological processes at scales coarser than that of the original data. Another approach has been to use geostatistical interpolation techniques to de scribe the spatial relationships between sample data of forest attributes (Payn et al. 1999). GIS provides the capability to easily interchange the scales at which ecological entities are displayed and hence an awareness of the spatial resolu tion and detail of the source data is important for proper spatial analysis. Extending the analytical capabilities of conventional GIS has largely been achieved through coupling mechanisms with mathematical and simulation models. Published studies on spatial model integration and GIS in forest eco system management are becoming increasingly available. For example, the range, habitat and distribution of species are key components in understanding forest ecosystems and a variety of related model-based GIS studies are avail able. The models have included logistic regression models for species distribu tion, spatial multi-criteria models and spatial optimization (Guerra and Lewis 2002) for habitat suitability, predictive least squares models for habitat moni toring, and Bayesian models for habitat mapping. In a comparison of three GIS-based models for habitat evaluation it was concluded that wherever possi ble, a variety of models should be implemented and their results compared (Skidmore et al. 1996). Modelling approaches have also been used to generate data for use in forest management. The availability of baseline data strongly influences our capacity to investigate issues and hypotheses surrounding any problem of interest. In the absence of extensive baseline data sets, modelling tools can provide critical support for generating more useful information in a variety of decision-making processes. Conservation strategies and biodiversity preservation have become important issues in light of deforestation trends. Deforestation affects the carbon cycle and climate by imposing a net flux of carbon into the atmosphere whereas bio logical diversity suffers because of habitat destruction, fragmentation, edge and barrier effects, and species extinction. Spatial modelling using landscape com plexity measures derived from vegetation patch characteristics (richness, fre quency, and shape for example), patch type contiguity index, and physiography have been used to identify and categorize biologically diverse landscapes. These methods depend heavily on GIS analysis and remote sensing data. Also, opportunities for the evaluation of protection levels of forest ecosystems and networks of protected areas are made possible by information from species and habitat-loss indices to GAP analysis techniques that can be implemented in a 64 GIS. Metrics such as diversity, shape, texture and juxtaposition measures are area-based and can be derived during GIS analysis. Many forest ecosystem processes are driven by variables that are controlled by physical properties such as topography, slope, elevation, and aspect. Topog raphic analysis can be performed in GIS analysis through the generation of 3- dimensional surface models of the landscape using contour maps. Slope and directional analysis has been used in GIS analysis to define watershed units and simulate the location, direction and quantity of surface water flows (Johnston 1998). Disturbances are also modelled using elevation data within a GIS. Spe cies density and diversity maps have been developed using gradient modelling of environmental variables to predict vegetation and species occurrence. Also, statistical modelling between vegetation and topography can be used to study vegetation patterns and distribution (Enright and Lewis 1985). As the volume of digital data increases, more reliance will be placed on visu alization techniques to reveal underlying patterns and trend in multidimen sional data. The objective of visualization is to transform raw data using graph ics and multimedia into information that is readily amenable to understanding by the human perceptual system. GIS and image processing techniques are used to support the interactive display and presentation of spatial information for a variety of purposes and audiences. GIS normally depicts spatial data as 2- dimensional relief or grey-scale maps with a nadir view and in some cases the possibility of using draped images. Virtual reality techniques have extended GIS visualization to now represent 3-dimensional perspective views of land scape models. Recently, there has been growing interest in web-based GIS frameworks to support visualization, public participation in decision-making, and widespread access to GIS capabilities. 3.4 Change Detection Information on changes in the forest resource base is necessary for effective management and planning at local, national and global scales. Change detec tion is the process of using spatial analytical methods to characterize the nature and magnitude of change events between two or more time periods for an ob ject of interest. In monitoring forest resources, detecting that a change has oc curred, identifying the nature of the change, quantifying attributes of the change, and assessing spatial patterns are important in characterizing the changes. There are a variety of digital change detection methods available for studying forest ecosystems. These include image differencing, image ratios, regression methods, change vector analysis (CVA), class differencing, and principal com ponents analysis (PCA). Change detection methods are based on the principle that if errors due to sensors, geometry, and the environment are minimized, and the multi-date images are registered to each other and undergoes identical pre processing analysis, and the images are acquired from sensors with identical characteristics then digital image changes will be due to changes in the de 65 tected radiance values of the same ground area between the different time peri ods. Changes at a local scale can influence erosion and soil fertility, watershed run off, and socio-economic transitions. At a global scale many GIS-based studies have reported the influence of forest changes on climate. Studies at coarse spa tial scales are inexpensive and are useful in that they highlight areas for more detailed investigations. Comparative studies of the change detection methods have suggested some preference of one method over another in research specific situations. It seems that the research in this area is converging on the idea that no single change detection method is best for a particular situation and that a complementary investigative approach must be adopted when using these methods. Change detection methods have been used to track biomass changes at the for est/clearing interface. One technique employed is Markov modelling which uses an empirically defined transition probability matrix to detect changes in the land cover classes over time (Wood et al. 1999). In the development of these transition matrices, remote sensing data produces less biased transition probabilities in comparison to traditional field measurements since it incorpo rates the entire study area. Also, forest seasonality changes is a significant component of global dynamics studies as it regulates many processes such as those related to primary productivity, water and gas exchanges. Studies have associated climate conditions and forest/vegetation types with changes detected in long time-series canopy measurements. 3.5 Socio-economic Processes and Public Participation National policies and socio-economic factors have influenced the forest in many ways with agricultural expansion and logging now being regarded as im posing the greatest pressures on forest ecosystems. Decisions on forest policy and management affects the social processes of the forest landscape. In this re gard, stakeholders and groups with vested interests are recognised as essential components of the decision making process on all aspects of forest allocation and management. Forestry issues often involve a variety of stakeholders and decision makers with conflicting values and preferences making it difficult to achieve optimal management solutions. The integration of social, physical and values factors involved in forest use and allocation has provided a heuristic means of achieving consensus. However, this integration can result in delays, confrontation, and conflict in the decision making process. Tools such as GlS based spatial decision support systems (SDSS) are providing valuable assis tance in achieving compromise solutions that incorporate social issues through consensus building. The use of web-based GIS is also developing into a useful tool to elicit stakeholder opinions, communicate modelling results and share forestry data (Dragicevic et al. 2000). The sustainable use of forests is dependent on a careful balance between the economic and social demands for the resource. The inventorying and analytical capabilities of remote sensing and GIS coupled with decision support tools can 66 significantly enhance the management of forest resources in a sustainable man ner. The incorporation of stakeholder value judgments, rapid rural appraisal techniques, and public participation in the decision making process are being achieved through the development of spatial decision support systems. An SDSS is an interactive GIS-based system consisting of a hardware data man ager, model manager, and user interface manager that can be used to provide decision alternatives to support a user or groups of users in achieving higher effectiveness in decision making while solving unstructured and semi structured spatial decision problems. Unstructured decision problems are usu ally recognized as those that cannot be formulated using standard procedures and individual judgments have to be used to find solutions. The explicit inclu sion of optimisation techniques such as linear programming, and multicriteria evaluations (Naesset 1997), and economic models of timber harvesting (Naes set et. al. 1997) for sustainable forest management have been reported. Kangas et al. (2000) report on an hueristic multi-optimization model integrated into a GIS framework. The effective integration of the socio-economic, political cultural, and biophysical aspects of forest resources use is the key to achieving the goals of sustainable forest resources management (Vertinsky et al. 1994). Akabua et al. (2000) have developed a SDSS for modelling spatial non-timber values to understand the conflicts between industrial operations and other for est uses. Geographical information systems, remote sensing, and spatial deci sion support systems provide the tools to implement and achieve the goals of sustainable forest ecosystem management. 4 Conclusions This research has presented the capabilities of remote sensing and GIS tech nology to address the diverse issues of forest ecosystem management. Further, a classification scheme has been developed based on the dominant GIS and remote sensing techniques used in forest management. The GIS and remote sensing techniques have been categorized generally as providing support in data integration and management; inventorying and assessment; spatial analy sis, modelling and visualization; change detection; and socio-economic proc esses and public participation. Acknowledgments The International Council for Canadian Studies (ICCS-CIEC), Canada, sup ported some aspects of this research for the first author. The second author gratefully acknowledges the support of the European Union Research Commis sion (see HIBECO 2000-2003 in Aikio & Muller-Wille, p. 53). Correspondence: Lewis, John, E., see Appendix C. 67 References Akabua, K. M., Adamowicz, W. L. & Boxall, P. C. 2000. Spatial non-timber valuation decision support systems. Forestry Chronicle 76(2): 319-327. Al-Garni, A. M. 1996. A system with predictive least-squares mathematical models for monitoring wildlife conservation sites using GIS and re motely-sensed data. International Journal of Remote Sensing 17(13): 2479-2503. Allen, J. S. 1998. GPS. In: Savitsky, B. G. & Lacher Jr., T. E. (eds.). GIS methodologies for developing conservation strategies - tropical forest recovery and wildlife management in Cost Rica. Columbia University Press, New York, p. 61-79. Aspinall, R. & Veitch N. 1993. Habitat mapping from satellite imagery and wildlife survey data using a bayesian modelling procedure in a GIS. Photogrammetric Engineering and Remote Sensing LIX: 537-543. Atkinson, P. M. 1996. Optimal sampling strategies for raster-based geographi cal information systems. Global Ecology and Biogeography Letters 5: 271-280. Bettinger, P. 1999. Distributing GIS capabilities to forestry field offices. Jour nal of Forestry, June 1999: 22-26. Church, R. L., Murray, A. T., Figueroa, M. A. & Barber, K. H. 2000. Support system development for forest ecosystem management. European Jour nal of Operational Research 121: 247-258. Congalton, R. G. & Green, K. 1999. Assessing the accuracy of remotely sensed data: Principles and practices. CRC, Florida. Davis, F. W. & Simonett, D. S. 1991. GIS and remote sensing. In: Maguire, D. J., Goodchild, M. F. & Rhind, D. W. (eds.). Geographical Information Systems: Principles and Applications. Longman, Essex, UK. p. 191 213. Dragicevic, S., Balram, S. & Lewis, J. 2000. The role of Web GIS tools in en vironmental modeling and decision-making process. In: Proceedings of 4th International Conference on Integrating GIS and Environmental Modeling, Banff, Canada, 2-8. September. Eastman, R. J. & Falk, M. 1993. Long sequence time series evaluation using standardized principal components. Photogrammetric Engineering and Remote Sensing 59(6): 991-996. Eastman, R. J. &.Toledano, J. 1996. Forest monitoring in Malawi. EOM Sept. 1996: 28-31. Echavarria, F. 1996. Remote sensing of forest fragmentation in the tropics. lEEE Geoscience and Remote Sensing Society Newsletter 6: 6-15. Enright, N. & Lewis, J. 1985. Aspect-related vegetation patterns and climate at Mont St Hilaire, Quebec. Canadian Geographer 29(3): 249-256. Franklin, S. E. 2001. Remote Sensing for Sustainable Forest Management. Lewis Publishers, Boca Raton, FL. Frohn, R. C. 1998. Remote sensing and landscape ecology - New metric indi cators for monitoring, modelling, and assessment of ecosystems. CRC, Florida. Greer, J. D. 1993. The view from above: an overview of GPS and remote sens ing options. Journal of Forestry 91: 10-14. 68 Griffiths, G. H., Smith, J. M., Veitch, N. & Aspinall, R. 1993. The ecological interpretation of satellite imagery with special reference to bird habitats. In: Haines-Young, R., Green, D. R. & Cousins, S. H. (eds.). Landscape ecology and GIS. Taylor & Francis. Guerra, G. & Lewis, J. 2002. Spatial Optimization and GIS: Locating an opti mal habitat for wildlife reintroduction. Arc User 5(2): 32-34. Holmgren P. & Thuresson, T. 1998. Satellite remote sensing for forestry plan ning: A review. Scandinavian Journal of Forest Research 13(1): 90- 110. Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S. & Yi-Hong, Z. 2000. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management 128: 109-120. Jaakkola, S., Poso, S., & Skrämo, G. 1988. Satellite remote sensing for forest inventory-experiences in the Nordic countries. Scandinavian Journal of Forest Research 3(4): 545-567. Johnston, C. A., 1998. Geographic information systems in Ecology. Blackwell, London. Kangas, J., Store, R., Leskinen, P. & Mehtätalo, L. 2000. Improving the quality of landscape ecological forest planning by utilising advanced decision support tools. Forest Ecology and Management 132: 157-171. Klopatek, J. M. & Francis, J. M. 1999. Spatial pattern analysis. In: Morian, S. (ed.). GIS solutions in natural resource management - balancing the technical-political equation. OnWord Press, New Mexico, p. 17^40. Lachowski, H., Maus, P. & Piatt, B. 1992. Integrating remote sensing with GIS. Procedures and examples from the Forest Service. Journal of For estry 90: 16-21. Lambin, E. F. 1996. Change detection at multiple temporal scales: seasonal and annual variations in landscape variables. Photogrammetric Engineering & Remote Sensing 62(8): 931-938. Lillesand, T. M. & Kiefer, R. W. 1994. Remote sensing and image interpreta tion. 3 rd Edition. Wiley, New York. Lund, G. H. & Iremonger, S., 2000. Omissions, commissions, and decisions: the need for integrated resource assessments. Forest Ecology and Man agement 128: 3-10. Maguire, D. J. 1991. Overview and definition of GIS. In: Maguire, D. J., Goodchild, M. F. & Rhind, D. W. (eds.). Geographical information sys tems: principles and applications. Longman, London, p. 9-20. McGhie, R. G., Scepan, J. & Estes, J. E. 1996. Comprehensive managed areas spatial database for the conterminous United States. Photogrammetric Engineering and Remote Sensing 62(11): 1303-1306. Naesset, E. 1997. A spatial decision support system for long-term forest man agement planning by means of linear programming and a geographical information system. Scandinavian Journal of Forest Research 12: 77- 88. Naesset, E., Gobakken, T. & Hoen, H. F. 1997. Economic analysis of timber management practices promoting preservation of biological diversity. Scandinavian Journal of Forest Research 12: 264-272. 69 Payn, T. W., Hill, R. 8., Höck, B. K., Skinner, M. F., Thorn, A. J. & Rijkse, W. C. 1999. Potential for the use of GIS and spatial analysis techniques as tools for monitoring changes in forest productivity and nutrition, a New Zealand example. Forest Ecology and Management 122: 187-196. Pitt, D. G., Wagner, R. G., Hall, R. J., King, D. J., Leckie, D. G. & Runes son, U. 1997. Use of remote sensing for forest vegetation management: a problem analysis. Forestry Chronicle, 73(4): 459-477. Senay, G. B. & Elliott, R. L. 2000. Combining AVHRR-NDVI and landuse data to describe temporal and spatial dynamics of vegetation. Forest Ecology and Management 128: 83-91. Skidmore, A. K., Gauld, A. & Walker, P. 1996. Classification of kangaroo habitat distribution using three GIS models. International Journal of Geographical Information Systems 10(4): 441^-54. Townshend, J. R. G. 1991. Environmental databases and GIS. In: Maguire, D. J., Goodchild, M. F., & Rhind, D. W. (eds.). Geographical Information Systems: Principles and Applications. Longman, Essex, UK. p. 201 216. Vertinsky, 1., Brown, S., Schreier, H., Thompson, W. A. & Kooten, G. C. van 1994. A hierarchical-GIS-based decision model for forest management: The systems approach. Interfaces 24(4): 38-53. Wood, E., Lewis, J. & Tappan, G. 1999. Land Use Change Modeling for Southern Senegal. Proceedings of PECORA 14 Symposium, Denver, CO. p. 85-95. 70 The World Reindeer Livelihood - Current Situation, Threats and Possibilities Johan Mathis Turi 1 Introduction A Circumpolar Model for the Management of Remote Arctic Pastures When determining the significance of the reindeer herding, it is important to understand that it represents a common circumpolar model for the management of the remote barren pastures in northern regions. This model has been devel oped over an extended period of time, adjusting itself specifically to Arctic re gions. It has enabled the use of marginal natural resources in the Arctic for in valuable food production - resources that could otherwise not be used. The model has been proved to maintain the necessary sustainability to enable a sta ble livelihood. Finally, with reindeer herding as the primary source of income, it has been possible to make use of other natural commodities that would oth erwise be too marginal. The reindeer livelihood has thus, where it is practised, been a decisive factor in human settlement. It is also important to note that reindeer herding wherever it is practised is al most identically organised. One crucial element in its organisation has been in that the working community consists of one or more families, and secondly that the individuals are the legal owners of the animals. This is what the Sami language defines as siida. Another important element to notice is that reindeer herding is more or less nomadic everywhere. This model, which has developed independently in the various areas, has proved to be efficient and sustainable enough to keep reindeer-herders' cultures almost unaffected from time imme morial to the present. It is, therefore, tempting to claim that reindeer herding is "nature's own choice" for Arctic areas. Created by Indigenous People Reindeer herding is often described as colourful and exotic. This may be ex plained by the majority of reindeer-herding people being ethnic minorities. There are no less than 20 different ethnic minorities, spread across the whole northern circumpolar area, that are involved in reindeer herding. At least 17 of these have been reindeer-herding peoples since time immemorial. 71 Among those characterised as newcomers to reindeer herding are three indige nous groups on the North American continent and in Greenland. There, the Sami people introduced reindeer herding during the period 1894-1957. In addi tion, there are also other non-indigenous groups involved in reindeer herding. These include Norwegians, Finns, Komis, Jakuts and Russians. However, they represent "a minority among minorities" among reindeer-herding peoples. 2 A Widespread Livelihood with Marginal Resources To Be or Not to Be The unique sustainability of reindeer herding has made it gigantic in terms of its geographical distribution. This livelihood is spread all over the northern hemisphere. Reindeer pastures make up around 40 % of Fennoscandia (approx. 430,000 km 2) and large areas within Russia (approx. 3,308,388 km 2 ). It is also to be found in Mongolia, China, Alaska, Canada, Greenland and Scotland. The fact that reindeer herding requires large pasture areas implies great chal lenges for its practising. There are at least two conditions of primary signifi cance in this context: 1. Organisation of the livelihood: The traditional way of organising reindeer herding looks simple enough, but it is functional and adaptive. This way of organising is crucial for the survival of the livelihood. Nothing is liable to arouse more disturbances and discrepancies within this livelihood than encroachment in its organisation, as has been proved by many examples in history. It is vital for the livelihood that there exists an understanding of the importance of the traditional organisation structure. An increasing desire to rule combined with a mixture of roles is in reality a grow ing threat to reindeer herding. 2. Knowledge A high level of knowledge about the natural environment and methods of en hancing transferring this knowledge to the next generation is essential. Knowl edge about the natural environment and climate, developed through genera tions, covers most of the mainland areas of the north. This probably represents the true strength of the livelihood. Small Livelihood with Great Potential Reindeer herding is a small activity when looking at its employment and eco nomic impact. There are less than 100,000 people engaged in this activity, in cluding old people and children. In other words, reindeer herders make up less than 1 % of the total human population of the Arctic. On the other hand, while the rest of the total Arctic population is declining, the number of reindeer herd ers is actually growing. There are, in general, no recruitment problems in this livelihood, except in some regions, i.e. the taiga regions of Russia. 72 Reindeer herding is also a relatively small factor when measured in terms of the number of animals and production. The total number of reindeer has been in a prolonged period of decline, and is now down to 1,8 million animals. This represents a decline of almost 50 % since 1990, when the number of reindeer was at its highest. The decrease occurred almost simultaneously in most re gions and lasted until year 2000. At the moment, it seems that the decline has finally stopped, and some regions are actually experiencing increasing popula tions of reindeer. The decline of the 1990 s has been challenging for most regions, and severe for some. The worst affected have been the small taiga regions in Russian Far East, together with Mongolia and Alaska. Only one region, the Yamal penin sula in European North, had a stable and slightly increasing population of rein deer during the past decade. The Nordic countries still have the highest density of reindeer. Around 31 %of the total population of reindeer is to be found here. The average distribution is approx. 1.3 reindeer per km 2 (Noway: 1.2, Sweden 1.4, and Finland 1.5 rein deer per km 2 of gross area). Russia is definitely the largest reindeer-herding country in the world with more than 2 /3 of the total reindeer population. Of these, approx. 80 %, or 1 million animals, are to be found in Western Siberia and the European part of Russia. The average distribution is approx. 0.4 reindeer per km 2. In other words, it should be possible to considerably increase the size of the reindeer livelihood in this country. Mongolia and China are the only reindeer-herding countries outside the Arctic region. They are also the smallest in terms of head of reindeer. Nowadays, these two countries together hold around 2,200 reindeer, which is less than 0.1 % of the world's total reindeer population. In the "New World", where reindeer herding was introduced around hundred years ago, the current number of domesticated reindeer is around 14,000 (less than 1 % of the total population). This implies an enormous decline since the 1930 s when the population of reindeer was approx. 600,000 in Alaska alone. This corner of the world probably holds the greatest growth potential today. The foremost source of income is meat-production. It is estimated that - in cluding consumption of meat for own use - the total meat production by rein deer herding is approx. 18,000 tonnes per year. In other words, we are talking about a livelihood with a production capacity of medium-sized fish farms combined. Reindeer herding is therefore fairly insignificant compared to com peting interests. The exact value of the total meat production is difficult to estimate. Assuming that production is at maximum level, and using the prices attainable in the vari ous countries, the total value is estimated to amount to USD 73 50-52 million per year. The Nordic quota constitutes more than 50 % of this amount. Thus, the economic significance of reindeer livelihood is small today. However, there is potential for growth both in production and earnings. In addition to meat production, there is some income from selling by-products such as skins and antlers, and from selling handcrafts. In addition, there is also income to be earned from associated economic activities such as tourism. The sum of these is difficult to estimate. However, there is certainly growth poten tial in these fields as well. Since the economic significance is minor, it cannot be the profits that make reindeer herding so attractive to people. The strength of the livelihood is probably in that it represents a lifestyle that is professionally challenging and rewarding, and thus represents a meaningful life for people. This in itself holds an inestimable value. Unlike many other indigenous groups in the world, rein deer-herding people still appear to have the possibility to build a future based on their own efforts and terms. 3 Prospects of Threats Human Impact on the Natural Environment The biggest threats facing reindeer herding today come in the form of human impacts on reindeer pastures. Such impacts are closely connected with the ad vancement of the "civilised" world. Destruction of pastures, and disturbances related to human impacts, are growing problems. These kinds of problems al ready confront as much as 75 % of reindeer herding in the world. These in clude the Nordic countries, the European part of Russia, and Western Siberia. Looking to Nordic countries, land defined as "wilderness" has shrunk from 80 % of the total area in the early 1900s, down to 20 % today. In other words, there has been a dramatic reduction in the untouched land areas, mainly rein deer pastures, over a period less than 100 years. This development threatens the future existence of the Sami reindeer herding as a livelihood. In Russia, a similar development has taken place over the past 30-50 years. Heavy industrial impacts on reindeer pastures have occurred in the Murmansk Oblast, Nenets Autonomous Okrug, Komi Republic, Khanty-Mansisky A.0., Yamalo-Nenetsky A.O. and Taimyr A.O. The Reindeer Herders' Union of Russia (RHUR) has calculated that in the last 30 years 20 % of the reindeer pastures in the country have been destroyed or lost as a result of encroach ments, forest fires, and competing activities. In addition to loss of pastures, both little-by-little encroachments and heavy industrial impacts always lead to negative impacts on reindeer herding. At the end of the day, the problem is always defined as an overgrazing problem, which takes the focus away from the real problem: the destruction of the envi 74 ronment for ever. This has occurred in Norway, Sweden and also in Finland. And the same seems to be case in Northwest Russia as well. Problems of Taiga Reindeer Herding The second major threat facing reindeer herding is the development in the Rus sian Far East, where the livelihood is disappearing because of declining num bers of reindeer. The problem is mainly connected to the crash of the Russian economy in the 19905. This has affected the reindeer herding in Evenkia A.0., in the taiga areas in Republic of Jakutia, Irkursk Oblast, the Rep. of Buryatia, Chita Obi., Amurskaya Obi., Khabarovsk Krai, Rep. of Tuva, and in Sakhalin Obi. The same is also occurring in Mongolia. This is a problem that needs to be solved urgently. However, the future of reindeer herding in these areas depends on the international community's willingness and capability to contribute. Problems with wild reindeer/caribou Another problem facing the reindeer livelihood, especially in Taymir A.0., parts of Rep. of Jakutia, Chukotka A.O. and Alaska, is the uncontrolled growth of the wild reindeer/caribou herds. These invade reindeer areas and lead to great losses of domesticated reindeer. The problems are most severe on the Seward Peninsula in Alaska, where the livelihood is about to collapse because of the invasion by Western Alaskan caribou. This is another problem that needs to be solved urgently in order to avoid the extinction of the local reindeer herding livelihood. Growth of predator populations Another serious threat is the growth of populations of large predators. This is a general problem that affects the entire reindeer livelihood. Until the opposite is proven, reindeer herders maintain that the explosive growth of large wild car nivores in recent years is due to the impact of humans on the landscape. The increase of human activities in areas, which wildlife traditionally inhabited, along with measures taken to conserve predatory populations, appear to have resulted in a totally new behavioural pattern among these animals: their natural shyness has disappeared. At the same time, these species enjoy increased re productive success. In the current conditions, the livelihood faces a completely new situation with respect to predators. First and foremost, it is experiencing the damaging effects of increasing predation. The unnatural increase in num bers, however, should also interest others concerned about the natural envi ronment. 4 Challenges Internal: Adding Value The greatest challenge inside the livelihood is to facilitate value added. The degree of success in mastering this challenge will be decisive for the liveli 75 hood's ability to face external challenges. As mentioned earlier, reindeer herd ing is of small economic and political significance. In addition, the majority of the livelihood, i.e. the Russian part, is in deep economic crisis today. It is es sential to strengthen the economic force in general and overcome the tempo rary crisis in order to improve the livelihood's ability to attend to its external interest. It is possible to add considerable added value to reindeer herding in all of the regions, first and foremost by improvements in infrastructure, e.g. slaughter houses and processing plants, and in development of products, product image and the market. This would involve a significant rise in the earnings of those reindeer-herder communities that are of considerable size, and especially those in typical low-profit regions. Also, regions with small production quantities could increase their earnings, because the potential for growth is not only con nected to meat production. Even though there are no prospects of big money to be earned in this livelihood, there is no reason to be pessimistic. In this context, it is tempting to add that high profits are not equivalent to a happy life. There is the possibility reindeer herding would have had a totally different story, when viewed from the reindeer-herder peoples' point of view, had the livelihood been very profitable over time. The higher the profits, the more attractive it becomes to outsiders. There is obviously a need to strengthen the reindeer-herder peoples' rights over their own livelihood and resources. However, this issue needs to be addressed in another forum. External: Knowledge and Capacity Building Another long-term challenge lies in the utilisation of knowledge and capacity building. It is needed both for the livelihood itself, in efforts to produce value added. In the contribution of researchers to promote a new kind of science, tra ditional knowledge is integrated in the management of the natural environment in Arctic. It is certain that there is a large body of knowledge about the natural environments and the Arctic climate accumulated in the world reindeer liveli hood. This could be utilised to bring a better understanding of the Arctic that would benefit not only reindeer herding, but also the entire Arctic society. 76 Nordic Mountain Birch Forests Frans-Emil Wielgolaski Abstract Forests of Nordic mountain birch occur from eastern Kola Peninsula in the north-east to Iceland in the south-west. It is predominant in northern Fenno scandia and generally forms the climatic tree line between the coniferous forest zone and the Alpine treeless zone in the mountains of Fennoscandia. Closely related trees, partly hybrids with the Nordic mountain birch, are also to be found east of Kola Peninsula in the north, on the west coast of southern Greenland, in Scotland, and in the lowlands of Fennoscandia. Temperature and humidity are the two main factors determining the presence of these mountain birch forests. The growth rates of the trees vary by provenance and according to climatic and edaphic factors. The total live, above-ground biomass of this birch species has been found to vary from nearly 2400 g/m 2 on eutrophic sub alpine western Norwegian sites to about 100 g/m 2 on a nutrient-poor heathland site near the tree line in the more continental parts of northern Finland. It has been observed that concentrations of K, N and P, for example, increase with elevation and latitude, and therefore probably also due to lower temperatures. Nordic mountain birch ecosystems are powerfully influenced by insect herbi vore pests at intervals of about 10 years. Local people use both dead birch stems after such attacks as well as normally felled trees for fuel. These birch forests are also used in other ways; for tourism, industry, handicraft items, etc. In addition, both domestic and wild animals browse in birch forests. This has been one reason for the frequent lowering of the tree line when compared to lowering possibly caused by climatic variation. Mountain birch can also cause polycormic new tree growth of the birch, particularly at dry, oligotrophic heaths. Intensive grazing and trampling by reindeer and increased snow cover due to climate change will all be unfavourable to the lichen mats on such heathland sites. This, together with elevated temperatures caused by climate change, will probably result in better germination of birch seed in the more open soil, especially if the grazing pressure both by reindeer and other animals is reduced. 77 Distribution The zone mainly dominated by what we normally call the Nordic mountain birch, generally covering the ecotone between the coniferous forest zone and the treeless areas in the Nordic countries, is most often referred to as the Sub alpine zone, which also forms a substantial part of the Northern boreal zone (Moen 1999). The zone was first described by Wahlenberg (1812) and includes both the area including birch towards the Northern or Arctic tree line and to wards the maritime tree line mainly to the west, in addition to the tree line to wards the Alpine zone almost throughout the Nordic countries. Similar limits for Nordic mountain birch forests apply also today. Nordic mountain birch is now regarded to be distributed mainly from eastern Kola Peninsula in the north-east, extending to and predominating in northern Fennoscandia and along the mountain chains in Norway and Sweden. It is also native in Iceland although there it differs somewhat from the Fennoscandian mountain birch, often having smaller leaves (Nilsen and Wielgolaski 2001). East of the Kola Peninsula, this birch probably forms hybrids with several taxa. This is also the reason for uncertainty in treating the birches in most south western parts of Greenland as belonging to the Nordic mountain birch taxon (odum 2001). Particularly in the southern Fennoscandian lowlands and in Scotland the proportion of trees belonging to the real Nordic mountain birch Beta/a pubescens ssp. czerepanovii is low when compared to the number of trees of the subspecies B. p. ssp. pubescens and sometimes also to the species B. pendula. However, the taxonomy is still very uncertain and further revisions are likely to occur. Populations with a high proportion of B. nana genes as in dicated, for example, often by its bright red autumn colours (Nilsen and Wiel golaski 2001) may be regarded as the Nordic mountain birch taxon in the strict sense of the word. The upper, natural climatic tree line of the Nordic mountain birch today (Fig. 1) is located at about 1300 m a.s.l. in the south-eastern Norwegian mountains (Jotunheimen), descending in all directions, particularly towards the coast, but also eastwards into Fennoscandia and to the north, being almost at the sea level along the northernmost coast of Norway at about 71°N (Aas and Faarlund 2001). However, the historically highest tree line in the mountains of southern Fennoscandia, about 500 m above today's limit, has been dated back to more than 10000 BP, using megafossil evidence and radiocarbon dating (Kullman and Kjällgren 2000). That was only about 2000 years later than when arboreal birch, not very different from the present day Nordic mountain birch, migrated into southern Fennoscandia after the last glaciation, and only 1000 years after it had reached the northernmost part of Fennoscandia. In most other regions of the world, the upper and northern, natural climatic tree line is formed by conifers. This difference of the Nordic countries is often ex plained by the macro- and particularly by the micro-climatic oceanity of Fen noscandia (Wielgolaski 2001 a). This hypothesis is supported by conifers some times being found in the ecotone to Alpine areas in the most continental south 78 Figure 1. Upper, climatic Nordic mountain birch forest limit within Fennoscandia (Aas and Faarlund 2001). eastern Fennoscandian regions as well as in the more continental, eastern Kola Peninsula (e.g. Kihlman 1890). Regression studies have enable the author to conclude that bud break of the birch is accelerated by high air humidity to a greater degree than is the case with most other deciduous trees in the Nordic countries. However, temperature is the overruling ecological factor for the pre sence of mountain birch in any area as it is for most plants in temperate and cold regions. Early in the piece it was discovered that the Nordic mountain birch grows in areas of lower summer temperatures than spruce and pine in Fennoscandia. The average maximum temperature isotherm 13.2° C for the four warmest months was recently found to match the mountain birch's forest line with the highest degree of statistical significance when compared to other tem peratures (Odland 1996). This means that in many areas of Fennoscandia the upper tree line of birch can be 150-200 m above the tree line of coniferous 79 species, and that it also grows further to the north since conifers apparently need higher temperatures than birch to be competitive. Moisture and humidity influences the under-storey in mountain birch ecosys tems in a way similar to the situation in coniferous forests, in addition to varia tion with temperature and nutrient conditions (Sonesson and Lundberg 1974). In the weakly continental part in the north-east of Fennoscandia, lichen mats and communities of Vaccinium vitis-idaea are the most common plants in the understorey when the soil is poor in nutrients, while mosses and Vaccinium myrtillus, often with Empetrum (and the grass Molinia though seldom in the north), are found particularly in oceanic parts (Wielgolaski 2001 a). One epiphyte that is particularly common on the Nordic mountain birch stems is the foliose lichen Parmelia olivacea. It gives the upper parts of the trunks and branches a dark brownish colour down to a level below which the lichen does not occur and where the stems appear more or less whitish. This level matches the maximal winter snow surface (Sonesson 2001), a characteristic that can be used for practical purpose, e.g. when planning and establishing roads. Birch Growth Normally the situation is such that there is a decrease in the final height of the trees in Nordic mountain birch, as of other plant species, with increasing site elevation. This is caused by many factors, among them strong winds and low temperatures. There is also generally a strong elevation-related increasing ni trogen limitation influencing birch growth. Near the tree line, mountain birch biomass is therefore low. The highest amount of carbon reserves, such as starch, are generally found in the plants in late summer and in the autumn (Mäenpää et ai. 2001) also on sites with low birch biomasses. This has been estimated to amount to about 100 g/m 2 of live aboveground biomass on poor heathland sites near the tree line in northern Finland at 330 m a.s.l. (Kjelvik and Kärenlampi 1975), and about 750 g/m 2 at 200 m lower elevation in similar under-storey vegetation. Bylund and Nordell (2001) give a stand characteristic of about 935 g/m 2 for aboveground birch biomass in a birch forest at Abisko close to the coniferous tree line. Much higher live aboveground biomass is re ported from more eutrophic mountain birch forest in oceanic Sub-alpine west ern Norway, 2365 g/m (Kjelvik 1973), based, like the Abisko figures, on re gressions with tree height and diameter measurements. The annual leaf produc tion at Abisko and in western Norway, however, has been found to be of the same order, about 100 g/m 2 /a. Both biomass and production figures are now being checked by using remote sensing technique in the course of HIBECO, the present Nordic mountain birch project (see Nilsen and Tommervik 2001; Tommervik et al. 2001). Growth rates of the different mountain birch provenances show powerful varia tion when grown on the same site (Skre 1993). Particularly powerful variation was, as expected, found when seedlings were planted latitudes different to their 80 origin. For example, plants of provenances from northern Fennoscandia grow slowly when planted in southern Norway both in lowland areas and close to the tree line (Fig. 2). Similarly, transplant garden studies in northern Fennoscandia in the course of the on-going HIBECO Mountain Birch Project show that the phenological stages in the birch plants vary powerfully both in the autumn and spring according to their latitudinal origin (Jarle Nilsen, pers. com.) as is well known earlier from coniferous plants. The transplant garden studies also seem to indicate that southern provenances of mountain birch grow well and produce a lot of leaves when transplanted in northern, mildly oceanic regions, where they can survive relatively well despite the shorter growing season. Skre (1993) found particularly high biomass in mountain birch seedlings of southern Nor wegian lowland origin when these were grown in another southern lowland area and compared plants grown at higher elevations (see Fig. 2). One reason for this, in addition to the climatic conditions, may lie in the more severe limi tation in nutrients at higher elevations. It has also been found that the uptake rate of nitrogen in roots markedly decreases with decreasing temperatures (Karlsson and Nordell 1996). In other studies it has been observed that the in fluence of fertilisation on height growth is at its strongest at the most severe nutrient limitation (Sveinbjörnsson 2001) caused by higher elevation. Recent observations in transplant gardens in northern Finland, however, have mostly resulted in maximum height growth of birch trees in the transplant garden at the highest elevation having the most fertile and moist soil (Ovaska et al. in prep.), while lower height of plants of the same provenance and age is normal in a transplant garden at a lower elevation, but poorer in nutrients. The impor tance of nutrients, such as nitrogen, for birch growth may be one reason why seedlings of birch grow much better after the establishment of mycorrhiza in troduced from willows growing on degraded soils in Iceland (Magnusson and Magnusson 2001). Concentrations of inorganic nutrients such as potassium, nitrogen and phospho rus normally increase with elevation and latitude, or probably simply due to lower temperatures (Partanen et al. 2001) despite the frequently increasing ef fect of nitrogen limitation with increasing elevation. However, the total amount of the elements in living material per unit area decreases in the same direction, because of the often low available amounts in the soil, and this re sults in low production. The fine roots of mountain birch have a life span of 1.5-2.0 years, which is 2-4 times that of deciduous forest trees in temperate areas (Karlsson et al. 2001). Despite the short growing season in the Sub-arctic, mountain birch biomass production per unit of leaf mass and per day was similar to or higher than that of deciduous trees at more southern latitudes. These characteristics contribute to relatively high nutrient use efficiency by mountain birch. The plasticity and heritage of growth traits in various mountain birch geno types suggests that different provenances mainly evolve in terms of genetically determined specialisations, whereas populations growing at different elevations mainly evolve in terms of change in plasticity. High-altitude birches and dwarf birch (B. nana) show a low plasticity as compared to low-altitude birches. This 81 may reflect an adaptation to environmental stress and be a result of a trade-off between maximising growth rate under unfavourable conditions and the ability to respond to improved conditions (Weih and Karlsson 2001). Figure 2. Biomass per plant (g dry weight ± 2 SE) of various provenances of birch seed lings grown at two elevations (Kvamskogen, 450 m and Fana, 50 m) in western Nor way over two years. Four provenances of Betula pubescens: BJ = Kevo, northern Finland (200 m), BH = Blefjell, southern Norway (750 m), BS = Fana, western Norway (50 m), BA/M = Loten, eastern Norway (200 m); one provenance of Betula pendula: Loten, eastern Norway (200 m) (Skre 1993). 82 Herbivores and Influence of Man The dynamics of Nordic mountain birch ecosystems are also strongly influ enced by insect herbivore pests, in particular by caterpillars of the autumnal moths Epirrita antumnata and Operophtera brumata. Approximately every ten years there is a peak in the population of this insect, and its caterpillars feed on leaves of the mountain birch (Tenow 1972 ). In areas where winter temperatures have not been too low for over-wintering of the moth eggs, most stems of birch can be totally defoliated, and even subsequently killed by the caterpillars dur ing the following summers (Neuvonen et ai. 2001; Tenow et ai. 2001). The chemical composition of the remaining and new leaves changes when leaf biomass is reduced, apparently in response to the feeding (Haukioja and Kopo nen 1975). For example, unpalatable phenolic compounds with adverse effects on the herbivores can increase. Larvae feeding on these leaves will grow more slowly and are less fecund as adults. Such decreases in food availability and quality, as well as increase in enemy pressure, explain why the outbreaks even tually decline. An insect attack commonly releases apical dominance in the defoliated trees in the first year after the attack and thus a high production of long shoots (Karls son and Weih in prep.). The reason behind this may be in the increasing nitro gen concentration of the leaves left on the trees and in the adjoining meristem tissue. It has been found earlier (Hillman 1984) that high nitrogen concentra tions can trigger apical dominance. After some years, however, smaller long shoots are produced, a case of over-compensation or "backlash" for the losses is observed. Staffan Karlsson (pers. com.) has proposed some explanations for this in a preliminary version of a diagram (Fig. 3). Occurrence of many woody plants (e.g. Vaccinium myrtillus ) and tall herbs in mountain birch ecosystems can be significantly restricted by rodent grazing near the altitudinal limits of the plants, even if they are common (Henttonen and Wallgren 2001). In addition to invertebrates, periodicity also occurs among some vertebrate herbivores, particularly small mammals. In southern and northern Fennoscandia there is a clear periodicity of most small rodents (e.g. Hansson, 1984; Framstad et al. 1997), while the lemming dynamics, for exam ple, are much more irregular in the North. There is also a fragile relationship between small rodent densities and predation on bird nests and breeding bird numbers (Järvinen 2001). Birds can interact with the plants in the mountain birch ecosystems in various ways, e.g. by eating the new leaf buds of the birch. The increasing concentrations of many inorganic nutrients in plants as tempera tures decrease means that plants in mountainous regions are nutrient-rich fod der also for domestic animals. This is one reason for the many out-farms estab lished over hundreds of years in the mountain birch belt in Fennoscandia. This has caused powerful herbivore activity over large areas. Consequently, the tree line has been lowered below what would be the case due to climatic reasons. This applies particularly to areas where grazing by livestock (cattle, sheep and goats) is of long standing. For example, in Sub-alpine parts of Norway, and particularly in Iceland, grazing by sheep has been very extensive and it has 83 powerfully influenced birch growth also through soil degradation (Aradottir and Arnalds 2001). Figure 3. Suggested sequence of events/responses of the mountain birch during the recov ery process following an attack by autumnal moth. Arrows at the bottom indicate an approximate time scale (Staffan Karlsson, pers. com.). 84 Grazing and trampling by reindeer, both domestic or sometimes called semi domestic in the North (Helle 2001), and wild reindeer in the South, have simi lar effects, particularly in areas where migration of reindeer populations has been prevented for political/economical reasons, e.g. in northernmost Finland and Noway. During the past 50-80 years, many of the heavily-grazed out-farms in Fenno scandia have once again been abandoned (Bryn and Daugstad 2001), mainly because it is said to be too costly to transport animals to the out-farm in the spring and down again in the autumn, and to have people at the out-farm look ing after the animals in the summer. Therefore, there may now be a succession towards new mountain birch growth again at many old out-farms in Sub-alpine Fennoscandia. Because of the harsh climate common in most parts of the mountain birch belt, however, succession is slower than might otherwise be expected. The slowly rising tree line in recent years (Sonesson and Floogesteger 1983; Kullman 2000) is probably the result of both reduced graz ing and a generally higher average temperature due to global climate change (Skre 2001). In some areas, this could also be influenced by increasing precipi tation. Polycormic growth of Nordic mountain birch (see App. D. Fig. 7) is normally observed in Iceland, (Aradottir et al. 2001) and in many parts of Fennoscandia. Several buds break at the lower part of a stem after browsing by vertebrates or invertebrates, and this results in many stems or even trunks forming from each plant. This seems to be true particularly on oligotrophic, dry soils, where bio mass production is low and the maximum heights of the trees are only 2-3 m on average, as is the case in Finnmarksvidda in northern Norway and in continen tal Swedish Lapland (Sonesson and Lundberg 1974). In this vegetation type, there are only scattered undergrowths of B. nana, Empetrum nigrum ssp. her maphroditum and Vaccinium spp. Lichens are more common than bryophytes. Grazing by reindeer is regular with this vegetation. On richer soils, as is nor mally the case on slopes, there are often an increasing number of monocormic trees (Sonesson and Hoogesteger 1983) even after intensive browsing. Re cently it has also been confirmed experimentally that the number of stems de veloped after simulated browsing is reduced with increasing nutrient supply (Wielgolaski and Nilsen 2001). On rich vegetation site types, mainly found on slopes in oceanic-suboceanic, Sub-alpine areas of Fennoscandia and in the low lands of Iceland, monocormic, older birch trees are, on an average, 10-12 m tall. Many models have been constructed in recent years for predicting possible fu ture variation in temperature and precipitation based on continuation of the global climate change. In a recent report (Forland et al. 2002) it is predicted that the annual increase in temperature in Finnmarksvidda could be more than O.4°C per decade; particularly high temperatures are expected in winter. Pre cipitation is predicted to increase by 1.4 % per decade in Finnmarksvidda, with the lowest increase in summer. Because of the increase in winter precipitation, mainly as snow in more continental areas, the snow melt may not be earlier in the future despite higher temperatures in contrast to more oceanic sections 85 (Karisen et ai. 2002), but could instead remain unchanged or be even delayed (see App. D. Fig. 8). As both higher temperatures and increased precipitation are favourable for seed germination and better growth of birch trees near the tree line, climate change of this kind could be one reason for the higher per centage of birch trees found in recent years in certain parts of Finnmarksvidda. Grazing pressure, however, also has a powerful influence on the percentages of various vegetation types. In the late 1980 s and early 19905, there were very high densities of reindeer all over Fennoscandia, but particularly in northern Norway (up to 200,000 head in the summer of 1989 in Finnmark over an area of about 25,600 km 2 , giving a density of nearly 8 head/km 2 ). This had a power ful impact on the vegetation. For instance, lichen heaths with more than 50 % reindeer lichen cover were in some parts of Finnmarksvidda reduced in area by more than 40 % to about 5 % of their former extent in the 40 years between 1960 to 2000 (Gaare and Tommervik 2000). In an area of powerful overgraz ing by reindeer on a lichen heathland site in Hardangervidda in the late 1 9605, the author has observed that the recoveiy of the lichens could take decades be cause the reindeer had eaten nearly all the living parts. A change in lichen composition was also observed, from Cladonia reindeer lichens to Cetraria species. The author noticed that a cover of ice (probably more common due to increased snow cover and higher temperatures, e.g. in Finnmarksvidda) will kill many shrubby lichen species after a couple of years, and thus also change the vegetation (Wielgolaski 2001b). All this will result in more open soil and then, when the climate is favourable, it can sometimes also result in better germination and growth of birch after some years, particularly when subjected to reduced grazing by reindeer or by sheep. Trampling by reindeer is especially marked along reindeer fences. This often means destruction of all vegetation there (also preventing the establishment of birch). This can be prevented only by having fewer reindeer and/or shorter periods of grazing within the enclo sures (Miiller-Wille et al. 2001). Particular care should be taken when using motorised vehicles for constructing and maintaining fences in order to reduce man-made damage through erosion along the tracks. It is obvious that Nordic mountain birch forest ecosystems are powerfully in fluenced by climate and the nutrient levels of the soil, as well as by herbivores and human interactions (Fig. 4). Locally, influence by man can also be ob served in the form of increased tourism. Both building of cottages, ski-lifts and other structures in mountain birch forest will have direct impacts through tram pling (Tolvanen et al. 2001). The slow recovery rate in the region means that the impacts are visible for several years, even if the intensity of the activities is again reduced (Wielgolaski 1998). Mountain birches are used by local people especially as firewood. They can also be used industrially, particularly in manufacturing wood-based panels. However, even in a partly industrial area such as Mälselv in Norway only about 1/3 as much is taken out for that pur pose as is used as firewood (Birger Solberg, pers. com.). Birch can also be used to make furniture, and traditionally the Sami (Lappish) people have used mountain birch to make tools and implements from as well as for handicraft items (Miiller-Wille et al., 2001). The authors stress the matter of growing 86 competition by tourists as users of birch wood, particularly as firewood. Some people have even taken harvested birch to be sold or used privately in towns. Figure 4. Box diagram showing various interactions between the mountain birch ecosys tem and the environment (Wielgolaski and Sonesson 2001). References Aas, B. & Faarlund, T. 2001. The Holocene history of the Nordic mountain birch belt. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 5-22. Aradottir, A.L. & Arnalds, O. 2001. Ecosystem degradation and restoration of birch woodlands in Iceland. In: Wielgolaski, F. E. (ed.). Nordic Moun tain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 293-306. Aradottir, A. L., Thorsteinsson, I. & Sigurdsson, S. 2001. Distribution and characteristics of birch woodlands in North Iceland. In: Wielgolaski, F.E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 51-61. 87 Bryn, A. & Daugstad, K. 2001. Summer farming in the subalpine birch forest. In: Wielgolaski, F.E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 307-315. Bylund, H. & Nordell, K. O. 2001. Biomass proportion, production and leaf nitrogen distribution in a polycormic mountain birch stand (Betula pu bescens ssp. czerepanovii) in northern Sweden. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthe non, New York and London, p. 115-126. Forland, E. J., Hanssen-Bauer, I. & Haugen, J. E. 2002. Klima-scenarier for norsk Arktis. ACIA-Fagmoter vären 2002. Kautokeino, Norway. 10 p.Framstad, E., Stenseth, N. C., Bjornstad, O. N. & Falck, W. 1997. Limit cycles in Norwegian lemmings: tensions between phase dependence and density-dependence. Phil. Frans. Royal Soc. London (B) 264: 31-8. Gaare, E. & Fommervik, H. 2000. Monitoring of lichen grazing areas in Finnmark. NINA Oppdragsmeld. 638: 1-33. Hansson, M. 1984. Composition of cyclic and non-cyclic vole population: On the causes of variation in individual quality among Clethrionomys glareolus in Sweden. Oecologia 63: 199-206. Haukioja, E. & Koponen, S. 1975. Birch herbivores and herbivory at Kevo. In: Wielgolaski, F. E. (ed.). Fennoscandian tundra ecosystems. Part 2: Animals and systems analysis. Springer, Berlin, p. 181-188. Helle, F. 2001. Mountain birch forests and reindeer husbandry. In: Wielgo laski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 279-291. Henttonen, H. & Wallgren, H. 2001. Rodent dynamics and communities in the birch forest zone of northern Fennoscandia. In: Wielgolaski, F. E.(ed.), Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 261-278. Hillman, J. R. 1984. Apical dominance. In: Wilks, M. B. (ed.). Advanced Plant Physiology. Pitman, Bath. p. 127-148. Järvinen, A. 2001. Birds in su barctic mountain birch forests - dynamics and strategies. In: Wielgo laski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 251-259. Karisen, S. R., Hogda, K. A., Johansen, 8., Elvebakk, A. & Fommervik, H. 2002. Use of AVHRR NDVI data to map vegetation zones in north western Europe. In: Proc. 29 lh Int. Symp. Rem. Sens. Environm. Bue nos Aires, Argentina. 4 p. Karlsson, P. S. & Nordell, K. O. 1996. Effects of soil temperature on the nitro gen economy and growth of mountain birch seedlings near its presumed low temperature limit. Ecoscience 3: 183-189. Karlsson, P. S., Nordell, K. O. & Sveinbjörnsson, B. 2001. Biomass and nitro gen turnover and nutrient use characteristics in sub-arctic birch trees. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems, p. 127—41. UNESCO, Paris and Parthenon, New York and London, p. 127-141. Kihlman,A.O. 1890. Pflanzenbiologische Studien aus Russisch Lappland. Acta Soc. F. Fl. Fenn. 6(3): 1-256. 88 Kjelvik, S. 1973. Biomass and production in a willow thicket and a subalpine birch forest. In: Bliss, L. C. & Wielgolaski, F. E. (eds.). Primary Pro duction and Production Processes, Tundra Biome. IBP Tundra Biome Steering Committee, Edmonton-Oslo. p. 115-122. Kjelvik, S. & Kärenlampi, L. 1975. Plant biomass and primary production of Fennoscandian subarctic and subalpine forests and of alpine willow and heath ecosystems. In: Wielgolaski, F. E. (ed.). Fennoscandian Tundra Ecosystems, Part 1, Plant and Microorganisms. Springer, Berlin, p. 111-120. Kullman, L. 2000. Tree-limit rise and recent warming: a geoecological case study from the Swedish Scandes. Norsk geogr. Tidsskr. 54: 49-59. Kullman, L. & Kjällgren, L. 2000. Coherent tree-limit chronology (Pinus sylvestris L) for the Swedish Scandes: Aspects of paleoclimate and "recent warming", based on megafossil evidence. Arct., Antarct., Alp. Res. 32: 419—428. Mäenpää, E., Skre, 0., Malila, E., Partanen, R., Wielgolaski, F. E. & Laine, K. 2001. Carbon economy in birch-dominated ecosystem species in northern Fennoscandia. In: Wielgolaski, F. E. (ed.). Nordic mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 93-114. Magnusson, S. H. & Magnusson, B. 2001. Effect of enhancement of willow (Salix spp.) on establishment of birch (Betula pubescens) on eroded soils in Iceland. In: Wielgolaski, F. E. (ed.). Nordic mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 317-329. Moen, A. (1999). National Atlas of Norway: Vegetation. Norw. Mapping Authority, Hönefoss. Miiller-Wille,L., Eikjok, J. & Thannheiser, D. 2001. People and birch: The Sami perception of the environment and its sustainability. In: Wielgolaski, F. E.(ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 369-376. Neuvonen, S., Ruohomäki, K., Bylund, H. & Kaitaniemi, P. 2001. Insect herbivores and herbivory effects on mountain birch dynamics. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 207-222. Nilsen, J. & Tommervik, H. 2001. Temporal variation in the effects of photosystem II in birch (Betula pubescens ssp. pubescens) during the growing season - a pilot study. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 185-193. Nilsen, J. & Wielgolaski, F. E. 2001. Effects of fertilization and watering on morphology in young mountain birch plants of different provenances - a pilot study. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 71-76. Odland, A. 1996. Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. In: Frenzel, B. (ed.). Holocene Treeline Oscillations, Dendrochronology and Paleoclimate. G. Fischer, Stuttgart, p. 43-59. 89 odum, S. 2001. The establishment of an arboretum in Greenland. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 47^19. Partanen, R., Wielgolaski, F. E., Malila, E., Mäenpää, E. & Laine, K. 2001. Inorganic nutrient content in plant species of a mountain birch dominated ecosystem in northern Fennoscandia. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 155-171. Skre, O. 1993. Effects of altitude on growth in ecotypes of mountain birch (Betula pubescens Ehrh.) and lowland birch (Betula pendula Roth.) seedlings. Medd. Skogforsk, 45 (11): 1-30. Skre, O. 2001. Climate change impacts on mountain birch ecosystems. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 343-357. Sonesson, M. 2001. Ecology of some epiphytic lichens on the mountain birch. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 63-70. Sonesson, M. & Hoogesteger, J. 1983. Recent tree-line dynamics (Betula pubescens Ehrh. ssp. tortuosa /LedebVNyman) in northern Sweden. Nordicana 47: 47-54. Sonesson. M. & Lundberg, B. 1974. Late Quaternary forest development of the Torneträsk area, North Sweden. 1. Structure of modern forest ecosystems. Oikos2s: 121-33. Sveinbjörnsson, B. 2001. Performance of mountain birch in relation to its treeline in the Torneträsk area, northern Sweden. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 173-183. Tenow, O. 1972. The outbreaks of Oporinia autumnata Bkh. and Operophthera ssp. (Lep. Geometridae) in the Scandinavian mountain chain and northern Finland 1862-1968. Zool. Bidrag Uppsala, Suppl. 2: 1-107. Tenow, 0., Bylund, H. & Holmgren, B. 2001. Impact on mountain birch forests in the past and the future of outbreaks of two Geometrid insects. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 223-239. Tolvanen, A., Forbes, B. C., Rytkönen, K. E. & Laine, K. 2001. Regeneration of dominant plants after short-term pedestrian trampling in subarctic plant communities. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 359-368. Tommervik, H., Hogda, K. A. & Karisen, S. R. 2001. Using remote sensing to detect caterpillar outbreaks in mountain birch forests - a new approach. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 241-249. Wahlenberg, G. 1812. Flora Lapponica. Berolini. p. l-550.Weih, M. & Karlsson, P. S. 2001. Variation in growth patterns among provenances, ecotypes and individuals of mountain birch. In: Wielgolaski, F. E. (Ed). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 143-154. 90 Wielgolaski, F. E. 1998. Twenty two years of plant recovery after severe trampling by man through five years in three vegetation types at Hardangervidda. NTNU Vitensk.mus. Rapp. bot. Ser.4: 26-29. Wielgolaski, F. E. 2001 a. Vegetation sections in northern Fennoscandian mountain birch forests. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London. 23-33. Wielgolaski, F. E. 2001b. Field- and bottom layer vegetation mat transplantation: A method to simulate possible effects of climate change? Skograektarritid, 2001-1, 167-70. Wielgolaski, F. E. & Nilsen, J. 2001. Coppicing and growth of various provenances of mountain birch in relation to nutrients and water. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 77-92. Wielgolaski, F. E. & Sonesson, M. 2001. Nordic mountain birch ecosystems - a conceptual overview. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 377-384. 91 The Spatial Structure of the Timberline Landscape and Its Relation to Climate and Permafrost in the Usa Basin, NW Russia Tarmo Virtanen, Kari Mikkola and Ari Nikula Introduction The Usa Basin (see location in Fig. 1) is unique in continental Europe for hav ing such a broad lowland tundra-taiga transition zone and extensive permafrost. Except for the climate parameters, the present forest stand structure and spatial distribution of the forests in the region are predominantly determined by soil properties and permafrost. In many other parts of the northern forest-tundra transition zone the major factors affecting vegetation dynamics are fires, and at times also grazing by mammal and insect herbivores (e.g., Kallio and Lehtonen 1973, Zackrisson 1977, Oksanen et ai. 1995, Rupp et ai. 2000, Gromtsev 2002). Figure 1. Location of the Usa Basin. 92 Major fires in the Usa Basin's mainly mesic spruce-dominated forests are rela tively rare. Furthermore, there are no reports of any significant insect- or pathogen-caused large-scale death of trees. It is also probable that the impact of reindeer on these forests are relatively small, as reindeer numbers are not very high there and the summer pastures are located in the tundra. Human impact on the vegetation in the region has been minor, and concentrated only to the sur roundings of the three towns and some villages along the rivers. As a part of the EC-funded TUNDRA project, we compiled a Geographic In formation System (GIS) database including data about the region's vegetation types and their allocated phytomass, topography, rivers and lakes, soil proper ties, permafrost conditions, and main climatic parameters. In this paper, we present landscape-level analyses of the location and spatial structure of the for est-tundra transition zone in relation to climate, soil type, and permafrost. Material and Methods We produced a vegetation classification with a resolution of 30 m for the entire Usa Basin (some 93,500 km 2 ) using a Landsat TM 5 image mosaic, which was constructed from eight different images. In the classification, we used ground truth data and oblique aerial photos taken in the summers of 1998, 1999 and 2000. Details of the classification procedure are presented in TUNDRA final report and scientific reports are in preparation. A short description of the pro cedure is available in Rees et al. (2002). Our classification produced as many as twenty vegetation type/land use classes. For this study, we re-grouped these classes into three main groups: Forest, Tundra and Other (peatlands, willow stands and meadows, mainly unvegetated areas, water bodies). For the analyses, we divided the Usa Basin into 21 km x 21 km grid cells (see App. D. Fig. 9), and calculated the proportion and mean patch size for each vegetation class and grid cell. We also calculated the mean values of some cli matic and soil parameters for the same grid cells. Our climate data are based on the regional HIRHAM climate model developed for the region by Jens Chris tenssen, of the Danish Meteorological Institute. Soil data were compiled by Galina Mazhitova, of the Institute of Biology, Syktyvkar, and the permafrost data by Naum Oberman, of Polar Ural Geology, Vorkuta. This paper is an analysis only of the structure of the lowland taiga-tundra transition zone and it omits the mountainous regions. Results and Discussion Our vegetation classification data shows that 24.1 %of the Usa Basin is cov ered by forests, 26.4 % by shrub tundra, 29.8 % by peatlands, 9.5 % by willow predominated areas or meadows, 6.5 % by stony or sandy soils (mountains, river banks, etc.), 2.8 % are water bodies, and 0.5 % show signs of human im pact, being mainly non-vegetated areas (towns, villages, mining areas, etc.). The proportion of the forest-covered area gradually decreases from south to 93 north, more steeply in the Ural Mountains in the east (see App. D Fig. 9). The forest-tundra transition zone in the Usa Basin lowlands is approximately 100 km wide (see App. D. Fig. 10). In addition to the forest-tundra transition, espe cially extensive peatland areas fragment the tundra and forest landscapes. Fig ure App. D. 11. illustrates the change in the structure of the forest and tundra transition zone along the south-north gradient. There are some limitations to determining the exact location of the timberline using Landsat TM images. Forest patches larger than a few hectares can be dis tinguished quite reliably, but as the grain size of the forest mosaic becomes smaller, single pixels (30 m x 30 m) usually cover more than one vegetation class. For example, isolated small spruce stands, occurring even tens of kilome tres north of the larger forest stands in river valleys and on small sandy hills, are often smaller than the size of the pixel or the shape of the strips is so nar row that they usually become mixed up with the surrounding vegetation types. An additional problem is caused by the spectral confusion between some forest types and areas of small-grained (often only some tens of square metres) peat land areas with admixtures of small ponds, birch, willows and meadow vegeta tion. Therefore, it is probable that most of the pixels classified as forests and located more than 10-20 km north from the timberline are misclassifications in our data (see App. D. Fig. 9). The present timberline in the area roughly follows the isoline +l3.5°C of the mean July temperature (Fig. 2b). This is an interesting anomaly, as it is often proposed that in most parts of the world the timberline is associated with the + 10° C isoline of the warmest month (Tuhkanen 1999). On the other hand, the timberline also clearly correlates with soil temperature (annual temperature at a depth of zero amplitude; Fig. 2b). The timberline seems to be located where the mean soil temperatures is around -I°C, which corresponds to the area where a more contiguouspermafrost begins to prevail also in upland areas. Indeed, we have not observed spruce to grow in permafrost terrain (except for one case which could have been one of late seasonal ice). It has been hypothesized that spruce in this region is not adapted to grow in permafrost terrain because per mafrost was largely, if not entirely, absent during the warm period of the Holo cene in the Pechora lowlands. As a result, no spruce ecotypes have adapted to such conditions (Peter Kuhry, pers. comm.). Furthermore, it also seems that edaphic features, i.e. extensive tracts of peatland, limit the occurrence of forest stands, especially in the northwest part of the Usa Basin. 94 Figure 2. The mean patch size of the forest and tundra patches in relation to (a) mean July temperature, and (b) mean soil temperature. The observations are the mean val ues of the lowland grid cells shown in Fig. 2. It should be noted that as the proportion of the area and patch size are intercorrelated, then using a proportion of the area would have roughly yielded a similar pattern for the July mean and soil temperature gradients. 95 Acknowledgments This study is a part of the TUNDRA (Tundra Degradation in the Russian Arc tic) Project, funded by the Environment and Climate Programme of the Euro pean Commission (contract ENV4-CT97-0522). Correspondence: Virtanen, Tarmo, see Appendix C. References Gromtsev, A. 2002. Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fennica 36(1): 41-55. Kallio, P. & Lehtonen, J. 1973. Birch forest damage caused by Oporinia au tumnata (Bkh.) in 1965-66 in Utsjoki, N Finland. Reports from the Kevo Subarctic Research Station 10: 55-69. Oksanen, L., Moen., J. & Helle, T. 1995. Timberline patterns in northernmost Fennoscandia. Relative importance of climate and grazing. Acta Botanica Fennica 153: 93-105. Rees, G., Brown, 1., Mikkola, K., Virtanen, T. & Werkman, B. 2002. How can the dynamics of the tundra-taiga boundary be remotely monitored? Ambio, special issue on Treeline Dynamics. In press. Rupp, T. S., Chapin, F. S. & Starfield, A. M. 2000. Response of subarctic vegetation to transient climatic change on the Seward Peninsula in north-west Alaska. Global Change Biology 6:541-555. Tuhkanen, S. 1999. The northern timberline in relation to climate. In: Kan kaanpää, S., Tasanen, T. & Sutinen, M-L. (Eds). Sustainable develop ment in northern timberline forests. Finnish Forest Research Institute. Research Papers 734. p. 29-61. Zackrisson, O. 1977. Influence of forest fires on the north Swedish boreal for ests. Oikos 29: 22-32. 96 Russian Forest Industry and Its Threats to Timberline Forests Alexander. I. Voropaev Russia has 23 % of the world's forests, ranking first, before Brazil, in terms of forest area, which in Russia amounts to 774.2 million hectares, of which 21.8 % lie in the European part of the Russian Federation, mostly in the North. After some years of crisis following 1990, the Russian forestry sector regained its growth as of 1998. The same applies to the country's exports of forest-based products. The main production and exporting regions are northern European Russia, southern East Siberia, and the Russian Far East (Russia's main wood production regions and intensity of wood harvesting in them, see App. D. Fig. 12). Northern European Russia includes the Murmanskaya Oblast, the Repub lic of Karelia, the Arkhangelskaya Oblast, including the Nenets Autonomous District, and the Republic of Komi. The most intensive wood harvesting takes place in the latter region, which is also the leader in exports of forest-based products. Wood harvesting along the Asian timberline zone is not significant due to the region's small population and remoteness from the main markets. Logging is mostly carried out to satisfy local needs. However, satisfying these needs can also cause damage to the forests. Here we address only the issue of threats to the timberline forests on a regional scale related to forest manage ment. The forest sector accounts for 2.6 % of the country's gross domestic product and 4.3 % of its export earnings. However, its role in northern European Russia is much higher (Fig. 1). Thus, the forest sector is of vital importance to the re gion and the well-being of people. The utilisation of forest resources is not a problem of ecological viability; it is a matter of forest management (technol ogy, scale, and intensity of use). Modern harvesting technologies can be sustainable. As the cases of FSC certi fication in Russia shows (two such certifications took place in northern Euro pean Russia), the country's current forest legislation generally meets the re quirements of sustainable forest management. Certainly, there are some differ ences and shortcomings, e.g. related to biodiversity conservation and the main tenance of forests' ecological functions and high conservation value of forests, but they are not fundamental and can be remedied. 97 Figure 1. The Russian forest sector's share of production and exports by region However, entirely sound forest management is to be had only if the company adheres to the current legislation. Unfortunately, harvesting is nowadays often carried out significantly violating the current regulations and using heavy ma chinery destructive to young trees and forest soils. The owners of Russian wood-harvesting companies are, as a rule, not ecologically aware and usually have no ecological policies established. In general, the logging practice is wasteful and destructive, as between 40 % to 60 % of the harvestable wood is lost during logging and transportation. There are two ways to make companies comply with forest legislation, i.e. make them economically interested by, for example, demanding that the wood is harvested from well-managed forests (certified wood), or by strictly control ling them. As regards demand, there is no demand at all on the home market at the present, but there is export demand, e.g. demand for FSC-certified products in the United Kingdom, Germany, the United States, and some other countries. Considering the high share of exports, this demand can have an impact on Rus sian forest management, and this is already happening. As for harvesting con trol, it is often impaired by the lack of funds on part of the state forest man agement units responsible for it. This is another factor threatening forest. Nowadays, state forest management units have no appropriate funding from the federal or regional budgets to per form their functions, e.g. supervision of cutting areas, forest protection, reforestation, and so on. Instead, they have become a part of the problem. Forest management units are allowed by the existing legislation to execute all kinds of thinning operations designed to improve forest ecosystems. Such cuttings are exempt from lease payments and stumpage fees, and may be done also within protected areas. Due to a legal loophole, instead of thinning, forest 98 protected areas. Due to a legal loophole, instead of thinning, forest manage ment units undertake real commercial logging, which covers their budget short fall, but causes forest destruction. The extent of this 'thinning practice' is strik ing; the Federal Forest Service, before its abolishment, harvested more than 20 % of the total wood harvest in Russia. With poor control of forest operations, lack of management, low level of in come in the local communities, and the unscrupulousness of some importer companies, illegal harvesting takes place. This is not only an economic prob lem, but also an environmental problem because such logging is carried out without any rules, in extra-large volumes, and often in protected areas. The World Wide Fund for Nature estimates illegal harvesting in northern European Russia to be approx. 20-25 %. The Russian authorities consider that about a half of wood in the country is harvested in violation of the regulations. Illegal harvesting is related to another factor threatening the forests of northern European Russia. This is harvesting in forests with high conservation values. Northern European Russia has a comparatively high percentage of protected areas, 11.4 %, which is also one of the highest values in the country. However, these forests are distributed at random and do not include all the kinds of for ests that should be protected. Thus, intact forests, the last unfragmented areas in all of Europe that remain, have no particular environmental status and are allotted for felling without any special preferences. Similarly, the region's sub tundra forests have a low protection status (lUCN Category VI) which exposes them to some kinds of logging. According to the estimates presented by the Taiga Rescue Network, thinning is permitted in nearly one-third of all pro tected areas in northern European Russia. WWF Russia analysed the quality of biodiversity conservation in the country, based on the strictness of conservation regimes of protected areas, their design, and human effect. All the administra tive regions of Russia were classified by score according to their contribution to biodiversity conservation. According to this scoring, the rating as a whole is low, although the percentage of protected areas is rather high. Only two regions (Nenets Autonomous District and the Republic of Komi) have adequate scores. In the other regions, improvement of the regional systems of forest protection is required. A specific factor threatening the forests of northern European Russia is the high concentration of large pulp and paper mills (see App. D. Fig. 13). They consume a lot of wood. Most of the mills use only spruce or pine, less of birch. However, softwood is in great demand in the other wood-processing industries of the region and for exports as well. There are large resources of aspen, which are not in great demand neither on the domestic nor foreign markets, and these could be used by pulp and paper mills. But only one uses aspen. Intact forests not formally protected lie near the mills and are the real sources of raw materials for them. The share of wood used by regional pulp and paper mills from intact forests is high only in some cases (Table 1), but they are the largest mills of the region. Arkhangelsk PPM produces 24 % of the country's 99 paperboard and 11 %of the market pulp, while the respective figures for Kot las PPM are 20 % and 15 %. Table 1. Role of pulp and paper mills in the destruction of the intact forests of northern European Russia This share can increase only because of increasing production and decreasing local wood resources. On the other hand, pulp and paper mills are beneficial to regional economy. Thanks to them, northern European Russia has a better structure in regard to forest products exports (Fig. 2). The share of paper is much higher than in the country as a whole while the roundwood share is much smaller. However, roundwood exports from the region are still higher than the global mean of 8 %. Figure 2. Structure of Forest Products Export in Russia and its Northern European Part Pulp and paper mills Share of wood from pris- tine forests Arkhangelsk PPM 30% Kotlas PPM 20% Solombala PPM 17% Kondopoga PPM 15% Solikamskbumprom 12% Syktyvkar Forest Complex 6% Segezha PPM 5% Pitkiaranta PM 4% 100 Hence, the recommendations to mitigate the threats to the forests of northern European Russia, taking into account that they will be successful only through co-operation between governmental bodies, non-governmental organisations, and industry, are as follows: 1. To improve the forest legislation to bring it closer to meeting international requirements, particularly in relation to biodiversity conservation, mainte nance of ecological functions and forests with high conservation value. But more important is the regionalisation of the forest legislation. Now it is strictly centralised, all decisions are made in Moscow and often without tak ing into account regional conditions. The federal legislation should form the framework while such things as maximum allowable cutting levels or cut ting areas should be specified locally. Then, the maximum allowable cutting level for northern European Russia could be decreased in compliance with the demands of local environmental organisations. 2. For harvesting control to become more effective we first need to divide har vesting control and thinning. State forest management units should retain only the controlling functions while thinning should be performed by private or state-owned enterprises, preferably according to contracts. And certainly, forest management units must be adequately financed. Non-governmental organisations could assist in the control function by involving local people and establishing a kind of public control. Industry, if seeking a good image, should make its operations transparent. 3. To encourage voluntary forest certification in order to get forest companies interested in good forest management. There are a variety of schemes for forest certification in the world. The most well known are the Forest Stew ardship Council (FSC) and Pan-European Forest Certification (PEFC). Nowadays, only FSC has experience in Russia. Its promotion is the preroga tive of non-governmental organisations and they do it quite successfully. As there is no demand for certified forest products on the domestic market, im porters could do much towards saving Russian forests by asking their Rus sian partners for certified products or at least demanding the implementation of ecological policies. This is of particular importance for northern Euro pean Russia, which exports a high percentage of its forest-based products to countries where such demands are a reality. The role of the state here is to make the forest legislation comply with the principles and criteria of certifi cation. 4. To stop illegal harvesting. Thus is a very complicated problem. A good re sult was received in the Russian Far East where in 1998 special mobile bri gades for combating illegal harvesting were established. They were initiated and supported by WWF Russia, and now act under the aegis of the regional Environmental Agencies. They have brought to light hundreds of violations and have succeeded in significantly reducing the level of illegal harvesting. Now this experience is projected to be implemented in the Arkhangelskaya Oblast and then in whole of northern European Russia. Foreign companies can assist in this by monitoring their sources of imported wood and ceasing to purchase wood from unreliable sources. 101 5. To improve the system of protected areas in the region and safeguard the system. Protected areas should be increased in number and size and protec tion status should be strengthened, intact forests should be formally pro tected from harvesting. Thinning in sub-tundra forests should be strictly controlled as well as harvesting in forests just south of them. Non governmental organisations do a lot in assisting the authorities in this work. In 1996 they initiated a moratorium supported by a number of foreign com panies on purchasing wood from the intact forests of the Republic of Karelia and the Murmanskaya Oblast. There are also cases of such moratoriums supported by Russian companies in areas considered to have high conserva tion value by non-governmental organisations but lacking protection status. 6. The problem caused by high concentration of pulp and paper mills is the most difficult one to be resolved. One possible way is to cut roundwood ex ports competing with the mills for wood. Another way is to switch over to using aspen as a raw material, but this requires investments. The state could assist in obtaining investment resources and by decreasing the railway freight tariffs to make it profitable to purchase wood from distant sources. However, the most prospective alternative, along with other changes, seems to be to establish vertically integrated companies, involving all stages of forest industry from logging to manufacturing final products and marketing. Such forest-industry integrates are now being actively developed in Russia. The three biggest ones operating in the region are llim Pulp Enterprise, Ti tan Group, and Syktyvkar Forest Complex. We believe that these improvements will make the management of timber re sources in northern European Russian environmentally acceptable, socially beneficial, and economically viable. References Forest Conservation in Russia: An Overview. WWF Russian Programme Of fice Analytical Document. Moscow, 2001. 102 Assessment of Recent and Possible Future Forest Responses to Climate in Boreal Alaska Valerie Barber, Glenn Patrick Juday, Ed Berg and Martin Wilmking The boreal forest covers 12 million km 2 of the northern hemisphere and con tains 40 % of the world's reactive soil carbon, an amount similar to that held in the atmosphere (Melillo et al. 1993; McGuire et al. 1995). Boreal forests ac count for about 17 % of the Earth's land surface area (Bonan et al. 1992). The distribution of the boreal forest in North America lies above 60° latitude in Alaska but below 60° latitude over the rest of North America due to synoptic climatic conditions. Prevailing lows on the western margin of North America deflect storm tracks and advect warmer air masses north. On the eastern boundary, polar air is deflected southward. Oceanic currents along the conti nental edges follow similar patterns strengthening the temperature effects. The boreal forest region is particularly prone to climatic variability because minor variations in these key features of atmospheric circulation can either intensify the advection of warm air into this naturally cold region, or enhance the distri bution of cold air southward through the region. Recent dendrochronological studies show that different parts of the boreal forest respond differently to cli mate parameters. In Alaska, 5 species of trees comprise the boreal forest of which black and white spruce are two important components. White spruce is the predominant forest cover and occupies nearly 2.8 million ha or about 26 % of the Alaskan boreal forest. Black spruce dominated sites account for 55 % of the area of the Alaskan boreal forest (Labau and van Hees 1990). Interior Alaska is where the majority of the boreal forest in Alaska is found. It is a well-defined region of complex physiography delimited in the north by the Brooks Range and in the south by the Alaskan Range. The region essentially covers the area between 63° and 67° N. Interior Alaska extends from the Yukon Territory at 141° W, westward to the Bering Sea climatic boundary at about 155°W where precipitation exceeds 400 mm (Edwards et al. 2001). The region is made up of two large, low-lying tectonic basins, the Tanana Valley and Yukon Flats, separated by uplands 500-1000 m in elevation. The regional climate is cold continental with January means -20° C or colder and July means 15-20° C, depending on elevation and location within the region. The Brooks and Alaska Ranges act as topographic barriers to moisture-laden air from sur rounding oceans. Consequently Interior Alaska is semi-arid, with annual pre cipitation ranging from 400 to <2OO mm (average 305 mm) (Patric and Black 103 1968). Precipitation generally declines to the east, and is strongly influenced by topography (Edwards et al. 2001). About 60 % of the annual precipitation falls as summer rain. Because annual precipitation in central Interior Alaska is low and summers are often warm, a precipitation deficit (excess of potential evapotranspiration over precipitation) develops. Calculated precipitation deficit values in Alaska include 9.5 cm at Bettles in the central Brooks Range, 18.8 cm at Fairbanks, and 28.9 cm at Fort Yukon (Slaughter and Viereck 1986). Other climatic regions in Alaska where the boreal forest is found include a maritime zone, which includes the southern, southeast and southwest coasts of Alaska, a maritime continental zone in western Alaska where summers are maritime and winters more continental due to the extent of ice in winter, and a transition zone. These zones receive more precipitation so precipitation deficits are rare. A regime shift was documented around 1977 in all parts of Alaska. Tempera ture increased at all stations relative to the previous 20 or more years. Precipitation has been variable and has increased at most coastal stations while decreasing or remaining the same at interior and northern sites in Alaska. A more recent shift may have occurred as summers since 2000 have been cooler and moister in interior Alaska and winters have been milder. The distribution of white spruce across North America is extensive. Spruce tends to grow in a climatic envelope where annual temperature is between -12 to +lO°C and annual precipitation is between 200 to 1300 mm. Interior Alaska lies on the warm and dry side of this envelope while coastal and alpine sites are wetter and/or cooler. In central Alaska, low elevation upland white spruce trees are consistent in their negative growth response to temperature, because of temperature-induced moisture stress (Barber et al. 2000). Interior lowland white spruce trees are generally not limited by moisture stress and respond positively to temperature. Black spruce trees growing on permafrost sites in interior Alaska also record a negative response to April/May and/or June temperature. Tree line is an important ecosystem, which is sensitive to climatic changes. It is the transitional boundary between forest and tundra signifying temperate vs. more arctic climate. Tree line is traditionally explained by temperature and his torically, tree line has shifted with changing climate. Alaska has both cold limited alpine type tree line and low-elevation moisture-limited tree line. Alpine tree populations display both positive and negative responses to sum mer warming. In one area of the Brooks Range, white spruce tree line popula tions displayed contrasting responses to temperature although the populations were not far from each other (see App. D. Fig 14A and 14B). Another site along the south central coast of Alaska showed similar contrasting responses (see App. D. Fig. 14C and 14D). D'Arrigo and Jacoby (personal communica tion) found a similar dual response in white spruce in the Wrangel St. Elias Mountains of Alaska. Jacoby and D'Arrigo (1995) found some tree line sites in 104 northern Alaska with changing responses to climate. Where once the trees re sponded positively to summer temperature, they were now insensitive or re sponding negatively to summer temperature, possibly due to moisture stress. A study of 8 sites at and near alpine and arctic tree line in three regions of Alaska had mixed results as well (Lloyd and Fastie 2002). That study revealed sub stantial regional variability of growth in response to climate variation but found decreased growth in response to temperature at all but the wettest sites since 1950. Inverse relationships of growth to climate were more common at sites below the forest margin than at tree line (Lloyd and Fastie 2002). On the Kenai Peninsula, a recent lack of response to increasing temperatures was seen with upland white spruce (Ed Berg personal communication). There is evidence of increasing tree line since 1850's in Eastern Alaska Range (Zald 2002). Other studies (Lloyd et al., in press) show a 10 km advance of white spruce into shrub tundra on upland sites on the Seward Peninsula since 1880. On lowland sites, they found tree line advance since about 1920 but only on sites experiencing thermokarst. Most of the Seaward Peninsula in western Alaska is treeless, but Global Climate Models (GCM) indicate temperatures (Nome station) sufficient for extensive growth of white spruce on the peninsula by 2040. Projections of future warming by global climate models (GCM) indicate warm ing will increase in Alaska throughout the century. Based on temperature pre dictions and growth models based on temperature, much of the white spruce in interior Alaska will be eliminated by about 2080 (see App. D. Fig. 15). Black spruce shows a much slower decline in growth, but its demise is expected to accelerate with increased thermokarsting as permafrost melts and habitat is lost. Increased warming is projected to cause increased disturbances by fire and in sect infestation. A major outbreak of spruce bark beetle on the Kenai Peninsula from 1989-1997 killed over 3 million acres of white spruce and Sitka/Lutz spruce, which comprised most of available mature spruce forests (Ed Berg per sonal communication). The outbreak is attributed to climate change and in creased warming (see App. D. Fig. 16). Infect infestation is expected to in crease if climate continues to warm. Correspondence: Barber, Valerie, see Appendix C. References Barber, V. A., Juday, G. P. et al. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405(8 June): 668-673. Bonan, G. 8., Pollard, D. et al. 1992. Effects of boreal forest vegetation on global climate. Nature 359: 716-718. 105 Edwards, M. E., Mock, C. L. et ai. 2001. Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmos pheric-circulation controls of regional temperature and moisture re sponses. Quaternary Sciences Reviews 20: 189-202. Jacoby, G. C. & D'Arrigo, R. D. 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles 9(2): 227-234. Labau, V. J. & van Hees, W. 1990. An inventory of Alaska's boreal forests: their extent, condition, and potential use. International Symposium Bo real Forests: Climate, Dynamics, Anthropogenic Effects. State Commit tee of USSR on Forests. Archangelsk, Russia. Lloyd, A. H. & Fastie, C. L. (2002). Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Climatic Change 52:481-509. Lloyd, A. H., Rupp, T. S. et al. (in press). Patterns and dynamics of treeline advance on the Seward peninsula, Alaska. JGR-Atmosphere. McGuire, A. D., Melillo, J. et al. 1995. Equilibrium responses of soil carbon to climate change: empirical and process based estimates. Journal of Bio geography 22: 785-796. Melillo, J. M., McGuire, A. D. et al. 1993. Global climate change and terres trial net primary production. Nature 363: 234-240. Patric, J. H. & P. E. Black, P. E. 1968. Potential evapotranspiration and climate in Alaska by Thornthwaite's classification. Juneau, AK, U.S.D.A. For est Service. Slaughter, C. W. & Viereck, L. A. 1986. Climatic characteristics of the taiga in Interior Alaska. In: Van Cleve, K., Chapin, F. S. 1., Viereck, L. A. & Dyrness, C. T.. Forest ecosystems in the Alaska taiga. A synthesis of structure and function. Springer, New York. p. 9-21. Zald, H. 2002. Treeline responses of white spruce, Picea glauca (Moench)Voss, to physiographic and climatic variation in the eastern Alaska Range. Natural Resources and Environment, University of Michigan. 106 Global Warming and Regional Tree-ring Growth Response in the Kola Peninsula, North-West Russia Oleg M. Raspopov, T. Kolström, O.L. Shumilov, I. Ju. Kirtsideli, V.A. Dergachev, M. Lindholm, J. Meriläinen, Ö. Eggertsson, E.A. Kasatkina, A.V. Kuzmin, G.G. Matishev, and S.L. Dzhenyuk Tree-ring growth data of Scots pine (Finns sylvestris ) collected from nineteen sites in the Kola Peninsula north of the Polar Circle were analysed. The main goal in this research undertaking was to detect regional responses of the bio logical systems (forests) to global warming during the past 100 years. The Kola Peninsula is located between 66° and 70° N, and 32° and 41° E. The northern timberline crosses Kola Peninsula from the north-west coast of the Barents Sea to south-east coast of the same sea. The peninsula is located in a region of characterised by active Atlantic cyclones, which is why the region's biological systems (including forests) do not lack moisture. The precipitation is distrib uted more or less uniformly over the Kola Peninsula. The mean precipitation varies between 500 and 800 mm/a, and in mountainous regions it can reach 1200 mm/a. Under these precipitation conditions, tree growth, taking into ac count the absence of noticeable anthropogeneous pollution, is mainly deter mined by air temperature. Fig. 1 shows the tree-ring widths (Pinus sylvestris) at the northern timberline in the Kola Peninsula, at Murmansk (Raspopov et al. 2001) for the past 400 years or so. Temperature variations in the Northern Hemisphere and in the Arctic regions are also presented. It can be see that both long-term tree-ring growth and temperature variation demonstrate in general rather analogous behaviour, but the tree-growth curve shows variation reflecting the regional features of the Kola Peninsula's climate. 107 Figure 1. Top. Variations in tree-ring width (Pinus sylvestris) at the northern timberline in the Kola Peninsula for the past 400 years or so (5-year running mean). Bottom. Comparison of ten-year smoothed temperature anomalies for the Arctic regions (Overpeck et al. 1997) with the thick line showing instrument data and for the North ern Hemisphere (Mann et al. 1999) over the past 400 years or so derived from proxy and instrument sources. In the present paper, the regional climatic response to global warming during the past 100 years is considered in the light of growth data colleted on Pinus sylvestris. Fig. 2 shows the location of the tree-ring sampling sites. Each site was accessed for no less than 10-15 cores for determining tree-ring growth values. The master chronologies for the past century are presented in Fig. 3, which shows an increase in tree-ring growth (TRG) during the first half of the past century, with maximum TRG occurring between the 1930 s and the 19505, and then a sharp decrease in TRG occurring in the Kola Peninsula. Since the 19705, the TRG has been stable. 108 Figure 2. Map showing the location of sampling sites. Figure 3. Variations of tree-ring width in the samples from the Kola Peninsula. Fig. 4 shows the temperature variation within the Northern Hemisphere, the mean annual air temperatures in the coastal region of the Kola Peninsula (Kola - Murmansk) for the past 100 years, and also the mean annual temperature in the central part of the Kola Peninsula (Kirovsk) for the past 30 years. 109 Figure 4. Comparison of the regional variations in annual mean temperature in the Kola Peninsula (Murmansk, Kola, Kirovsk stations) and global temperature changes. As can be seen from comparison of regional and global temperature variation, the elevation in global and regional temperature took place synchronously up to the middle of the 20th century. Then, in the 19605, a temperature decrease was observed. However, since the 19705, the trend in global and regional tem peratures has been different. Both trends demonstrate a tendency to some ele vation in temperature. But in the case of global temperatures, the increase took place by twice as fast as in the first half of the past century. In the case of re gional temperatures, their elevation was twice as slow (~ 0.15°/10 years com pared to ~0.25°/10 years in the beginning of the century). The analysis of mean annual temperature increase for the last 30 years demonstrates that the eleva tion took place on account of winter temperatures. An elevation in summer temperatures did not happen. Moreover, there was a decrease in mean summer temperature during the last decade. The following table shows the mean monthly temperatures for the summer (June, July, August) and the winter (De cember, January, February) in the central part of the Kola Peninsula (Kirovsk) in the 1980 s and 19905. 110 Table. The mean monthly summer and winter temperatures in the central part of the Kola Peninsula (Kirovsk) The difference in the mean decadal winter temperatures for the last two dec ades is +l.B°C, and that in the mean summer temperatures is -O.5°C. The data presented correlate well with the data of Timonen (2002) on the temperature variations along the northern timberline in Finland in the 19905: the monthly mean temperature for December-March increased by 1-2° C and the annual mean temperature by O.5°C compared to the mean for the whole century. The June-July temperatures of the past two decades were below the average for the 20th century. Figure 5. Correlation between regional monthly temperature and tree-ring growth rates in the Chibin (Kirovsk) tree-ring chronology, 1964-2001. Temperature, Year °C 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 Summer 11.4 9.9 8.2 9.9 10.5 10.9 11.2 9.2 12.5 11.9 Winter 13.4 -13.1 -10.4 11.3 9.1 -19.7 -14.9 -14.1 -11.6 -10.3 Temperature Year °C 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Summer 10.7 10.4 8.3 11.1 9.9 11.0 7.2 11.3 9.7 10.8 Winter m -9.9 -7.8 -11.7 11.0 -10.1 -10.0 -13.0 -13.6 -13.2 111 Fig. 5 shows the results for correlation between tree-ring growth rates and monthly temperature variation in the central part of the Kola Peninsula (Ki rovsk) for the past 40 years. One can see a clear correlation between tree-ring growth and temperature changes in June-August. Thus the stability of tree-ring growth for the last 30 years of the past century appears to be connected to the absence of summer temperature enhancement for the period in question. Conclusion In the first half of the past century, climate warming occurred on both global and regional (Kola Peninsula) scales, and this was followed by enhanced tree ring growth in the Kola Peninsula. However, after the global temperature maximum, which occurred between the 1930 s and the 19505, and the tempera ture decrease of the 19605, a sharp turn appears to have occurred in atmos pheric circulation. This phenomenon led to a situation where the regional tem perature trend ceased to follow the global temperature trend. In addition, there was no warming at all in the summer months at the close of the 20th century. This being the case, tree-ring growth stabilised and did not react to global warming. On account of the precipitation and soil-moisture conditions prevailing in the Kola Peninsula, it can be proposed that, given the changes in global circulation and recovery of the climatic situation prevailing in the first half of the 20th century, when the annual temperature increase was followed by summer tem perature increases, tree-ring growth would be enhanced. In such a case, global warming would lead to an increase in the forest resources of the Kola Penin sula. Acknowledgements We are grateful to EC for supporting of this work under INCO-COPERNICUS Program (Project EXTRATERRESTRIAL ICIS-CT-98-0123), and to the Rus sian Foundation for Basic Research (Grant 00-05-64921). Correspondence: Raspopov, Oleg M., see Appendix C. References Mann M. E., Bradley R. S. & Hughes M. K. 1999. Northern hemisphere tem peratures during the past millennium: inferences, uncertainties, and limitations. Geophys. Res. Lett. V. 26: 759-764. 112 Overpeck J„ Hughen K., Hardy D., Bradley R., Case R., Douglas M., Finney 8., Gajewski K., Jacoby G., Jennings A., Lamoureux S., Lasca A., Mac Donald G., Moore J., Retelle M., Smith S., Wolfe A. & Zielinski G. 1997. Arctic environmental change of the last four centuries. Sci ence Vol. 278: 1251-1256. Raspopov, O. M., Shumilov, O. 1., Kasatkina, E. A., Turunen, E., Lindholm, M., & Kölstrom, T. 2001. The nonlinear character of the effect of solar activity on climatic processes. Geomagnetism and Aeronomy 41(3): 407^112. Timonen, M. 2002. Is the climate warming at the pine timberline? In: Abstracts prepared for Arctic Council, Northern Timberline Forests Workshop, Rovaniemi, Finland, May 23-25, 2002. p. 22. 113 Appendices A: Paper and Poster Abstracts of the Northern Tim berline Workshop in Rovaniemi, 23-25 May 2002 Paper Abstracts Monitoring Northern Tree Line via Remote Sensing and GIS: Reality and Prospects Thomas R. Allen The Arctic tree line is a dramatic transition zone between arctic tundra and su barctic boreal forests. At some locations there is an abrupt boundary and at others a gradual ecotone, the tree line (tree species limit) and the associated timberline are poised to respond to climatic change. This report summarizes the literature on applications involving remote sensing and geographic information systems (GIS) focusing on the tree line and critically reviews impediments to GIS-augmented research and sustainable development. From the perspective of space, northern Alaska's Brooks Range shows a wide range of land cover and landscape-level biomass productivity changes. However, remote sensing research here has tended toward narrow resource assays or has focused on broad classes of land cover rather than functional ecosystems. The potential to integrate traditional ecological knowledge into GIS and satellite based remote-sensing studies has been underutilized as well. There is a need to further the linkage of traditional ecological knowledge to scientific investigations as well as to accrue scientific benefits for local and indigenous resource management. The connection between scale of observation, land management, and subsistence must be carefully considered in implementing GIS and remote-sensing-based monitoring of the tree line. Assessment of Recent and Possible Future Forest Responses to Climate in Boreal Alaska Valerie Barber, Glenn Patrick Juday and Ed Berg Recent dendrochronology studies confirm the unusual magnitude of recent summer warming in the northern boreal forests of Alaska, but reversion to cooler summers occurred in 2000 and 2001. Both cold-limited alpine type tree 114 lines and low-elevation dry tree lines occur in Alaska. Alpine tree populations display both positive and negative responses to summer warming. In central Alaska, low-elevation upland white spruce are consistent in their negative growth response to temperature. This is due to temperature-induced moisture stress. Black spruce growing on permafrost sites in interior Alaska also shows a negative response to April and/or May temperature. An increase in recent in sect infestation and outbreaks may also be linked to climate. Climate scenarios of warming in the 21st century produce climates suitable for tree growth in cur rent tundra regions, and excessive summer warmth that would eliminate white spruce on productive sites in central Alaska. Correspondence: Barber, Valerie, see Appendix C Tree Growth along the Timberline and Environmental Change: An Ex ploratory Analysis Frank Berninger Growth of subarctic Scots pine trees was investigated using a combination of process-based models and dendroecological approaches. We found that tree ring width indices were strongly autocorrelated and correlated with simulated photosynthetic production of the previous year as well as with the organic mat ter decomposition of the previous year. However, relations for the period 1950-1992 were significantly different from relations for the earlier period (1876-1949). The slope of the regression of tree-ring width index and photo synthesis was less steep. Also the autocorrelation structure of the data changed. First order autocorrelation decreased and second order autocorrelation in creased. These changes could not be attributed to tree age and can be inter preted as an increasing sink limitation of growth at the tree line. Effects of Reindeer Husbandry and Nature Conservation on Malla Strict Nature Reserve Hannu Heikkinen and Mikko Jokinen The aim of the research project is to study the multiple effects of nature con servation and reindeer husbandry in Malla Strict Nature Reserve and its imme diate surroundings. Reindeer husbandry has been forbidden in the area since 1981. However, the Kilpisjärvi area is part of the reindeer-herding Sami peo ple's old grazing ground, and reindeer husbandry has been continued occasion ally also within Malla. During the past few years, there has been pressure to build a fence around Malla. This has led to a confrontation between nature con servation and reindeer husbandry. The Finnish Forest Research Institute (FFRI) and the local reindeer owners' association have together identified a need to study the matter, which is a good example how culture and nature interact when assessing sustainability. 115 The project has two themes: ecological and socio-cultural. Under the former, the aim is to study the changes that current reindeer husbandry is likely to cause to the natural state of Malla and, above all, to rare and endangered spe cies. Under the latter theme, the social and ecological conditions that current reindeer husbandry and Sami culture have to confront will be studied. An im portant part of the project is to clarify the conservation objectives and other values in the Malla area. The results will be of great value concerning practical land-use management. Keywords: nature conservation, reindeer husbandry, culture, Sami, biodiver sity, tourism. Correspondence: Heikkinen, Hannu, see Appendix C. Tree Line Changes of Scots Pine in Northwest Finnish Lapland Inferred from Dendrochronologically Dated Subfossil Wood Samuli Helama, M. Lindholm, M. Timonen and M. Eronen Altitudinal and latitudinal tree-line changes during the past 7,500 years in Enontekiö (Northwest Finnish Lapland) and adjacent areas were modelled us ing dendrochronologically dated subfossil finds of Scots pine (Pinus sylvestris L.). Utilization of dendrochronology yields sample dating enabling accuracy of one year. Pine reached its distributional maximum ca. 2800-2200 BC. Com paratively abrupt decline occurred ca. 800-200 BC. The last 1,000 years are sparsely covered by subfossil founds. Long-term decline in the tree line can be partly explained by glacio-isostatic land uplift in the area. Extension of the model by already collected samples from much wider geographical area can yield spatially far more detailed reconstructions of pine tree line changes dur ing the Holocene. Correspondence: Helama, Samuli, see Appendix C. Change in the Population Cycles of Small Rodents in Northern Fenno scandia Heikki Henttonen The regular 4-5 year cycles of small rodents have been the most characteristic feature of northern Fennoscandian nature. The cycles have been reflected widely in the trophic levels below and above the rodents, e.g. in food plants and predators of rodents. Flowever, starting in the mid-1980s, these cycles have changed, or disappeared, in large areas, and this has been accompanied by the breakdown of the geographic synchrony of the fluctuations. These kinds of drastic changes in the dynamics of northern terrestrial ecosystems are ciying out for explanations, some of which are discussed here. Regardless of the causes, the changes, if permanent, have profound biodiversity implications. 116 Northern Forest-tundra Ecotone in Finland: Research Needs with Respect to Environmental Change Considering Landscape Ecology Friedrich-Karl Holtmeier On the global scale, the concept "timberline" is usually considered to be a "line" responding like an organism, more or less rapidly, to changing climate. This occurs mainly with respect to mean temperatures, temperature sums, de gree-days, etc. However, the term "timberline" - and "northern timberline" in particular - usually refers to a transitional zone (forest-tundra ecotone) rather than a line. This ecotone is characterized by ecological conditions different from those prevailing in a closed forest as well as from those prevailing in arc tic or alpine tundra. Correlating more or less arbitrarily tree line or timberline with any mean air or soil temperature, which are supposed to be the factor con trolling timberline, is too simplistic and represents a throwback to the early years of timberline research. Landscape-ecological timberline research is concerned with the spatial struc tures and patchiness of the more or less broad forest-tundra ecotone. Spatial structures and patchiness mainly depend on local topography, its influence on site conditions, and on the response of trees to the given conditions. Local site conditions control growth, growth forms, and the distribution pattern of trees, tree copses, seedlings, patchiness of plant communities, decomposition, nutri ents available to plants, and survival rates. We also need to be aware of the point that the actual structure of the timberline ecotone reflects more the site history than the present climate. Thus, on the landscape and local scale, me ticulous and detailed analyses of site conditions and site history are required for us to understand the functional structures as well as the spatial and temporal dynamics in the forest-tundra ecotone. This will be illuminated by the results of our timberline studies in northern Finland. Relative Values of Trees: Sami Perceptions of Trees and Forest Anna Järpe How people relate to their environment, and how different kinds of knowledge emerge from different contexts, is an area that has attracted increasing attention from anthropologists. This paper will show how an anthropological study can be employed to gain a better appreciation of how people living in and with for ests perceive and relate to their environment in a European context. Focusing on southern Sami (Sweden), 1 propose that if issues of forest management and conservation are to be central to the formulation of policies of sustainable de velopment, we need also to consider how different perspectives affect actual interaction with the environment, and thus how forests and trees are involved in the formation of different kinds of knowledge. Keywords: environment perception, human ecology, knowledge, resource management. 117 Interrelationships between Forest and Tundra in Yakutia Nikolay S. Karpov In Yakutia, west to the Lena River, the timberline is formed by Gmelin's larch and eastwards by Kayander's larch. The forests spread to the north mainly along rivers valleys. At present, there is an ongoing receding of the timberline in this region. The main reasons of which are as follows: forest cutting for firewood along its northern borders; the formation of stable post-fire "pyrogenic" tundra areas covered by shrub-hummocky vegetation instead of forest-tundra; the lack of viable tree seed in tundra and forest-tundra areas because of seed not ripening. Together, these factors lead to forests receding by dozens or even a hundred kilometres from its potential borders formed by natural geographical factors. Global Warming and Regional Tree-ring Growth Response in Kola Penin sula and in Finnish Lapland Oleg M. Raspopov, T. Kolström, O.L. Shumilov, I. Ju. Kirtsideli, V.A. Dergachev, M. Lindholm, J. Meriläinen, O. Eggertsson, E.A. Kasatkina, A.V. Kuzmin, G.G. Matishev, and S. L. Dzhenyuk Tree-ring growth data on Scots pine (Pinus sylvestris) collected from twenty sites in the Kola Peninsula and in Finnish Lapland were analysed. The main goal of the study was to detect possible regional responses by biological sys tems (forests) to global warming during the past century. Tree-ring growth variations were compared with temperature changes in the coastal parts of the Kola Peninsula. Tree-ring growth were observed to have increased both in the Kola Peninsula and in Finnish Lapland since the beginning of the 20th century. Maximal tree-ring growth was detected between the 1930 s and the 19605. Then, in the 19705, the growth curve sharply decreased. During the next thirty years no noticeable increase in growth was observed in most of the samples despite the significant global warming taking place at the time. However, some growth increase was detected during that time along the altitude-based timber line in Finnish Lapland. The temperature changes in the Northern Kola Penin sula have not indicated regional warming during the past thirty years. Compari son of tree-ring growth data from the coastal area of the Barents Sea with data from the continental parts of North-West Russia (Karelia) demonstrates that neither of them have experienced any significant global warming. Correspondence: Raspopov, Oleg M., see Appendix С. 118 Biodiversity of Beetles (Coleoptera) and Wood-decomposing Fungi (Poly poracea) in Timberline Forests of Finnish Lapland Anna-Liisa Sippola Beetles and wood-decomposing fungi play an essential role in forest ecosys tems. The species richness of beetles declines about 40% from the border zone of the southern and middle-boreal zones to the timberline, whereas the diver sity of polypores remains almost unchanged through the middle- and northern boreal zones. Regarding forest-management methods, clear-cutting and chang ing of tree species have the most pronounced effects on forest-dwelling spe cies. Selective cutting, which maintains the forest cover and ensures accumula tion of decaying woody material of all diameters, appears to best fulfil the re quirements of forest-dwelling species. The real effects of forestry can be de tected only several decades after logging as decomposing wood from the pre logging time maintains populations of some species for a long time. Sensitivity to environmental changes and restricted dispersal ability may also cause local extinction. Regeneration Dynamics of Understorey Vegetation after Disturbance in Tree Line Areas Anne Tolvanen, Outi Manninen and Anne Törn Disturbances can considerably influence vegetation dynamics and species composition. Gaps may become suitable environments for sexual reproduction, which is otherwise rare because of the abundant vegetation. We are investigat ing regeneration strategies and dynamics of understorey species after human induced disturbances (clear-cutting, trampling) and environmental changes (in crease in nitrogen) in the Pallas-Ounastunturi area, Kilpisjärvi and Kuusamo. The studies include experimental disturbances, monitoring studies and envi ronmental manipulations through nutrient addition and transplant gardens. Along with plant ecophysiology, population and community level changes are being monitored. We hypothesize that resource allocation patterns, life form, and morphology of species are important factors in the revegetation process after disturbance. Correspondence: Tolvanen, Anne, see Appendix C. Russian Forest Industries and Threats to the Timberline Forests Alexander Voropaev After a decade of crisis, the forest industries have begun to show growth in Russia, particularly in the north-western regions. This growth benefits the economy and the people's well-being. However, it also threatens the forests. The main factors are unsustainable forest management, illegal harvesting, and 119 harvesting in pristine forests. To retain this industrial growth and manage the forests at the same time requires a change-over to sustainable forest manage ment, the prevention of illegal harvesting, and protecting of the pristine forests. This can be done through co-ordinated efforts of the government (legislation, poaching control), non-governmental organisations (involving local communi ties in forest management and poaching control, promoting forest certification), and timber importers (demand for certified forest products). 120 Poster Abstracts Annual Variations in Meteorological Conditions and Pollen Deposition on the Fjell Aakenustunturi in Northern Finland: Potential of Using Fossil Pollen as a Climate Proxy Jyrki Autio, Sheila Hicks Annual variation in meteorological parameters and in pollen deposition for four sites on a transect across an altitudinal timberline were studied. The aim was to see how pollen deposition (which can be shown to reflect local pollen produc tion) is related to climate conditions. For Finns sylvestris , the quantity of pollen deposited is affected by the mean temperature of July, the effective temperature sum of July, and the total effective temperature sum, all for the previous year. Annual fossil Pimts pollen quantities are, therefore, a potential climate proxy. Pollen deposition by Betula and Picea was affected by other temperature fac tors, but always of the year previous to flowering. Correspondence: Autio, Jyrki, see Appendix C Distribution of Timberline Tree Species in Western Finnish Lapland Mari Hagberg , Mauri Timonen, Marja-Liisa Sutinen and Raimo Sutinen The regional distribution of the timberline tree species, understorey vegetation communities and species diversity are associated with geological patterns. The physical properties and chemical composition of the parent drift materials, i.e. tills, stratified glaciofluvial and glacio-lacustrine sediments, have a great im pact on plant growth conditions, i.e. soil moisture, nutrient status and acidity. We investigated the soil's dielectric permittivity (e), as an index of soil water content (0 V ), and soil electrical conductivity (a), as an index of soil nutrient po tential in the immediate vicinity of 7,500 mature timberline trees and 1,072 tree-line Scots pine (Pinus sylvestris L.) trees and saplings on drift materials across granitoid and greenstone assemblages in Western Finnish Lapland. Scots pine was observed to be dominant on acidic drift derived from granitic source rock types, Hetta Granite in particular. Also, pine was dominant on outwash sand and gravel deposits as well as windblown sand deposits. These soils (spodosols) typically have low seasonal soil water content (6V <0.27 cm 3 cm~ 3 ) and low bulk soil a. Pine is the tree-line conifer in the Hetta Granite area. Based on age structure, pine has established itself naturally since the 19205. The age of timberline (temperature sum 600-500 degree-day) pine ranges from 50 to 80 a, while pines 20-30 a of age form the outmost tree line (470 degree-days). Timberline Norway spruce (Picea abies (L.) Karsten) and 121 downy birch (Betula bubescens Ehrh.) are concentrated on mesic and more fer tile (ct>o.ss mS/m) soils of basic rock assemblages. Spruce forms the conifer ous tree line on amphibole fjells in the region, but is absent on granitic soils. Aspen (Populus tremula) was only found on glaciolacustrine silt sediments de posited in former ice lakes at the current altitudes of 375, 365 and 355 m.a.s. Correspondence: Sutinen, Marja-Liisa, see Appendix C. Tree Line Changes of Scots Pine in Northwest Finnish Lapland Inferred from Dendrochronologically Dated Subfossil Wood S. Helama, M. Lindholm, M. Timonen and M. Eronen See Paper Abstracts Finnish Protection Forests and Their Regeneration Mikko Hyppönen and Martti Varmola The Finnish Forest Act designates the northernmost part of Finnish Lapland as a protection forest region. The purpose of protection forests is to prevent a re treat of the timberline. Utilization of forests in protection forests is permitted, but it is more strictly regulated than in commercial forests. Protection forests have been in existence since the beginning of the 20th century. Regeneration in these forests is based on natural regeneration, and it has been moderately suc cessful. The forests are also regenerating naturally through advance growth. There have been no large-scale outbreaks of forest diseases in young conifer ous stands in the area. This means that the forests have adapted well to the harsh conditions. The climate has been fairly favourable for regeneration in the 19905, and no major changes are expected in the near future. Monitoring forest regeneration in the protection forest area should be based on long-term moni toring and research. Correspondence: Hyppönen, Mikko, see Appendix C Relative Values of Trees: Sami Perceptions of Trees and Forest Anna Järpe See Paper Abstracts 122 Reindeer Grazing and Threatened Plant Species in Malla Strict Nature Reserve, North-western Finland Heikki Kauhanen This paper discusses the impact of reindeer grazing on the vegetation and threatened plant species of Malla Strict Nature Reserve. Reindeer husbandry in the area was forbidden in 1981. In recent years, low grazing pressure has been caused occasionally by animals. Snowfields and luxurious vegetation attract reindeer in the summer. Mapping of the reserve revealed that Alpine habitat types sensitive to grazing cover one third of the area. Altogether, twenty-three threatened vascular plant species thrive in the reserve. Due to different morphological traits and reproduction strategies, there are great differences in the responses of plants to grazing. Dwarf shrubs and tall herbs are sensitive to grazing and trampling by reindeers. Some small species obviously benefit from grazing since, being weak competitors, they are not able to survive among in tact vegetation. Study of the Spatial-temporal Variability of 22 Tree-ring Chronologies Arranged in a W-E Transect across Northern Fennoscandia and of Its Re lationships to Temperature, Precipitation and NAO Indices Marc Macias A spatial-temporal comparison of 22 ring-width chronologies was carried out across northern Fennoscandia, straddling the Fennoscandian Alps. This com parison was done by comparing some chronology statistics and by applying multivariate analyses methods. Analyses of the relations of ring-with with tem perature, precipitation and NAO indices, and of the evolution of these relations during time (the period analysed is 1880-1991) have been also computed. The study shows that a difference in tree-growth exists between the two sides of the Fennoscandian Alps, and that these differences are changing along the time interval studied. The study also discusses some features about NAO-trees growth relationships. Cold Acclimation in Birch: Physiological Changes in Seedlings and Bark of Adult Tree F. Martz, S. Kiviniemi and M-L. Sutinen Tolerance of freezing by perennial plants varies throughout the year. It is usu ally low in the spring, and then increases in autumn and reaches its maximum during mid-winter. The process of increasing freezing tolerance after a period of low above-zero temperatures, known as cold acclimation, involves numer ous cellular and metabolic modifications, but the plasma membrane is consid ered to be the primary site of injury. Multiple mechanisms appear to be in 123 volved in the stabilization of the membranes and a common consequence of exposure to low temperatures is an increase in the level of lipid unsaturation to compensate for the decrease in the membrane fluidity of the membrane lipids caused by the downward shift in temperature. Linoleic (18:2) and linolenic acids (18:3) have been shown to be the most fluc tuating FAs upon low-temperature exposure in several plant species. To under stand the mechanism of this increased FA unsaturation, the correlation between freezing stress resistance (FSR), membrane lipids, and expression of the genes involved in the desaturation of 18:2 to 18:3, the co-3 fatty acid desaturase (co -3 fad) genes were analysed in birch tissues, a frost hardy species. Two sets of analysis were performed: birch seedlings originating from three locations in the north of Finland were exposed to low temperature (LT) or to "short day" (SD) in a greenhouse, and bark samples of adult birch were col lected in the same three locations throughout the year. The present poster shows the results concerning some physiological changes measured in the material described above. A downward shift in temperature induced an increase in the FSR in leaves and stems of 3-months-old seedlings during the first two weeks of the treatment, and the photosynthetic capacity deeply decreased within 3 days at low temperature. Alone, a SD treatment (8h or 12 h night compared to 4h in normal growth conditions) induced also an increase in the leaf and stem FSR during the first two weeks of the treatment. No change in the photosynthetic capacity was observed. As a pre-treatment to LT exposure, one week of SD enabled a higher freezing resistance in leaves after two weeks at 5°C when compared to similar conditions and 4h night. The SD pre-treatment had also a protective effect on the photosynthetic functions since the photosynthetic capacity re mained more stable after exposure to LT and decreased only within 10 days at LT. Seasonal analysis of bark showed that cold de-acclimation in northern Finland started in April, with a major decrease in FSR occurring in May. Cold acclima tion started from mid-August with a major increase in FSR in September. Wa ter content in both phloem and phellogen, chlorophyll content, and in the pho tosynthetic capacity of the phellogen changed at the same time as FSR: water and chlorophyll content were the highest when FSR was at its lowest, and pho tosynthetic capacity followed the FSR as it decreased in September and in creased again from mid-April to May, depending on the plant's latitude origin. After one-year analysis, it appears that changes in stem photosynthetic capacity could be an indicator of the cold acclimation or de-acclimation processes. Samples from the material described above are currently being analyzed for the lipid FA composition and the co -3 fad gene expression. Adaptation of membrane lipid unsaturation is an important resistance mecha nism against freezing. Our results on lipid composition and gene expression in 124 seedling and bark tissues in birch will provide important data for understanding these processes at the molecular level. Correspondence: Martz, Francoise, see Appendix C Europe's Last Remaining Northernmost Intact Forests Jorma Mattsson Europe's last remaining intact forests are to be found in the Nordic countries, but mostly in Northern Russia. The poster map covers the region from the western border of Sweden to Archangelsk, in Russia. The southern corner of the map lies on the line of latitude passing through the cities of Örebro (Swe den) - Helsinki (Finland) - St. Petersburg (Russia). The results shown on the map tell of significant cultural and national differences between the countries. The widest intact taiga forests are situated in distant and roadless, even track less, borderline areas and remote wildernesses. The largest zones of old-growth forests are the Scandinavian Green Belt in Sweden and the Fennoscandian Green Belt along the Finnish-Russian border. These green belts are important as ecological corridors. There are nowadays real taiga hotspots in Russia only: Olanga N.P., Vienansalo taiga area, Kostamuksha S.N.R., SE part of the Kola Peninsula, Onega Peninsula by the White Sea, Lake Vodla N.P., and Lake Kozhzakaznik (N.R.), and many other parts in the Archangelsk oblast (district). But the largest taiga areas of our continent are located between the River Northern Dvina and the Ural Mountains, beyond the map now referred to. Con structing a map of complicated and extensive nature features such as old growth forests results in many purely technical problems. Cartographic source information is basically very different. The terminology also varies. Remote sensing images usually cover long time periods as continent-wide presenta tions, and they are therefore of current value only in some minor areas. Clear cutting of forests spreads rapidly. National GIS data are beyond the budgets of continent-wide mapping operations, etc. Receding of the Timberline in Northernmost Europe Jorma Mattsson European northernmost forests in Fennoscandia are also the world's northern most forests in intensive forestry use applying highly mechanised logging. These forests are also unique biogeographically. The mountain birch ( Betula pubescens subsp. czerepanovii) zone is situated along the Fennoscandian ijells. There are forests of pure pine (Pinus sylvestris) in the Inari area, northern Finland. Real taiga forests are located just to the south of these belts. Fenno scandia's northernmost forests have been used by man for a very long time. Simply household usage has caused the Arctic timberline to recede southwards since the early 19th century. Finally industrial clear cuttings have spread to every corner of the countries in question. The widest gap of 80 km came into 125 existence south of the Norwegian town of Tromso. Thus, the modern timber line is man-made. The case zone is from the Malangen fiord (Norway) in the west to the Voronya River (Russia) in the east. The information is based on 59 wooded area mentioned in literature, but now vanished; individual coppices or trees are not included. There are 18 published sources. Most of the coastal fiord woods were cut by Finnish immigrants to northern Norway (called kvens). Also sub-arctic mountain birch woods have been, and continue to be, threatened: reindeer and sheep graze birch sprouts; herbivorous caterpillar invasions de stroy huge areas (most recently in 1965-1966); forest fires and uncontrolled eco-tourism can spoil vast remote areas; in dry summers, pure lichen heath lands will burn easily, specially on the Russian side. It is intact forests, which are now up against a real chocie situation; to save or to destroy. Only a minor part of these areas is protected within national parks and various other conser vation areas. The majority of old taiga forests will disappear. After that, there will only be successional young woods, perhaps composed of exotic tree spe cies even, and clones in lines. There will be more and more southern broad leaved trees. The real "dark taiga" can be found only in statutory protected ar eas. Use of Northernmost Open Forests in European North by Sami People in Utsjoki, Finland Jorma Mattsson What are people's chances in the event of a serious energy crisis in the harsh conditions of the Far North? As a case example, let's take the Utsjoki local dis trict area and its population in northernmost Finland. Most of the local inhabi tants are Sami people. Nowadays, they live in modern houses with all the mod ern conveniences. There were a total of 1,487 inhabitants and 507 households in 1980 in Utsjoki. One household out of three used/uses firewood as their source of energy, mostly for heating in wintertime. One out of three had/has wood heating as a reserve energy source, and the rest had/has only electric heaters or oil heating systems. The average firewood requirement on the local farms was previously 16.4 m 3 per household per year. Modern households con sume 9.5 m 3 of firewood per year. There are 1430 km 2 of dense mountain birch forest and only 78 km 2 of pine forests in Utsjoki. The total stemwood growth of birch has been interpolated in studies to amount to 43,000 m 3 per year (or 0.3 m 3 per hectare per year). One hectare (ha) equals an area 100 m x 100 m, or 2,771 acres. There is not enough tree material for heating in most of the vil lages in Utsjoki: Nuorgam, Nuvvus and the Utsjoki centre. They must bring in material from more southerly valleys. The state enterprise Forest and Park Ser vice sells birch firewood at a cheap price. The same system is applied also over in Norway. During serious energy crises, and specially when there are transportation problems, local open mountain birch woods soon are subject to broad-scale threat. Modern-day residential areas with large houses will soon deplete the local unique birch woods. New pseudo-tundra could come into existence, as it has after caterpillar invasions, but now instead in valleys, too? 126 Revival of Mountain Birch Forests Ravaged by Epirrata Autumnata in Northern Lapland Pekka Sulkava, Juha Sihvo, Yrjö Norokorpi and Matti Mela Mountain birch (Betula pubescens subsp. Czerepanovii) grows in narrow alti tudinal zones above the conifer timberline and forms vast forests and brush woods in the hemi-arctic region of northern Fennoscandia. In the mid-1960s caterpillars of the geometrid moth (Epirrata autumnata) caused extensive damage, especially in the birch forests of Utsjoki, by defoliating trees in con secutive years. The recuperation of these biotypes has been slow in many places as a consequence of many reasons, among them intensive reindeer herd ing. Today, nearly half (2,354 ) of the total damaged area (5,000 ) is classified as upland heathland or scrub biotypes with standing or fallen rotten birch trees. Afforestation of these secondary heathlands and revival operations in slow-growing, open birch forests in Utsjoki area, are under consideration and planning by the Finnish Forest and Park Service together with the Utsjoki local council and local reindeer herding associations. Keywords: mountain birch, herbivore, Epirrata autumnata, damage, affo restation, reindeer herding Correspondence: Sulkava, Pekka, see Appendix C Is the Climate Warming Along the Pine Timberline? Mauri Timonen An exceptional mid-winter climatic warming was encountered in the timberline regions in the 19905: the monthly mean temperature for December-March in creased by 1-2 °C and the annual mean temperature by 0.5 °C compared to the mean for the whole century. The warm period stimulated discussion about the status of the climate in Finland and launched a dendro-climatic subproject in a timberline research project being conducted at Metla. The results of studies suggest that the early 1990 s was an exceptionally warm period of time, but still within the range of normal climatic variation. The June- July temperatures of the past two decades were below the average for the 1900s. Since the 19705, November has been cooler than average, and Decem ber and January in the 1980 s were coolest for the entire century. Analysis of the causes highlighted a phenomenon called the North Atlantic Os cillation (NAO). It is the main global factor controlling the timberline climate. Warming caused by the greenhouse effect can not (at least not yet) be recog nised as having led to rising temperatures or to increased tree growth. 127 Regeneration Dynamics of Understorey Vegetation after Disturbance in the Tree Line Area Anne Tolvanen, Outi Manninen and Anne Törn See Paper Abstracts Response of Pine and Birch Seedlings to Solar UV Radiation in the Su barctic M. Turunen, M-L. Sutinen, K. Derome , Y. Norokorpi , K. Lakkala The response of Betula pubescens Ehr., B. pendula Roth, and two provenances of Pinus sylvestris L. to solar ultraviolet (UV < 400 nm) radiation were investi gated in a UV-exclusion field experiment during the 1997-1999 growing sea sons in Finnish Lapland (68°N). The seed-grown seedlings were grown under UV-B exclusion (a clear polyester filter) and UV-B/UV-A exclusion (a clear acryl plate) as compared to control treatment (a polyethene filter) and ambient plants (no plastic filter). The mean daily maximum solar biologically effective UV-B irradiance (UV-Bbe) was 88 mW m~ 2 , 68 mW m~ 2 and 91 mW m" 2 for 1997, 1998 and 1999. A number of growth and biomass variables, PSII (Photo system II) efficiency and total concentration of N were recorded during and/or at the end of the experiment. Exposure (191 d) to solar UV radiation over three growing seasons did not cause many statistically significant UV effects in the growth or biomass of the seedlings. The only significant impacts of UV exclusion were found in P. syl vestris provenance Enontekiö. During the first growing season, the UV-B/UV- A exclusion treatment significantly accelerated the height increment (18-20 %) of P. sylvestris , and in the same seedlings the UV-B exclusion treatment re sulted in significantly increased dry weight of 1 -year-old needles (45-57%) af ter the second growing season. These UV impacts could not be seen at the end of the experiment or in any other species. The low concentration of N in cur rent foliage was related to increased dry weight, but not to solar UV radiation (control vs. UV exclusion). The present study indicated that solar UV radiation had limited, but sometimes transient, impacts on the growth of tree seedlings in the subarctic. Longer-term field studies are needed however, in order to detect the cumulative characteristics of the UV responses. Correspondence: Sutinen, Marja-Liisa, see Appendix C. 128 В: Northern Tree Line: The Location of the Tree Line and Its Implications for Humans Report of an on-line workshop organized by the HARC Science Management Office November 26-30, 2001 "What will determine the location of the Arctic tree line in 2100, and what will its location mean for humans?" Henry Huntington (Huntington Consulting, USA), Glenn Juday (University of Alaska Fairbanks, USA), Frans Wielgolaski (University of Oslo, Norway), Sakari Kankaanpää (Finnish Forest Research Institute, Finland) Background The research initiative on Human Dimensions of the Arctic System (HARC) of the National Science Foundation (NSF) began in 1997. Since then, several pro jects have examined various aspects of the ways in which humans affect and are affected by the Arctic system. In an effort to further interest in the initia tive, NSF has sponsored a Science Management Office (SMO) for the HARC initiative to distribute information about the initiative to the research commu nity. The online workshop on Arctic tree line is the second in a series of online workshops designed to stimulate discussion about topics related to HARC and to inspire researchers to submit proposals to the initiative. Introduction The location of tree line in the Arctic is determined by a number of factors such as climate, and these factors may act at different scales, from global to local. Human influences, through such activities as construction, dams, farm ing, recreation, proscribed burns, mineral development, and livestock grazing, can be significant in shaping the landscape. The interactions among all these factors must be taken into account as well. Understanding the location of the tree line and making predictions about its future movements thus involve a complex set of variables, many of which relate closely to human dimensions of the Arctic. To examine these ideas, the HARC SMO organized an online work shop to foster discussion among Arctic researchers and residents with a variety of expertise and experiences. The text of the discussions is available online at http://arcus.zeroforum.com. The participants list, background information, and more about the workshop can be found at http://www.arcus.org/harc/ tree line .html. 129 This report is intended to highlight research ideas and opportunities that arose during the workshop. These ideas are neither exhaustive nor exclusive. We hope readers and participants will use this report as a starting point for developing proposals to the HARC initiative. Some of the ideas described are worthy of further attention but do not fit easily within the scope of HARC. Those interested in proposing to HARC should visit the HARC website for further information (http://www.arcus.org/harc). Future workshops will serve a similar function, and the SMO welcomes ideas for additional workshops or other ways of promoting collaborative discussions about human dimensions of the Arctic system. Geographical Resolution of Tree Line Defining tree line is not a simple task. The same tree species may shift gradu ally from upright to prostrate form. Conifers are easier to spot on a landscape, particularly via remote sensing, than deciduous trees such as mountain birch, which forms the tree line across much of the Nordic region. Thus, tree line is not a precise boundary, which complicates its mapping and monitoring. For local monitoring efforts, this problem is not as significant. Individual trees can be marked and watched, and changes to a landscape recognized over time by individual researchers. But even the identification of study plots, such as Bob Marshall's spruce in Gates of the Arctic National Park, Alaska, can be hard to re-locate decades later. Monitoring treeline on a larger scale requires better techniques for remote sensing and mapping to document its location with accuracy. The use of GIS techniques is promising for creating a precise record of geographical data, provided those data are accurate. The question of resolution is also important when evaluating the usefulness of data from models and paleo-environmental records. While such data can be extremely useful in analyzing broad-scale processes and conditions, specific local conditions may not be shown with sufficient precision to make reliable predictions of future tree line conditions. Examining departures from predicted results may be worthwhile in identifying factors that are not adequately taken into account by models, retrospective and prospective. Similarly, identifying areas where climate is likely to have the most immediate and pronounced ef fects may be a useful first step in setting up tree line monitoring projects. Physical Influences on Tree Line Temperature is a key factor influencing tree line, but the precise role of and relationship between summer and winter temperatures needs further study, es pecially if we are to predict the impacts of temperature changes that vary by season. Documenting actual shifts in tree line during, for example, the Little Ice Age or in the warming of the 20 th century would help in identifying the short- and medium-term role of temperature. In addition to temperature, several 130 other factors are important in determining tree line. Moisture is critical to tree growth and correlated with temperature. Too much moisture produces a bog, and too little a desert, neither of which will support trees. The impact of in creasing levels of CO2 on tree line is not known. It is possible that different trees will react differently to changing levels of atmospheric CO2. The role of permafrost and its feedbacks with tree cover is not well studied. Permafrost close to the surface prevents roots from taking hold, especially trees with single taproots. But tree cover can lead to cooling of the soil, and a rise in the perma frost layer, which can eventually kill the trees. Further study of the interactions among temperature, moisture, permafrost, active layer activity, surface vegeta tion and CO2 levels is necessary to understand the response of treeline to changes in these variables. Snow provides protection to trees in winter, but if snow melts too late in spring, the growing season will be too short for trees to thrive. Snow deposition patterns are important on a fine scale. Winds, too, can suppress tree line, espe cially in alpine areas where turbulence can be high. Fires are perhaps the larg est influence on tree line over wide areas. Hot fires can destroy soils, leaving barrens that take centuries to regenerate. More rapid fires that only burn above soil vegetation can lead to rapid growth and recovery by shoots, and can help prevent paludification by exposing moist soils to air and sunlight. The role of maritime influences on tree line is not well understood. Cool, moist air from the ocean will of course affect temperatures and moisture in neighboring terres trial systems, but longer-term influences of ocean and air circulation patterns may have a significant impact on local and regional climate, permafrost, paludification, and other factors of relevance to tree line. Human influences on the physical environment can be substantial. Disturbance of soils can have an impact on vegetation and permafrost and thus on the abil ity of trees to colonize new areas. The signs of disturbance can be seen long after the activity occurs, and may be particularly visible from low-flying air craft. Understanding the role of such disturbance on landscapes and vegetation communities is an important element of monitoring human impacts over time. Ecological Influences on Tree Line The species composition of the tree line region, especially the variations in the species that form tree line, shed some light on the various ecological processes at work. Some trees are conspicuously absent in certain locations, such as white spruce in western Alaska and the Nordic region. Seed dispersal patterns determine in part how trees spread. There is some evidence that dispersal may extend much farther than previously thought, though the precise mechanisms and characteristics require further study. The ability of tundra vegetation, in cluding mosses and lichens, to prevent trees from becoming established in new areas is another limitation to the movement of tree line. Species composition of nearby tundra and of understory plants may be significant in this regard. 131 Climate change can impact root mycorrhizae and insect outbreaks. The former may be necessary for tree growth in many areas, and may be susceptible to changes in climate and to disturbance from humans as well as natural events. Insects such as autumn moths (Epirrita autumnata) and spruce bark beetles can destroy trees over a large area, and climate may help them thrive and extend their ranges. Fire, too, can affect the ecology of an area in many ways, and needs to be considered as an ecological as well as a physical disturbance. Dis turbance factors such as fire are likely to have non-linear responses to climate change and land-use patterns, which must be considered in modeling their po tential impacts in the future. The distribution of animals associated with trees and tree line can be an indica tor of change, although other factors affecting population dynamics need to be considered. Animals such as the tree frog found in the Kobuk River Valley in northwestern Alaska may be provide more rapid responses to climate shifts, because of their relatively short lifespans, than long-lived, slow-to-reproduce trees. Tree line characteristics may influence animals, including migratory ani mals such as caribou and birds, perhaps with reciprocal impacts on humans who hunt the animals. Humans The human relationship with tree line works in both directions. Humans have a direct influence on the location of tree line, at least on a local scale, through hydroelectric dams, ski areas, vacation cottages, the cutting of trees for fire wood and building materials, and the herding of grazing animals that can in hibit tree growth. The location and extent of such activities changes over time, and tree line in the Nordic region is advancing as outfarms and other such prac tices decline. But increased interest in recreation in tree line areas may halt tree line advance and needs to be studied more carefully. Many recent impacts have been near the roads that provide unprecedented access to tree line areas. Trends in human activities, particularly new uses for tree line areas, are hard to predict. The rise in the use of all-terrain vehicles for recreation is one example of a trend that would have been difficult to foresee only a few decades ago. None theless, such possibilities must be considered if we are to understand the vari ous dynamics involved in tree line movements across inhabited landscapes. The significance of tree line for humans is not well established. Some ethnic boundaries loosely follow the tree line, but in most cases peoples on both sides travel across the tree line in the course of the yearly cycle of living on the land. Whether in fact the tree line was regarded as an important boundary is not clear in most regions. This topic is worth investigating, especially through folklore and other oral history sources that may capture traditional views of tree line areas, or at least the tundra and forest landscapes that are divided by tree line. The attraction of tree line today for recreation and tourism is likewise not well known, but requires study if we are to assess the likely impacts of human ac tivities on tree line systems in the years and decades to come. 132 Conclusion Tree line offers important research opportunities, both for human dimensions of the arctic system and for NSF programs studying aspects of the Arctic cli mate system. This report outlines some of the interactions among the variables influencing tree line and how humans can be involved in this dynamic. This report is intended as a starting point for those interested in research of this kind and the authors hope that it inspires strong proposals that will extend our un derstanding of northern tree line. Acknowledgments The HARC Science Management Office would like to thank Frans Wielgolaski and Sakari Kankaanpää for serving as moderators for the Treeline Workshop, and Glenn Juday for serving as our workshop discussant. We would also like to acknowledge the behind-the-scenes work of Renee Crain and Wendy Warnick at ARCUS, without whom the workshop would not have been possible. We are grateful to the National Science Foundation for funding the FIARC SMO and its activities such as the online workshops. Finally, we would like to thank all the participants for joining us online and contributing their ideas. Correspondence: Huntington, Henry 133 Предисловие Jleca - hx 3KOCHCTeMbi h ;ipeßecnna - SbiJin >KH3HeHHo Ba>KHbi ana cymecTßO- BaHHS h BhDKHBaHHH HejioßCHecTßa b rjioöajibHOM Macnrraöe ;io HacToamero BpeMeHH, Korja pacmnpeHHoe Hcnojib3oßaHne hcjiobckom yrpo>KaeT hx cy meCTBOBaHHK). TaKHM OÖpa3OM, BO3HHK BOnpOC, KaK HeJIOBeneCTBO MO»eT noflflepacaTb BOCiipoH3Bo;ici BO jiecHbix pecypcoß no BceMy MHpy jina npo- AOJI'/KCHMM HX HCnoJlb3oßaHHfl lIOCpC/ICTBOM TaK Ha3blßaeMOrO yCTOHHHBOrO ynpaßjieHHa JiecaMH h ero npHMeHeHHa, npncnocoöJieHHoro k cneun(jjHHe ckhm 3KOCHCTeMaM. HecMOTpa Ha TexHOJiorHHecKHe AoerroKeHna, noTpeÖHO cth h cnpoc HejioßenecTßa Ha ApeßecHHy npeßbimaeT npnpoAHbie bo3mo>kho cth BoccTaHOßJieHHa. 3tot npecc, Hapaay c npnpoAHbiMn aBJieHHaMH, t3khmh KaK nowapbi (nacTO Bbi3BaHHbie nenoßeKOM), npnßej] k «raoöaubHOMy JiecHO- My KpH3Hcy» Ha Hauien nnaHeTe, Macurraö KOToporo Ta>Kejio npeacTaßHTb. TonbKO b Kana/ie oahfi aKp jiecoß Bbipyöacrca Kaayjbie 13 ceKyHfl! Jleca Ha ceBepHOH rpaHHue hx pacnpocTpaHeHHa - oöiiCkt stoh kiihih - npeflCTaßJiaioT Jinuib Majiyfo nacTb Jiecoß Hamen njiaHeTbi, o/uiaKO, hx reorpafjiH'iecKoe nojio>KeHHe, npnpoAHbie h SKOJiorHnecKHe ycjiOßHa, Hcnonb3oßaHHe hcjiobckom h pasMemenne b ceßepHon nnpKy.MnojiapHOH oÖJiaciH flenaeT hx ocoöchho ya3BHMbiMH npn pacuiHpaiouieiica npoMbimneHHOH h KOMMepnecKOH SKcnjiyaiauHH pecypcoß. lIo3TOMy 3aHHTepecoßaHHbie ynenbie h Mecrabie )khtcjih ocHOßann corpy/iH nnecTßO b paMKax Paöonei} rpynnbi ApKTHHecKoro CoßeTa no ycTOHHHBOMy pa3BHTHK) fljia Co3;ianna tjjopyMa, KOTopbin Mor 6bi rnynaTb n ocßcmaTb ycjioßHa b 30He ceßepHon i paHHUbi jieca. /Jna o6\ieria naeaMH n (JjopMynnpoßKH pcKOMeimannn ana ycnjieHHa cooTßeTCTßyiomeH nojiHTHKH ynpaßJieHna JiecaMH, OTpaacaiomeH TOHKy 3peHna Mecraoro iiacejiciiHM h nojib3oßaTejien Jiecoß Ha ceßepHon rpaHHne pacnpocTpaHeHHa, öbiji opraHH3oßaH pa/i Bcrpe 1 ! h paoonnx rpynn. 3ia KHnra - oah h H 3 pesy.ibiaTOß 3thx Me>icayHapo;iHbix ycnnnn. Paöonaa rpynna no ceßepHon rpanrme jieca, b Ohhjihhahh, ApKTHKyM, PoBaHneMH, c 23 no 25 Maa 2002 r., Hbn cyameHH» bkjiiomchm k 3Ty KHHry, 6bina opraHH3oßaHa Hay h i io-h cc j ie;io Ba i e.i bc kh m HHCTHTyroM Jleca OnHJiaH/inn, ApKTnnecKHM LJeHTpoM (YHnßepcnTeT JlanjiaHAHH, PoBaHHeMn), JlecHbiM YnpaßJieHneM OnHjiaahh h YHHBepcHTeTOM HosHcyy. B paöoMcn rpynne ynacTßOßano mhoto juoden. OcHOßHbie CTaTbn, nocTepbi n b paöoHHx rpynnax npHßeun k tjiopMy.iHpoßKC peKOMCimannti, Paöonen I'pynnc ApKTHHecKoro CoßeTa no ycTOHHHBOMy pa3BHTHio fljia oöcy>KfleHHa Ha BCTpene mhhhctpob b CapHcenbKa (OnHJiaHflna) b OKTaöpe 2002 ro Aa. 134 Редакторы книги хотели бы отметить финансовую поддержку рабочей группы следующими институтами: Министерством сельского и лесного хозяйства Финляндии, Министерством окружающей среды и Финской Академией. Кроме того, мы хотим поблагодарить членов международного научного комитета рабочей группы и местного оргкомитета, а так же работников Научно-исследовательского Института Леса Финляндии (станция Рованиеми) и Арктического центра при Университете Лапландии - их вклад был неоценим. Редколлегия хочет поблагодарить переводчиков и корректоров: с английского на русский Галину Рыбкину и Сергея Волкова, с норвежского на английский Ингу-Эллен Тури, а также корректора английского языка Эркки Пеккинена. Радушная обстановка в Арктикуме и его окрестностях явилась важным элементом успеха этой встречи. MoHpeajib/PoBaHHeMH/KoJiapn, 1 hiojia 2002 ro^a Jliorep Miojuiep-BHJijie, Caxapn KanKaaimHa, Ilayjio CycHJiyoTO h Mapra- JIHH3a CyTHHeH. MeatayHapoaHbiH HaynHbifi Kommtct Люгер Мюллер-Вилле (председатель, Канада) Валери Барбер (США) Оддвар Шре (Норвегия) Суне Сольберг (Швеция) Брыньяр Скулассон (Исландия) Мария-Лииза Сутинен (Финляндия) Татьяна Власова (Россия) MecTHbiö oprKOMHTeT h rpynna nowiepxcKH Мария-Лииза Сутинен (председатель, Научно-исследовательский Институт Леса Финляндии) Сакари Канкаанпяа (Научно-исследовательский Институт Леса Финляндии) Райа Кивилахти (Арктический Центр) Танели Колтрем (Университет Иоэнсуу) Иана Ойува Синикка Роваперё (Научно-исследовательский Институт Леса Финляндии) Эро Тикканен (Леснре Управление Финлядии) Минна Турунен (Арктический Центр) Мерви Вяйсянен 135 Арктикум, Рованиеми, 23-го мая 2002 Приветственные слова Ma;ia\i npeaceaaTejib! /J,aMi)i n i ocno;ia! Paöonaa rpynna no ceßepHofi rpaHHue neca ABJiaeTCfl npoeKTOM ApKTHnecKO ro CoßeTa - 3JieMCinoM llporpaMMbi CoßeTa no ycTOH Liniäo\iy pa3BHTHK) (SDP). 14 Maa cocrofljiacb BCTpena Paöonen rpynnbi ApKTHHecKoro CoßeTa no yc- ToiiHHBOMy pa3BHTHK) b Oyjiy, Ha KOTopon oöcy>KflajiHCb n öbuin npeflCTaßjie- Hbi fljia yTBep>KAeHHH Tpn hobmx npoeKTHbix npe/mo>KeHHsi. ,H,Ba H 3 hmx öhjih npHHaTbi, a oahh otkjiohch. Oocy>K;_[cnHH sthx npcr(jio>icciiHM noKa3ann, hto cymecTßyeT nacynuiaM Heoö xoflHMOCTb b Bbiöope KpHTepneß fIJM yTBepWfIeHHH. I Ipc/ice/iaiejib paöonen rpynnbi n ;ißoe ero 3aMecTHTejieM noflroTOßnjin npo eKT ocHOßHbix npnHnnnoß ana npoeKTOB no ycTOHHHBOMy pa3BHTHio, ho 3th npnHUHnbi He öbuin npnHaTbi. OiHiaKO, no-BHfIHMOMy, cymecTßyeT oomee noHHMaHHC Toro, KaKHM xpeöo- BaHHHM ;ioji/KHb[ yflOßjieTßopjiTb npoeKTbi ApKTHHecKoro CoßeTa. 80-nepßbix: oxßaT U,HpKyMnojiapHbix TeppnTopnn. ,H,oji>KHa npncyTCTBOBaTb 3aHHTepeCOBaHHOCTb ApKTHHeCKHX CTpaH B OIHOIIieHHH H'Sy'iaCMblX npOÖJieM. 1 laMÖOJiee npHßeicißyioicJi ;iiiyciopoHHHe npoeKTbi. npoeKT no ce- BepHOH rpaHHne jiecoß nMeeT mnpoKHH U,npKyMriojiMpiibiH oxßaT. 80-BTopbix: ynaci He KopeHHbix iiapcyioß bo Bcex era/imix npoeKTa ot nep- BOHanajibHoro njiaHnpoßaHna ao Kaayjoro 3Tana ero ocymecTßJieHna. /],aHHbiH npoeKT TaK>Ke yaoßJieTßopaeT STOMy KpnTepnio. B-TpeTbHx: HanpaßJieHHOCTb Ha co3flaHHe BO3MO>KHOCTeH. npoeKT BHecTH BKJia;i b ÖJiarococToaHne ceßepHbix CTpaH h hx i pa>Kjan - ocooeimo >KeHLUMH. npoeKT flOJiaceH yKpenmrb connanbHoe nojioweHne KopeHHbix h apy- THX MeCTHbIX /KHTe;ieH. 136 OneßHflHO, hto hhcto HccneaoßaTejibCKHe npoeKTbi BCTpenaioT conpoTHßJie- HHe cpeflH aejierauHH ApKTHnecKoro CoßeTa. npoeKTbi AO.T/KHhl ÖblTb HaUCJICHb! Ha BbipaÖOTKy [IOJIHTH'ieCKHX peKOMCHja- UHH - 6y/Ib TO lipeaJIO>KCIIHM IlpaßHTejlbCTßaM CTpaH ApKTHKH, HJIH ÖOJICC npaKTHHecKHe nnaHbi corpy;uinLiecrßa Me)Kfly ceßepHbiMH micxHTyiaMH, 06- mecTBaMH h aiccnepTaMH. 3Ta paöonaa rpynna coöpajia 3KcnepTOß BbicoKoro ypoßHa no npoöJieMaivi pe thohob ceßepHoii rpaHHHbi Jieca. il h h y6e>KAeHa b tom, hto y Bac fIOCTaTOHHO 3H3HHH H nOJTHTHHeCKOrO OHblTa fljia BbipaÖOTKH 3HaHHMbIX OO JIHTHHeCKHX peKOMeHfIaUHH. npeflCeflaTeJlbCTßO B ApKTHHeCKOM CoßeTe h ero Paöoneß rpynne no ycTOHHHBOMy pa3BHTHio BbiuiJio Ha 4>hhhih nyio npMMyio. hto 3Ta paöonaa rpynna BHeceT oiuyiHMMH Bioia;i b ero ycnex. ilopomo Apyjba! >KeJiaio BaM ycneiimon paöoTbi b CTeHax h 3a npe;iejiaMH 3Toro npeKpacHoro ApKTHHecKoro U,eHTpa! Саули Роухинен Председатель, Рабочая группа по устойчивому развитию, Арктический Совет 137 focno/iHH /jaMbi h yneHbie! Ot HMeHH CoBeTa a pa/ia npHBeTCTBOBaTb Bcex Bac Ha paöo neH rpynne ApKTHnecKoro CoßeTa no ceBepHOH rpaHnne Jieca 3flecb b ApKTH- HeCKOM U,eHTpe B POBaHHCMH. Ba>KHO, hto cooöinecTßO oömaeTca c ocTajibHbiM mhpom, a TaK >Ke c apyrHMH HayHHbiMH HanpaßJietimiMH. 3ia paöonafl rpynna opraHH3oßaHa c 3toh uejTbio, h 3to to, hto AejiaeT ee 3HannMOH h HnrepecHOH. OflHa m paöoneH rpynnbi - no/jroTOBHTb peKOMeHflau,™ MHHHCTpaM ApKTHHecKHx rocynapcTß, KOTopbie ,hoji>khm yHHTbißaTbca upu pa3paÖoTKe HannoHajibHofi h MOKflyHapOflHOH nOJTHTHKH B ApKTHKe. 3tO HaHÖOHee 3(})(})eKraßHblH nyTb nonyji>ipH3auHH caMbix nocjieflHHX HayHHbix 3aKOHO,naTe jiefi. 3to xopomaa BO3MO>KHOCTb AOHecTH Bonpocbi o Jiecax Ha rpaHnne hx pacnpocTpaHeHHH ao oömecTßeHHoro co3HaHHa /yi» Toro, htoöh cnocoöcTßO- BaTb ÖJiarococTOHHHK) npHpoAbi h jirofleö 3toh ceßepHOH 3KOJIOrH4eCKOH 30HbI. il flyMaK), HTO 3TO OTJIMHHafI H CTOHUiafl BO3MO>KHOCTb fljia nocKOJibKy TaKHM oöpa3oM ycmiHH UHpKyMnojrapHOH HayKH MoryT nojiynnTb nojiHTHHecKyio no/wep>KKy Ha BbicmeM ypoßHe, koto paa MO)KeT nOMOHb B nOHCKaX (J)HHaHCHpOBaHHSI. ApKTHHecKHH IjeHTp (www.arcticcentre.org) YHHBepcHTeTa - sto (j)HHCKHH HaUHOHaJIbHbIH MHCTHTyT n 0 Me>KfIHCnHnJIMHapHbIM HCCJieflOßaHH hm, KOTopbin paöoTaeT b 30He apKTHHecKOH rpaHHHbi Jieca. Bojiee toto, H 3 Kjnoneßbix (JtyHKUHH ApKTHnecKoro U,eHTpa - /jencTßOßaTb, KaK aKTHBHbiH HH(})OpManHOHHbIH KaHajl MOKfly HayKOH H nrapOKOH OÖmeCTBeHHOCTbK) no- CpeACTBOM HayHHblX BbICTaBOK, CJiy>K6 3JieKTpOHHOH HHtjjOpManHH H 6h6jlMO- TeK. Bot noneiviy a AyMaio, hto ApKranecKHH U,eHTp - HaHÖOJiee noAxo/iflinee MecTO fljia STOH KOH(J)epeHUHH. il HCKpeHHe >KejiaK), htoöh Barna KoH(})epeHHHH 6bina npo/iyKTHBHOH h hh (J)opMaTHBHOH h Ha/ieiocb, hto BaM noHpaBHTCH npeöbißaHHe b Apkthhcckom U,eHTpe H B PoBaHHeMH. Cnacnöo 3a BHHMaHne. Паула Канкаанпяа ApKTHHecKHH LI,eHTp, YHHBepCHTeT JlanjiaH^HH 138 /JaMbi h rocno.ua, Kojuici H H Apy3ba, Ot HMeHH o, (jjaKTHMecKH I [npKyMiiojiHpHoro HaynHoro Opr- KOMHTeTa a pa a npHBeTCTBOBaTb Bac Ha stoh paöonefi rpynne no «CeBepHOH rpaHHue Jieca». 3Ta pa6onaa rpynna npeflCTaßJiaeT coöoh npoeKT b paMKax paöonen rpynnbi ApKTHnecKoro CoßeTa no YcTOHHHBOMy Pa3BHTHK). C y/jo- BOJibCTBneM BMpa>Kafo ÖJiarojiapHOCTb mccthhm opraHH3aTopaM, b nacTHOCTH, MapHH-Jln3e CyTHHeH h CaKapu Kamcaanaa, a Taioice HJieHaM Hamero komh- TeTa 3a nx npe/iycMOTpHTejibHOCTb n CTapaHHa no nnaHnpoßaHnio n npoßejie- HHfO 3TOH RCTpCIH. Mbl COÖpajlHCb 'i.aCCb B ApKTHKyMe, KOTOpbIH ocoöoe BHnMaHne Ceßepy, h b 3tom roay öy/ieT npa3flHOßaTb CBoe aecaTnjie ™e. Bo Bce BpeMeHa cymecTßOßaHHa nejiOßenecTßa oho nojiarajiocb, KpoMe npo qero, Ha pacTHTeubHOCTb, b tom nncne Ha necHbie pecypcbi b rjio6anbHOM MaciiiTaöe, T.e. Bo Bcex yrojiKax MHpa pocjin .nepeßba. 6e3rpaHHHHaa yBepeHHOCTb b sthx pecypcax noeroaHHo pacmHpajiacb h npmejia - b hcto pnnecKOM h cobpcmchhom MacmTa6e - k nopowieHHOH nejioßeKOM spo3HH n, 3aHacTyio, k HCTomeHHio JiecHbix pecypcoß. He roßopa o KJinMaranecKHx H - MeHeHnax h KOJieöaHnax, KOTopbie TaiOKe Bo3flencTßyK)T Ha pacTHTejibHOCTb. B 3tom OTHomeHHH ceßepHwe jieca - He HCKjnoneHHe. Ohh ncnbiTajin Ha ceöe npMcyTCTßne nejiOßeKa h c hhm cnenntjjHHecKnx cnocoöoß 3eMJienojib3oßaHHa c H3MeHaiomnMca ypoBHeM BO3AeHCTBna Ha ceßepHyro rpaHnny pacnpocTpa- HeHHH 3THX jiecoß. TjioöajibHo n jioKajibHO, H3MeHaioinHeca aeMorpa(j)HMe- CKHe, connajibHo-3KOHOMHMecKne h nojiHTH4ecKHe ycjiOßHa ceroflHa 06513 - TejibHo OTpa>KaioTca He TOJibKO Ha 3KOJionmecKOM 6a3nce jiecoß n nx .aajib- HefiujeM cymecTBOBaHHH, ho n Ha yMeHHH wejiOßeKa pa3paöaTbißaTb cxeMbi ynpaßJieHHa n nojiHTHKy coxpaHemia pecypcoß, b to >Ke BpeMa no3BOJiaiomHe nejiOßeMecTßy npo/iojmaTb nx ncnojib3oßaHne. OCHOBHbie BOnpOCbl, Bo3HHKaK>mne npH COBpeMeHHOM HCnOJIb3OBaHHH JieCOB acHbi - KaKne penpo/iyKTHBHbie uhkjih Bbiaep>KaT Bo3pacTaK)myio SKcnjiyaTa nnio paUHOHaJIbHO, 3KOHOMHHeCKH BO3MO>KHbIM H COUMajIbHO-KyjlbTypHO cnpaßefljiHßbiM cnocoöoM n b k3khx sKocncTeMax h KaKOßbi, (jjaKTHHecKH, ao nycTHMbie SKcnjiyaTannn, onpejjeneHHbie MejioßeqecTßOM? TepMHHbi timber (cTpoeBOH .riec) h, onpeaejiaiomaa ero BbicoTHoe h ujnpoTHoe pacnpocTpaHeHHe, timberline (BepxHaa rpaHHna pacnpocTpaHeHna jieca), ytca -3bißaiOT - Hcxo/ia h 3 HHaoeßponeHCKoro JiHHrBHCTHMecKoro nponcxo>KAeHna 3THX TepMHHOB, - Ha HHTeHCHBHOe HCnOJIb3OBaHHe HejIOBeKOM fljia CTpOH- TejibCTßa pa3Horo yrajiHTapHbix oöteKTOB H 3 Aepeßa. CjieflOßaTejibHO, timber, hjih ero Bapnannn b flpyrHX a3biKax, HanpnMep, b HeMenKOM - Timber, b niBeACKOM - timmer, hjih b HopBe>KCKOM tommer, non™ bo Bcex TOJiKOBa- HHax 03HaMaeT ynaßmee hjih MepTßoe aepeßO, aocKy, npeflHa3HaHeHHyfo AJia Hcnojib3oßaHHa. IlpHMeHHTejibHO k pacnpocTpaHeHHK) aepeßbeß Ha ceßep nc nojib3oßaHHe TepMHHa timberline forest aojdkho, t3khm o6pa3oM, iio. ipasyMC- BaTb, hto 3th Jieca npoHHO HHTerpnpoßaHbi b 3eMJienojib3oßaHHe h xo3ancT- 139 BeHHyio aeaTejibHOCTb MecTHoro HaceneHHa, KOTopyK) oho pa3BHBaeT, oiiHpa aCb Ha HaKOll.ieHHbie 3H3HMM 0 TOM, CKOJIbKO H KaKHX peCypCOB HeOÖXOfIHMO HCnOJIb3OBaTb fIJIH COÖCTBeHHbIX Hy>K,r[, HTOÖbI nOAACp>KHBa'Ib 6a3OBbIH ypo- BeHb ÖJiarococTOHHHa. HanpHMep, AGopnreHHaa JlecHaa OrpaTeraa, bh/ibh- Hyraa AccaMÖJieeä Ilepßbix Hapoaoß b Kana/ie b kohhc 1990-x. ripH öbicrpo mchsik)ihhxcsi ycjiOßHHx h Bee BOjpacraiomeM cnpoce Ha pecyp cbi co CTopoHbi MecTHoro HacejreHHsi h, b ochobhom, H3BHe, 3th Jieca Ha ce- BepHOH rpaHHue hx pacnpoerpaHeHHa HaxoAflTca noa Bo3pacTaiomHM /jaßJie- HHeM KOMMepnecKoii h npoMbiuuieHHOH 3KcnjiyaTauHH, KOTopaa 3HanHTejibHo onepe>KaeT hhkjim xapaKTepHbix npn cymecTßyiomHX npHpOflHblX yCJIOBHHX. /JaHHaa paöonaa rpynna npH3BaHa oöpaTHTb BHH\iairne Ha HeKOTopbie m sthx Bonpocoß b flOKJiaaax, CTaTbax, nocTepax h pa6o imx oöcyacfleHHax b rpynnax c [iocjie;iyiomnM iuienapiibiM sace/ianncM, Koropoe aojdkho npHBecTH k Bbi- h pcKOMCH/jaHnaM fljiK npeoflOJieHHa oneßH/jHbix «norpaHHHHbix koh (J)JIHKTOB», KOTOpbie nOCTOHHHO HaÖJHOfIaiOTCa Ha BCeM UHpKyMHOJiapHOM Ce- Bepe ceroflHa. Ohh HyxyiaioTca bo BHHMaHHH h /leKcrßenHbix peKOMeH/iannax h pcmcuHHx, KOTopbie yßa>KajiH 6bi ceßepHyio OKpyiKaromyio cpe/iy h ee oöh- TaTejieH. M He >KHBy Ha ceBepHOH rpaiiHne jieca hjih pa/iOM c Hefi. O/inaKo, öy/iynn yace öojibuie neT B;ia;iejibne\i h Mene;i>Kepo\i jiecHoro ynacTKa b BepMOHTCKHX Fphh MayHTHH3 /uia CTpoHTejibCTßa, 3aroTOBKH /ipoß, a TaK>Ke Jimi cöopa KJieHOßoro coxa jyia H3roTOBJieHHa CHpona, h H3ynaa no- CJieflHHe HeCKOJTbKO JieT COHHajIbHO-3KOHOMHMeCKHC yCHOBHa B MCllo;ib3oßa hhh necoß ceßepHoö ropHOH 6epe3bi Ha caMOM Ceßepe EBponbi, a noHaji Tpe- Bory acHTejien Ceßepa o öynymeM Jiecoß Ha BepxHen rpaHHue hx pacnpocrpa- HeHHa. CBa3b sthx jifoflefi c JiecoM h hx oöa3aTejibCTßa nepea hhm peajibHbi, h hx rojioca flOJiacHbi öbiTb ycjibiiuaHbi, a hx peKoxieH/ianHH npuße/ieubi b hc nojiHeHHe. H Ha,acK)Cb, hto 3Ta paöonaa rpynna cmo>kct peniHTb xoTa 6bi Ha nacTb sthx nyraioiHHX npoSjieM. MHe ocTaeTca TOJibKO novKCJiarb BceM BaM HHTepecHOH H njIOfIOTBOpHOH BCTpeHH H npHaTHOTO npeÖblBaHHH 3flecb, B PoBaHHeMH. CnacHÖo! Люгер Мюллер-Вилле Kapeapa I corpaifiHH, YHHBepcHTeT MaiypKHJia MoHTpeajib (KBeöeK), KaHa.ua. 140 Рекомендации по природоохранным и социально-экономическим вопросам на северной границе леса Люгер Мюллер-Вилле Jliorep MioJiJiep-BHJiJie (npcacc,uarejih), BaJiepn Bapöep, Caicapn KaHKaaH naa, BpbiHbap CKyjiacoH, CyHe CoJiböepr, Cxpe, Ilayjio CycHJiyoTO, Mapba-JIHH3a CyTHHeH, Tautina Bnacoßa ('uieHM oprKOMHTeTa); Thmo Xen jie, TaHejiH KojiCTpeM, CyHe Cojiböepr - npeflceaaTejibCTßyromHe Ha paöoHHX rpynnax; Mapwa Co4)hh Ahkho, ToMac P. AjiJieH, /J>koh E. Jlmohc h ,np. yHa cthhkh paöoHen rpynnbi. Преамбула ynacTHHKH paöoHCH rpynnbi, upe/icxaßjiHioinHC iiohth Bee pernoHbi jjHpicyM nojiapHoro Ceßepa, e/uraoflyuiHbi b tom, hto «CeßepHoii rpaiiHne jieca» flOJiacHO öojibine bhhmuhusi b othoiuchhh nphpo;iooxpahhbix, co nnaJlbHO-SKOHOMHHeCKHX, KyjlbTypHblX H lIOJIHTHMCCKHX yCJIOBHH KaK BHyTpH, TaK h H3BHe. CeßepHbie jieca Ha rpaHnnc nx pacnpocTpaHeHHfl npeacTaßJiaioT coöoß nepexo/inyio SKoencreMy Me>Kfly npo/iy kthbhmmh jiecaMn (KOMMcpne- CKaa jiecHaa HHaycTpna) n 6e3JiecHbiMH TeppnTopHflMnand (ryn/ipa), Ha3bißaeMyio necoTyHapon. Ejiaroaapa hh3koh hjiothocth Hacejie- Hna 3Ta 30Ha noflßepranacb oojiee «MancoMy» mejlobe h e c k o m y bjihhhhk). Ofl- HaKO, 3Ta CHTyaiIHH ÖbICTpO MeiIHeTCH. ripHpOflHbin H M e.l OBeHe C K H H (j)aKTOpbl CTajIKHBaiOTCH B 3TOH 30He, 1103'IOMy iIO.T>KHä ÖblTb BO3MO>KHOCTb npHMHpHTb HX. BbiJio OTMeneHO, hto 3Ta BCTpena no3BOJinjia pacmnpnTb oömch Me >ic;iy npaKTHKaMH, nojibjOßaicjuiMH h y iieHbi\fM. Hacro;nune peKOMCHjianHM bhocht BKjiaA b pa3pa6oTKy nojiHTHKH h ee BonjiomeHne b >KH3Hb b OTHome hhh HacymHbix npoöJieM .mo/jen, >KHBymHx Ha ceßepHon rpaHnne Jieca. 1 IpejnojiaracTCfl, hto sth peKOMCiuiauMH flocTHrayT MnHncTepcTß oxpaHbi OKpy>KaiomeM cpeflbi, jiecHOH npoMbimjieHHOCTn, jkohomhhcckoio pa3BHTna, oöpa3oßaHHa n HayKH napa/iy c apyinMH oÖJiac i HMH bo Bcex nojiapHbix CTpaHax ApKTnnecKoro CoßeTa. 141 Общие параметры OTMeneHO ... hto 30Ha ceßepHoii rpaHHUbi jiecoß HaceneHa, npeHMymecTßeHHO KopeH- HbiMH Hapo/iaMH, HeS CTaTyc flOjraeH SbiTb npn3HaH nocpeacTßOM paßHO npaßHoro napTHepcTßa (BKnioiaa Bo3Mo>KHbie pe>KHMbi coßMecTHoro ynpaß jieHHH) b npHHHTHM pemeHHH, KacaioiyHxca, nponero, npaßa coöctbch- HOCTH, ynpaßJieHHH, TpafIHHHOHHbIX 3H3HHH H o6ll],erO pa3BHTHH Ha MeCTHOM h perHOHanbHOM ypoßHax; ... hto 30Ha ceßepHofi rpaHHqbi jiecoß oöecnennßaeT 6a3y rjix MHoroueneßoro HCnOJIb3OBaHHH peCypCOB, OCHOBaHHOrO Ha 3H3HHSIX KOpeHHblX HapOflOß o (j)jiope h c})ayHe, Hba coxpaHHOCTb npeflCTaßJiaeT nepßOCTeneHHbiH HHTepec h KopeHHoro, h juu MecTHoro Hace;icHna; ... hto cymecTßyiOT 3HaHHTejibHbie pernoHajibHbie otjihhhh Ha BceM UHpKyM nojiapHOM Ceßepe h, b Hacraocra, b 3oHbi ceßepHoft rpaHHHbi Jieca; ... hto Bo3HHKaiomHe npoueccbi ynacTHH b Bee eine oÖHapy >KHBaK)T HeCOOTBeTCTBHH H3-3a HCnOJIb3OBaHHSI HeCOnOCTaBHMbIX TepMHHOB H KOHHenuHH Meacay yneHbiMH h mccthmm HacejieHHeM KaK b OTHomeHHH «Ha yHHbix», TaK h «TpaflHHHOHHbix 3H3HHH»; 3anojiHHTb 3TOT npoöeii nocpe/jcT bom oöiyeHHa h Hcnojib3oß3HH>i npocToro snbiKa; ... hto cymecTßyeT Hacy limaa HeoöxoflHMOCTb co3flaHHa coK>3a Me>KAy mcct- HbIMH >KHTeJMMH H HayiHblMH COOÖIHeCTBaMH fIJIH npOßefleHHH OUeHKH KOH- KpeTHblX yCJIOBHH, KOTOpbie npHßejlH 6bl K nOBbIHieHHK) KyjlbTypHOrO H 3KO HOMHHecKoro ypoBHH pernoHa. Paöonaa rpynna «CeßepHaa rpaHHua jieca» noflflep>Kajia npocböy KoHrpecca OjieHeßoaoß Mnpa (HoxaH MaTHC Typn, cTaTb napraepoM b HCCJie/iOBaHHax, HanpaßJieHHbix Ha H3yneHHe ycjioßHÖ h nepcneKTHß ojieHeBOACTBa KaK )KH3HeHHO bsjkhoto skohomhhccko ro h KyjibTypHoro BbipaaceHHa KopeHHbix napo/ioii h mccthmx >khtc.ich 30111,1 ceßepHofi rpaHHHbi neca; ... HTO OÖMeH HHlJjOpMaHHeil H 3HaHHHMH H CnOCOÖbI OÖHjeHHfI MOKfly Hapo flaMM b npe/ieJiax 30Hbi ceBepHOH rpaHHHbi Jieca Hymiö ycnjiHTb h pacuiH pHTb, h hto JiHHrBHCTHHecKoe h KyjibTypHoe pa3Hooöpa3He noAAep>KHBaeTC5i h ycHJiHßaeTca ... hto cymecTßyeT peanbHO OLuyTHMaa peraoHajibHaa h rjioöajibHaa yrpo3a 3KOJiorHH h nejiOßeKy Ha ceßepHofi rpaHHLie Jieca, T.e. H3MeHeHHe KjiHMaTa (HanpMMep, BcnbiuiKH HaceKOMbix, pernoHajibHbie Bapnaii,HH H3Me- HeHHH 3HMHHX H JieTHHX TeMnepaTyp, H3MeHeHHSI CeßepO-ATJiaHTHHeCKHX KOJieÖaHHÖ), 3pO3HH (TaHHHe Mep3JlOTbl), pa3J!HHHOrO pofla 3arpSI3HeHHSI, 3KO HOMHHeCKOe HCnOJIb3OBaHHe pa3JIHHHbIX peCypCOB pa3JIHHHbIMH noJTb3oßaTe jihmh mjifl pa3Hbix uejiefl (sKcnjiyaTauHH MHHepanbHbix pecypcoß, jiecHaa 142 npoMbiiujieHHOCTb, Bbinac ahkhx h AOMaiiiHHX ojieHeH h OBeu, Typn3M) n 3HepreTHHecKHe Hyxflbi (3aroTOßKa apoB). Рекомендации /JaHHbie ocHOßaHbi Ha oöcy>KfleHHax, Bo3HMKiiine Ha paöoneH rpynne «CeßepHaa rpaHHna jieca», npoßeaeHHofi b paMKax paöoneH rpynnbi ApKTHHecKoro CoßeTa no ycTOHHHBOMy pa3BHTHio b YaHTxopce (lOkoh, Ka- Haaa) b Mae 1998 (onyöJiHKOßaHa b CTaTbax 734 HayHHO-HccjieaoßaTejibCKoro HHCTHTyra b 1999 3th oöcy>K,aeHHH npoflOJi>KHJiHCb Ha paöoneH rpynne 2002 h npHßejra k neneßbix peKOMeH flauHH, npHHHMaiomHX bo BHHMaHHe ycjioßHa Ha CeBepHOH rpaHHne jieca no BceMy HHpKyMnojiapHOMy Ceßepy. PeKOMeHAauHH b othoihchhh 3arpa3Hsno ihhx BemecTß h 3arpa3HeHHH öbura ctJiopMynHpoßaHbi AMAP. OcHOßbißaacb Ha HayHHOM OTHeTe ACIA (OueHKa BO3fIeHCTBHH Ha KJiHMaT Apkthkh), koto pbifl fIOJDKeH öbiTb 3aKOHneH k 2004 roay, AMAP h CAFF pa3paöoTaiOT no jiHTHHecKHe ApKTHHecKOMy CoßeTy oraocHTejibHO CMarneHHa Bo3fleiiCTßHsi KJiHMaTHHecKHx H3MeHeHHH b ceßepHbix HHpKyMnojiHpHbix pe- THOHaX. Общие рекомендации ceTb nocTOHHHoro couHOJiorHnecKoro MOHHTopHHra, T.e. ycnoBHH >kh3hh h ycTOHHHBoro ynpaßJieHH» pecypcaMH. OcHOBaHHaa Ha HHTerpaunH HayHHbix h Tpa/iHHHOHHbix 3HaHHH, 3Ta ceTb öyaeT cjiy>KHTb aonojiHeHHeM k cymecTßyiomHM nporpaMMaM, TaKHM KaK AMAP, CAFF, LULC h jxp. Специальные рекомендации 1) B3aHMoaeiiCTßHe nejioßeKa h Jieca: comiajibHO-3KOHOMHHecKHe h KyjibTypHbie acneKTbi. PeKOMeHfIOBaHO, flua noßbiuieHHH h noflAepwaHHa nejioßenecKHX ycjioßHH b 30He ceBepHOH jihhhh Jiecoß: H3yHHTb pacnpeaejieHHe HaceneHHa, njiOTHOCTb h couHanbHO 3KOHOMHHeCKHe ycjioßHa; ... OHeHHTb BO3MOÄHOCTH H nepCneKTHßbl MeCTHOrO H perHOHajIbHOrO 3KOHO MHHecKoro pa3BHTHa, BKjHOHaa aKueHT Ha 3HepreTHHecKHe TpeöoßaHHn h ajib- TepHaTHßHbie HCTOHHHKH SHeprHH (aepeßO H jp.), TypH3M B MeCTHOM Mac uiTaöe, ojieHeßOflCTßo, pmöojiobctbo h oxoTy, a Taioice perHOHajibHyio arpo jiecHyio HHflycTpHio; ... npoßecTH MOHHTopHHr h oueHKy paciiiHpeHHa hjih orpaHHHeHHa KOMMep neCKOH JieCHOH npOMbIIUJieHHOCTH, HCnOJIb3OBaHHfI THApO3JieKTpO3HeprHH, He(f)Te-ra3oßbix h MHHepajibHbix pecypcoß, KpynHOMacurraÖHoro Typn3Ma, xapaKTepa h HHtjjpacTpyKTypbi noceneHHH, a TaK >Ke bjihahha coxpaHeHHH ok 143 py>KaK>meH cpe,o,M h 3aiuHTHOH itojihthkh h pe>KMMOB (T.e. HCKJiFoneHne hjih BKHioHeHHe MecTHbix HHTepecoß) b ... caejiaTb 0630 p cooTßeTCTßyiomHx npHMeHeHnn 3aKOHOB 06 oxpaHe OKpy acaiomefi b nnpKyMnojiapHOM pernoHe; ... oueHHTb pa3JTHHHbie perHOHajibHbie n HanHOHajibHbie h ypoß hh cTaHjjapTOß H KanecTßa >KH3HH C aKueHTOM Ha o6pa3oßaHne H HaKonneHHe 3HaHHH, (J)H3HHeCKOe H nCHXHHeCKOe 3flOpOßbe, KyjlbTypHbie H JIHHrBHCTHHe- CKne ocHOßbi, nyBCTBo npHHaflne>KHOCTn h o6fl3aTejibCTß nepefl MecTOM, rae >KHBeiiib; ... oueHHTb nOJTHTHHeCKHe fIOCTH>KeHHH B OÖJiaCTH MeCTHOTO ynpaßJieHHH H KOHTpojia, 3aKOHO/iaTejibHOH h BjiacTH, nponeccoß npn- HflTHfl peilieHHH H 06lH,eCTBeHH0H OpraHH33HHH, TeppHTOpHaJlbHblX npeTeH3HH h npaßa Ha 3eMjno. 2) YnpaßJieHHe pecypcaMH Ha ceBepHOH ipaiinue jieca y>jce cymecTßyeT HecKOJibKO MOHHTopHHroBbix chctcm, Ha MecTax flOKyMeH rapyioiHHx npnpoflHbie H3MeHeHHa Ha HHpKyMnojiapHOM Ce- Bepe. ripe;i;iarac rcH paannpun. 3Ty ceTb, TaKHM oöpa3oM, htoöm otm mohh- TopHHroßbie cxeMbi CTajiH öojiee nejiocTHbiMH b noflxoflax h cnocoÖHoerax. IIo3TOMy peKOMeHflyeTca: ... pa3BHBaTt nocTOHHHbie HHpKyMnojiapHbie cera MOHnropnHra (BKjnonafl H3MeHeHHH 3eMJienojib3oßaHHH h pacTHTejibHoro noKpoßa (LULC) KaK HacTb MOHHTopHHroBbix nporpaMM AMAP/CAFF h ocHOBaTb ho- BbiH oTKpMTbiH h flocTynHbiH neHT flaHHbix, Hbeö 3aflaneH cöop, conoc- TaßJieHHe M KOOpAHHaHHH HH(J)OpMaiIHH, Kacaromenca H3MeHCHHH B OKpy »aioiuen h 3eMJienojib3oßaHHH h hx bjihhhhh Ha Mecrabie cooöinecTßa HHpKyMnojiapHoro Ceßepa; pacinnpHTb cneKTp 3thx 3a chct bkjho- HeHHH coHHajibHO-3KOHOMHHecKHx h KyjibTypHbix acneKTOB; ... ocHOBaTb nocTOHHHyio paöonyfo rpynny no MoaejinpoßaHHio H3MeHeHHH 3eMJienojib3oßaHHa h pacTHTejibHoro noKpoßa, b KOTopoö 6y flyT HanpaßJieHbi Ha flßH>KymHe chjibi H3MeHeHHH KaK Ha MecTHOM, TaK h Ha raoöajibHOM ypoßHe b kohtckctc HejiOßenecKoro cj)aKTopa; ... pa3paöoTaTb MO/iejiH ajih nporHo3npoßaHH« Bo3fleiiCTßHa pa3JiHHHbix cno coöob 3eMjienojib3oßaHHsi, BKJitonaa no oueHKe pncKa Ha perHOHanb- HOM H rJIOÖajIbHOM ypOBHHX B JTeCHOH 30He; ... pa3paöoTaTb npocTpaHCTßeHHbie cncTeMbi noflAepacKH npmsmw pemeHHH b oÖJiacTH ynpaßJieHHH 3eMjienojib3oßaHneM c npHßJieneHHeM Mecrabix coo6- mecTß, Hcnojib3ya bo3mo>khocth TaKnx HHCTpyMeHTajibHbix KaK Teo rpa(j)HHecKaH CncTeMa (GIS) h DioöajibHbie no3HnnoHHbie CncTeMbi (GPS); 144 ... noflflep>KMßaTb h HacTaHßaTb Ha pa3pa6oTKe öojiee stjDcjDeicraßHoro 3aKOHO - h HopM, OTHOCHiyHxca k 30He ceBepHOH rpaHMUbi neca; 3to TaK>Ke BKJiioHaeT HeoöxoflHMOCTb HccjieflOßaHHH no OueHKe npHpoAHO ro H COU,HajIbHO-3KOHOMHHeCKOrO BJIHHHHfI Ha Bcex TeppHTOpHHX 30HbI Ceßep- HOH rpaHHH,bi jieca. 3) Jleca h ojieHeßo/jMecKoe xo3hhctbo Ha ceBepHOH rpamiue Jieca noflßep>KeHO H3MeHeHHHM, yrpo3aM h aaßjieHHio b pernoHajib hom, HauHOHajibHOM h Me)KflyHapoflHOM (ruoöajibHOM) MacuiTaöe. Ocoöoe BHHMaHHe y;iejiaercM yctohmhbocth ojieiießOACTßa, KOTopoe KOHKy pHpyex 3a npocTpaHCTBO h pecypcw c apyrHMH OTpacjiaMH npoMbmiJieHHoem. YcTOHHMBOCTb BKJIIOHaeT B Ce6fl SKOJIOrHHeCKHe, COUHanbHO-KyjlbTypHbie H 3KOHOMHMecKHe acneKTbi. J\m ycnjieHM no3HUHH ojichcboaob Ha ceBepHOH rpaHHue Jieca peKOMeHflyeTca: ... flocTHHb noJiHOH HHTerpauHH h napraepcTßa ojieHeßOflnecKHX cooömecTß b npoueccax npHHaraa pemeHHH npn nojiHOM npH3HaHHH TpaflHUHOHHbix 3Ha hhh; ... yKpenHTb npaBOBOH h nojiHTHHecKHÖ CTaTyc ojichcbo/iob c ycnoßHeM, hto couHanbHO-KyjibTypHoe h JiHHrBHCTHnecKoe npocTpaHCTBO öyayr no,zmep>KH- BaTbCH h pa3BHßaTbca fljia ojieHeßOflnecKHx cooömecTß; ... pa3paÖoTaTb MeTOflbi, oöecnenHßaromHe 3KOHOMHHecKHe BO3MO>KHOCTH OJieHeBOfICTBa, KaK MeJIKOMaCIIJTaÖHOH npOMbHIIJieHHOCTH C nOCTOHHHOH 3a- HHTOCTbK) H CTaÖHJTbHbIM ypOBHeM flOXOfla; ... npOBOfIHTb MOHHTOpHHT H nOCTOHHHOe KapTHpOBaHHC C) ,1 eH e B OA'l eCK OI O 3CMJienojib3oßanH>i pa3Hbix BHfIOB Ha MecraoM ypoßHe h paspaooxaTb noacHH- TejibHbie BKJiiOHaiomne KOHKypeHUHio 3eMJienojib3oßaTejieH Ha o;i- HOH IeppHIOpHH B OflHO H TO >Ke BpCMH. 4) 110/iflepiKaHHe ÖHopa3HOo6pa3HH b 30He ceBepHOH rpaHHUbi Jieca lloaflep>KaHHe ÖHopa3HOo6pa3Ma b 30He ceBepHOH rpaHHUbi jieca aßJiaeTca KpHTHHecKHM MOMeHTOM. I~Io3TOMy peKOMeHAyeM: ... pa3paÖoTaTb h m e >k;i yha p o; uio-cobm e c ih m o e saKoiio/iarejibcißO h HopMbi ana 3amHTbi 3KOCHCTeM b 30He ceßepHoii rpaHHUbi Jieca h npHJieraio- UIHX TeppHTOpHH B KaHeCTBe HIHpOKHX 6y(J)epHblX 30H fIJIH rapaHTHH ÖHOpa S- Hoo6pa3Ha; ... noflflepacHßaTb npnpo;iHyio CTpyKTypy jiecoß h no3BOJiHTb ecTecTßeHHbiM (J)aKTopaM coxpaHaTb 6nopa3HOo6pa3He h cnocoöcTßOßaTb npHpoflHbiM cyK ueccnaM; 145 ... H3ÖeraTb pa3pymeHHsi h npe3MepHoro ncnojib3oßaHHa ÖHopecypcoß b coot- BeTCTBHH C penpOfIyKTHBHbIMH U,HKJiaMH; npOBOAHTb HaÖJlIOfleHHa 3a CÖOpOM ypowafl ÖHopecypcoß c ncnoJib3oßaHHeM hoboh h HMeromenca tcxhhkh; ... HCnoJlb3oßaTb H3MeHeHHH B 3KOCHCTeMaX B KaneCTße HHfIHKaTOpOB BJIH3HHS) HejioßeKa, Hanpmviep, ripiiMeHHTb 6nopa3Hoo6pa3He KaK HHflHKaTop H3MeHe- HMSI KJIHM3Ta; ... rapaHTHpoßaTb npH3HaHHe Toro, hto h HayHHbie, h TpaflHUHOHHbie 3HaHHH (J)opMHpyK)T 6a3y fljia ycTOHHHBoro ynpaßJieHHa 6nopa3HOo6pa3HeM; ... CnOCOÖCTBOBaTb CepTH(j)HKaUHH 3kojiorH 4 c c k o 10 TypH3Ma (T.e. peKpeaUHH Ha OTKpbITOM Bo3flyxe) C MHHHMaJIbHbIM BO3fIeHCTBHeM Ha npHpOflHbie ycno- BHH. 146 Устойчивое развитие зоны лесотундры в России: проблемы и перспективы Татьяна Кузьминична Власова Резюме B 3TOH CTaTbe npOÖJieMbl H BO3MO2CHOCTH yCTOHHHBOrO pa3BHTHfI 30HbI Jieco- TVH.iphi b Pocchh paccMaTpHßaiOTca b paMKax n sit h B3anMOCBH3aHHbix cijjep: 1) /lyxoiäHO-KyjrbTypHbic BO3MO>KHOCTH 2) Bopböa c öeflHOCTbio h ;iocrH>KeiiHe öojiee BbicoKoro KanecTßa >kh3- HH 3) IlpoÖJieMbi 3KOJiorMHecKH HeycTOHHHBOH 3KOHOMHKH h ny™ hx pe- LLieHHH. 4) riepcneKTHßbi 3KOCncTeMHoro ynpaßJieHHH b BOCCTaHOBJieHHH npH poflHOH cpeflbi h ee 3amHTe 5) YnacTHe MecTHoro HacejieHHH h "33HHTepecoBaHHbix jihu" b npHHsiTHH pemeHHH h pa3paÖoTKe MecTHbix nporpaMM ycTOHHHBoro pa3BHTHH. M'iMeHeHH» b 3KOTOHe jiecoryii;ipbi MoryT OKa3aTbca Kjlfohcbbimh ;uih iiohh- MaHHH nOCJiefICTBHH npOHCXOJMUIHX TJlOÖajlbHblX H3MeHeHHH H, COOTBeTCT- BeHHo, fljia pa3paöoTKH neoöxo/imvibix CTpaTerHH ynpaisjieiiHa npupo/iHhiMH pecypcaMH. IlosTOMy Me>K,ayHapoflHoe coTpyflHHnecTßO, c(|)OKycHpoßaHHoe Ha pemeHHe MHornx oöiuhx npoöneM ycTOHHHBoro pa3BHTHa stoh 30Hbi npnoö peTaeT ocoöyio 3HaHHMOCTb. Abtop, b cBoeM peKOMeHayeT co3gaHHe B 30He JieCOTyHApbl nOCTOHHHO fIeÖCTByiOIUeH CeTH MOHHTOpHHra COCTOHHH3 yCJIOBHH >KH3HH H yCTOHHHBOCTH, Ha OCHOBe HHTerpaiJHH HayHHblX H TpafIH HHOHHbIX 3HaHHH MeCTHOTO HacejieHHH. Введение BbicoKO oiieHHßaK) npoeKT paöoneM rpynnbi no YcTOHHMBOMy Pa3BHTHio ApKTHHeCKOrO CoßeTa «YCTOHMHBOe pa3BHTHe 30HbI OCOÖeHHO noTOMy, hto ero H/jea ocHOBaHa Ha skochctcmhom noflxoae k pemeHHio npo 6neM oKpy>KaK)meii cpeflbi h pa3BHTHa, myöoKO Bcex Hae 3aTparHßaiomHx. 147 Mbi oöcy>KflaeM npo6jieMbi h nepcneKTHßbi ycTOHHHBoro pa3BHTna hihpothoh 30HanbH0H 3KOCHCTeMbi, KOTopa» b aHrjiOH3biHHOH HayHHOH JiHTepaType no jiyHHJia pa3Hbie HaHMeHOBaHHfI (Northern Timberline Forests, taiga-tundra, bo real tundra woodland). B Pocchh 3Ta SKOCHCTeMa oömhho HMeHyeTca 30hoh jiecoTyHjipbi. OHa, 3aHHMaH npoMe>KyTO4Hoe nonoKeHne Meac/iy Tytmpon n TanroH, npoTarHßaeTca öecnpepbißHofi nojiocoH Ha öojiee HeM 13 400 km no Been TeppHxopHH Apkthkh. B nejioM, b cootb6tctbhh c JlecHon 3HUHKJione flnen (1985), 30Ha JiecoTyHflpbi b Pocchh noKpbißaeT okojto 45 mjih. ra Teppn- TopHH. OHa oöpa3yex y3Kyio nojiocy Ha KojibCKOM nojryocTpoße h npoTarnßa eTCfl Aanee b6jth3h ot llojiapHoro Kpyra k YpajibCKHM ropaM. 3a YpajioM Jie- npeACTaßJiaeT coöoh fIocTaTOHHO uinpoKyK) 30Hy, pacnpocTpaHjno myioca k öeperaM Tnxoro OKeaHa. B cpe/iHeM, nrapHHa 30Hbi ot ee ceßepHbix lorabix rpaHnn cocTaßJiaeT ao 300 km. (Arctic Flora and Fauna 2000; Countries and Peoples 1983; FAO 2001, IlpHJio>KeHHe D. Phc.l h 2). Ha Bcex KOHnraeHTax, b CeßepHoii AMepHKe, EBpone, A3hh, BbinojiHaeT Hpe3BbinaHHO Bamiyio (jjyHKunio nepexoflHon SKOCHCTeMbi, noA aep>KHßafl pa3Hoo6pa3He raoöanbHoro pacTHTenbHoro noKpoßa h 6nopa3HO o6pa3HH, oöecneHHßaeT CTaÖHJibHOCTb rnoöajibHoro KJiHMaTa. Ee nepexo,q- HocTb (hjth MaprHHanbHOCTb) npoHßJiaeTca b ocoöeHHoerax öbiTa h KyjibTypbi npO>KHBaK)LHHX Ha ee TeppHTOpHH HapOflOß, BHfIOB XO3SIHCTBeHHOH TieaTeJlb- HOCTH, COHHajlbHblX (})OpM OpraHH3anHH, THnOB paccejiemw H T.fl. 51 xoTejia 6bi mto Bce Mbi, paöoTaa BMecTe b paMKax hhhhh3- THBHoro npoeKTa MevK/iynapoyiiioro Hayrnoro ApKTHHecKoro CoßeTa «/Jk- HaMHKa rpaHHii,bi 30Hbi necoTyH/ipbi», b CTaTbax jyia cnennanbHoro >KypHajia AMBMO (AMBIO) npn3HajiH, hto jiecoTyHflpa - sto He npocTO jihhhh norpa- HHHHbix jiecoß, a 3KOCHCTeMHaa 30Ha, HMeiomaa ceßepHyio h KOKHyro rpaHH- Hbi (Callaghan et ai. 2002). Ffcynaa 3Ty 30Hy Ha rnoöajibHOM ypoßHe, mojkho 3aMeTHTb, hto HecMOTpH Ha HauHOHajibHbie h pernoHajibHbie pa3JiHHHa, Jieco- TyHflpa HMeeT mhofo oöiuhx 4)H3HKO-reorpa(})HHecKHX (npnpoflHbix) nepT h b COOTBeTCTBHH C HHMH - HeKOTOpbie OÖIIIHe npOÖJieMbl yCTOHHHBOrO pa3BHTHH, Kacaromneca SKOJiorHnecKoM, 3kohomhh6ckoh, KynbTypHon h ynpaßJieHne ckoh ccjjep >KH3He/ieaTejibHOCTH. Bo mhothx rocyaapcTßax 3to connajibHO h 3KOHOMHHeCKH MapTHHaJlbHafl H 3KOCHCTeMHafI 30Ha, HMeiOHjaa OfIHH H Te >Ke 3KOJiorHHecKHe npoöJieMbi. Ee oöinaa xapaKTepHaa nepTa, no Been 3aKjnonaeTCH b tom, hto b rjioöajibHon OKpy>KaK)uieii OHa BbinojiHHeT ponb SKOTOHa (hjih nepe xoflHoro noaca), 30Hbi H3MeHeHHa b xapaKTepncTHKax CHCTeMbi, r/ie OTHOiue hhh Me>KAy KOMnoHeHTaMH HaHÖonee Hanp>DKeHbi h nyßCTßHTejibHbi k H3Me- HeHHHM. ®HKCaU,HfI 3THX H3MeHeHHH B 3KOTOHe MO>KeT OKa3aTbCH KJnOieBOH nm noHHMaHHH npoHCxo,o,sunnx moöajTbHbix H3MeHeHHH n cooTBeTCTBeHHO fIjTH pa3paöoTKH HeoöxoAHMbix CTpaTerHH ynpaßJieHHH npnpoflHbiMH pecyp- CaMH. lIoSTOMy fIJIH yCTOHHHBOrO pa3BHTH» 3TOH 30HbI TpeÖyeTCH MOKflyHa poflHoe coTpyflHHHecTBO, pa3paÖoTKa h npHHsrrae KOHKperabix Mep Ha jto- KajibHOM, HannoHajibHOM h Me>KflyHapoflHOM ypoßHax. Flpn 3tom ocoöeHHO nepcneKTHßHbiM npeflCTaßJiaeTca BHe/ipeHHe 3KOcncTeMHoro ynpaßjreHHa, KaK HOBoro MexaHH3Ma no3BOJi>nomero HHTerpnpoßaTb h KOMnjieKCHO paccMaTpn- BaTb MHorne acneKTbi ycTOHHHBoro pa3BHTHa 30Hbi jiecoTyHflpbi. 148 KaK aHTponoreHHbie, Tax h cj)aKTopbi bjihhjot Ha AHHaMHKy 30Hbi jiecoTyHflpbi h 3th (})aKTopbi TecHO B3aHMOCBH3aHbi Apyr c ApyroM. B HayHHO HCCJiefIOBaTejibCKHx paöoTax ocHOBHoe BHHMaHHe yuejiaeTca npHpoAHbiM (J)aKTopaM, MeHbine - counanbHO-KyjibTypHbiM, 3kohomhhcckhm h nonnTHHe- CKHM. EcJIH Mbl H3yqaeM HX no OTfIeJIbHOCTH, TO 3TO 3aTpyAHHeT nOHHMaHHe CJTO>KHbIX B3aHMOCBSI3aHHbIX flpyr C ApyrOM BO3flefiCTBHH H IIOHCK KOHCTpyK THBHbix nyreii hx peryjiHpoßaHHH. TojibKO uejiocTHbiii noaxo# k npoöjieivie MoaceT ocHOBy j\m ycnexa. CTpaHa Bbi6npaeT cboh coöcTßeHHbiH Kypc B COOTBeTCTBHH C OCOOCFIHOCTJIMH KyjlbTypbl, HCTOpHH, BblflßHraeMblMH ero coijHajibHbiMH h 3kohomhh6ckhmh npHopHTeTaMH, a Tax>Ke HHCTHTyijHo- HajlbHOM H nOJIHTHHeCKOH CTpyKTypOH. ripOÖJieMbl H BO3MO)KHOCTH yCTOHHH- Boro pa3BHTHa 30HbI JieCOTyHflpbl B PoCCHH MOryT ÖblTb CXeMaTHHHO pac- CMOTpeHbl B paMKaX nHTH B3aHMOCBH3aHHbIX c(j}ep: 1) bo3mo>khocth 2) Bopböa c SeflHocTbio h 7i,ocTH>KeHHe öojiee BbicoKoro KanecTßa >kh3- HH. 3) ripoöJieMbi 3KonornHecKH HeycTOHHHßoii 3KOHOMHKH h nyTH hx pe- UieHHH. 4) riepcneKTHßbi 3kochctcmhofo ynpaßJieHHH b BOCCTaHOBJieHHH npn poflHOH cpegbi h ee 3amHTe. 5) yHacrae Mecraoro HaceneHHa h .npyrnx "3aHHTepecoßaHHbix jihh" b npHHATHH peuieHHH h pa3pa6oTKe mccthux nporpaMM ycTOHHHBoro pa3BHTHfI. 1 Духовно-культурные возможности 3oHa jiecoTyHApbi b Pocchh - /jom /yia mhohix Hapoaoß. Ee xapaKTepHOH nep toh aßjiaeTCH bhcokhh ypoßeHb KyjibTypHoro h sTHHnecKoro pa3Hoo6pa3Hsi. Ha TeppHTOpHH 3TOH 30HbI npOKHBaiOT KOMH, HKyTbl, pyCCKHe, a TaOKe MHO rne KopeHHbie MajiOHHCJieHHbie - caaMbi, xaHTbi, cejibKynbi, KeTbi, flOJiraHbi, 3HUbi, 3BeHKn, 3BeHbi, HraHacaHbi, nyKHH, roKarapbi. K3>KHyro h ce- BepHyro rpaHHUbi 30Hbi JiecoTynnpbi mo>kho paccMaTpHßaTb b KanecTße Kyjib- TypHO-3THHMecKHx pyöoKefi. HanpHMep, HeHeuKHe ojieHeßOAbi, b neM pacno pa>KeHHH HaxoflHTca KpynHbie ojtchhh, KaK npaßHjio KonyroT b 3aßHCH mocth ot ce3oHa rofla H 3 TyH/ipbi k ceßepHoö oÖJiacTH 30Hbi jiecoTyHapbi. B to BpeMH KaK Komh, >KHByT 6nH>Ke k k)>khoh rpaHHue (rpaHHua c Tae>KHOH 30hoh), nocKonbKy 3tot npeHMyiyecTßeHHo HapoA, Bceryia >KHTb n 3aHHMaTbca xo3hhctbom b jiecHoK 30He. KopeHHbie Hapoflbi jiecoTyH/ipbi KyjibTypHbiM HacjieAneM h .nyxoß- HblM OnblTOM, HaCHHTbIBaiOmHM TblCflHejieTHH. ripOÖJieMbl yCTOHHHBOrO pa3- BHTHH 3THMH HapOflaMH MOryT OOCV'/RViaTbCH TOJIbKO B KOHTeKCTe HX KyjlbTyp- Hbix uejiocTHoro BocnpHHTHe KopeHHbiMH OKpy >Karomero MHpa h Bcex npoöJieM ycTOHMHBOCTH h pa3BHTHH TpeöyroTca öojiee uiHpoKHe upeviciaisjieiiMH, ne m npocTOH jiHHrBHCTHnecKHH hjih ceMaiiTH'ie- CKHH aHajlH3. 3th lipCV'IC i aBJICIIHM OCHOBbIBaiOTCH Ha TJiyÖHHHbIX KyjlbTypHblX 149 UeHHOCTHX. npnpO/ia, 3CMJISI y 3THX HapOAOB fIBJIJHOTCfI HeOTbeMJieMOH Ma- CTbK) hx >kh3hh, a KOHuenuHfl «CBHiyeHHOH 3eMjiH» cjiy>KHT ochoboh hx pe- JIHTHH. CymecTßOßaHHe caMbix MajioHHCJieHHbix KopeHHbix HapoAOß b HacToamee BpeMH Haxo/iHTCH no,n yrpo3oH. Ceiinac ocTajiocb TOJibKO 209 shhcb, 1113 Ke tob, 1140 roKarnpoß h 1278 HraHacaH. Mbi aoji>KHbi npH3HaTb, hto KynbTyp- Hoe, 3THHHecKoe h flyxoßHoe MHoroo6pa3HH - Haiue BceMMpHoe öoraTCTBO h OHO B POCCHH, B HaCTOHHiee BpeMH HaXOfIHTCH B OnaCHOCTM. riO3TOMy ocoöoe BHHMaHHe .hojdkho y;iejisn bc« 3ainnie /IVXOBIIOH H MaiCpHa.lhllOH KyjlbTypbl, TpaAHUHH, OCHOB CaMOHfIeHTHCjjHKaHHH H 3THHHCCKOH 3BOJHOHHH KOpeHHblX HapoflOß. 3to HaHßaacHeHiuee ycjiOßHe pa3BHTHH 30Hbi jiecoTyH/ipbi b Poccmm. 2 Борьба с бедностью и достижение более высокого качества жизни 3oHa jiecoTyHflpbi b Pocchh - panoH counajibHOH HeycTOHHHBOCTH. Oahhm H 3 ee HHflHKaTopoß HBJiaeTca to, hto OHa, KaK h Becb Ceßep Pocchh, HcnbiTbißaeT npouecc aenonyjiaijHH, KOTopbin OTpajKaeT rnyöoKHH KyjibTypHbrä, (j)HMeCKHH H SKOHOMHHeCKHH KpH3HC. B COOTBCTCTBHH C nOCJiefIHHMH flaHHbl mh TocKOMCTaTa, onyöJiHKOBaHHbTMH b 2002 nporHo3Hpyexca, hto ecjin coßpeMeHHaa aeMorpacJjHMecKaa coxpaHHTcn , HacejieHHe Pocchh k 2050 roAy coKparaTca Ha 30 %. KaK cooöihhji TocKOMCTaT areHTCTBy hobo- CTen HHTep<})aKC b anpejie 2002 ro.ua, HHCJieHHOCTb HaceneHHa b Pocchh k ce peflHHe Beica MoaceT ynacTb c 144 mjih. Ao 102 mjih. nenoßeK. B cootbctctbhh c öojiee neccHMHcranecKHMH nporHo3aMH, HacejieHHe mo>kct coKparaTbca aa>Ke Ha 47 %. lIpHHHHbi coKpameHHH hhcjichhocth HacejreHHa b /jaHHOM Ma- Tepnajie He paccMaTpHßaiOTCfl, xoth b öojiee paHHHx yKa3bi- BaeTCfl Ha nuoxyio 3KOHOMHnecKyio CHTyauHK), 3arpji3HeHHe OKpy>KaiomeH cpe/jbi h cHjibHbiH cTpecc, KOTopbie HcnbiTbißaeT HacejieHHe. TocKOMCTaT koh- CTaTHpyeT, hto cpe/iHaa npofIOJDRHTejibHOCTb >kh3hh My>KHHH b Pocchh cefi nac 59 jieT, a >k6hhihh - 72 ro/ia. (Russian Environment Digest 2002). CoKpameHHe hhcjtchhocth HaceneHHH Ha Ceßepe Pocchh - cjieflCTßHe KaK OTpnuaTejibHoro ecTecTßeHHoro npHpocTa HaceneHHa (coKpameHHe po>Kflae mocth h noßbimeHHe cmcpthocth), TaK h pocTa MHrpauHH H 3 perHOHOB Ceße pa. HanpnMep, c 1992 b ApxaHrejibCKoii oÖJiac™ h c 1993 b Myp- MaHCKOH ypoßeHb CMepTHOCTH CTaji npeßbiuiaTb ypoßeHb po»cflaeMOCTH (Lausala and Valkonen 1999). B 1989-1990 rr., cpeflHsa npoflOJi>KHTejibHocTb >kh3hh b BapeHueßOM pernoHe /jocTHrjia Tex 5Ke BejiHHHH, hto b Pocchhckoh b uejioM h cocTaßHJia 69.4 ro/ja. 3a nepoa 1989-96 rr., OAHaKO, npofIOJT)KHTejrbHOCTb SKH3HH CHH3HJiacb flo 66 JieT b Pocchhckoh OeAepaunn h äo 64.6 neT b BapeHHeBOM pernoHe (Lausala and Valkonen 1999). Mpe3BbIHaHHO BbICOKHH ypOßeHb CMepTHOCTH HaÖJHOflajTCfl B 3TOT nepHOA (1990-1996 rr.) KopeHHbix >KHBymnx b apKranecKHx h cyö apKTHnecKHx 30Hax (HMeHHO b CMepTHocTb KopeHHbix HapoflOß )KHByruHx b jiecoTyHApe Bo3pocxra Ha 150 35.5% (A6,ziyjiaTnnoß 1999). TaK>Ke Ba>KHO OTMeTHTb h to, hto b TeneHne no- CJieAHHx AecHTHJierafi xapaKeip CMepTHOCTM H3MeHHJica: ochobhoh rpynnon pHCKa CTaHOBHTca He fleth, a jhoah penpoflyKTHßHoro Bo3pacTa, a ochobhoh npHHHHOH CTaHOBHTCH He 3a6ojießaeMOCTb, a caMoyönßcTßO, yÖHHCTBO hjih ®e HecMacTHbiH cnynaH. Ceiraac CTaHOBHTca oießHflHbiM, mto ocHOBHaa 3aKJHOHaeTCH b pa3pymeHHH ipa;innHom[oro o6pa3a >kh3hh KopeHHbix Hapo flOß, h b nepßyio onepeflb jiecoTyH/ipoßoro n TyH/ipoßoro ojieHeßOflCTßa, KaK OCHOBbI SKH3HH MHOrHX >KHTejieH. HanSojiee crnibHbin ym,ep6 TpafIHUHOHHOMy oöpa3y >kh3hh h xcmficTßy Ha- Hecna nojiHTHKa 1960-bix rr., Korjia nepece jieHHe KopeHHbix HapoflOß H3 HeöojibiuHx nocejieHHH b KpynHbie nocejiKH. 3Ta HacHJibCTßeHHaa nojiHTHKa 3ajio>KHJia Hanajio KyiibTypHOMy h SKOJiorHnecKO- My flHCÖanaHcy b CTpyKType paccejieHHH KopeHHbix HapoAOß h TpafIHHHOHHOM oöpa3e SKH3HH b uejiOM. IlepecejieHHe, acH3Hb b KpynHbix nocejiKax b KanecTße HauHOHanbHbix MeHbuiHHCTB, Maccoßoe ot poflHTejiefi hx /jeTen ooyienHH b HHTepHaTax, coKpainciwc moma/ieii TeppHTopHH Tpa;mnn- OHHoro npHpoAonojib3oßaHHa h CHH>KeHHe peajibHOH bo3mo»hocth 3aHH- MaTbCH TpafIHHHOHHbIM XO3HHCTBOM - BCe 3TO npHßejlO K AyXOBHOMy H COHH anbHOMy KpH3HCy KopeHHbix HapOflOß. C 1970-bix rr. CKpbiTaa 6e3pa6oTHHa CTaHOBHTca uiHpoKO pacnpocTpaHeHHbiM HBjieHHeM KopeHHbix acHTejiefi, ceMba, poA h TpaAHHHOHHaa KyjibTypa HaHHHaioT pa3pyniaTbc>i. 3th npoöJieMbi npHßejiH k coKpaineHHio eerecTßeH- Horo npnpocTa HacejieHHH h ero oömeii HHCJieHHOCTH. B ro/ibi pa3pymeHHe TpaaHHHOHHbix bhuob xoshhctbchhoh ocoöeHHO ojreHeBOACTBa, npoflOJiacaeTca. 3to Bbi3Bano pe3KHH pocT oeipaooiHUbi h 3Ha- HHTejibHO CHH3HJIO ypoßeHb h >kh3hh. 3a nepHoji, c 1994 no 1996 rr. HHCJieHHOCTb paöoTaiomHx KopeHHbix sKHTejiefl Ha Ceßepe CHH3HJiacb b cpea- HeM äo 32.5 % ot oömeii HHCJieHHOCTH, h ceiraac, no otjjnnnajibHon CTaracTH- Ke, 25-30 % (J)H3HHecKn n yMCTBeHHO nojiHoneHHoro HaceneHHa, npnHaAJie>Kamero k KopeHHbiM MajioHHCJieHHbiM Ceßepa, He mvieioT nocTOHHHO onjiaMHßaeMon paöoTbi. Ilpn stom, Mojiofloe noKOJieHne, b Bo3pac- Te MeHee 25 jieT, cocTaßJiaeT 3Ha4HTejibHyio flojno Bcex 6e3pa6oTHbix (ajih HeKOTopbix KopeHHbix HapoAOß 3Ta HH(j)pa cocTaßJiaeT 35-40 %). K TOMy )Ke, HHCJieHHOCTb n njiOTHOCTb HacejieHHfl b 30He JiecoTyHflpbi b Ha- CToamee BpeMH yMeHbinaeTca b cba3h c oöinen TenneHnneH orroKa Hacene hha c PoccHHCKoro Ceßepa. ,ZJjisr 30Hbi cnennajibHoe nccjie/iOBa- HHe öbiTb npoßeaeHo jxm onpejiejieHHJi hhcjichhocth Mnrpnpyiomero HaceneHHH. /JocTynHaa k HacToameMy BpeMeHH CTaTHCTHKa o tom, mto 1 mjih. )KHTejien TpyflocnocoÖHoro Bo3pacTa noKHHyjin poccnH CKyio ApKTHKy n CyöapKTHKy 3a nepnoa c 1992 no 1998 rr., to) cocTaßJiaeT okojio 10% ot HHCJieHHOCTH Bcero HaceneHHH, npo>KHßaioiHero b 3tom perno- He (TloKJiafl TocKOMceßepa 1999). K npHMepy, no EapeHneßy pernoHy, o6ui,asi HHCTasi MHrpanna HacejieHHsi 3a nepHOA c 1993 no 1997 rr. cocTaßHJia 169700 nejiOßeK. TaKHM o6pa3oM, 75 % HHCJieHHOCTH HaceneHHa b 3tom pernoHe öbuio oöycjiOßJieHO hhctoh MHrpaHHen h tojibko 25 % - ecTecTßeH- HbiM yMeHbineHHeM HacejieHHH (Lausala and Valkonen 1999). 151 CounajibHbie öefICTBHH, CB*i3aHHbie c 6e3pa6oTniieH, öeflHOCTbio, 6ojic3hhmh, pa3pymeHHeM ceMbH, caMoyÖHHCTBOM h ajiKorojiH3MOM b 30He Pocchh ycyryöJifliOTCfl h pacTyT öbiCTpbiMH TeMnaMH. IlosTOMy 3ajxsma yc- TOHHHBoro pa3BHTMSi b couHajibHOH cKM3HH, ÖnarOCOCTOfIHHH H 3flOpOßbsl, OCOÖeHHO CpeflH HaHÖOJiee ya3BH- Mbix rpynn HacejieHHH. 3Ta 3aAana ji,oj])KHa ocyiuecTßJiHTbca npn yneTe ycH jiHßaiOLueroca HeraTHßHoro BJiHXHHa 4>aKTopoß 3arpa3HeHHa n aerpaaauHH OKpyKaromeH (Bo3,nyxa, h noMßbi) h npoHCxoflflmnx KJiHMaTHne- CKHX H3MeHeHHH. 3 Проблемы экологически неустойчивой экономики и пути их решения Mo>kho Ha6jiK)flaTb fIOCTaTO4HO pe3Koe yßennneHHe 3kohomhh6ckoh aKTHB HOCTH, nJIOTHOCTH HaCejieHHfl, ypOBHH yp6aHH3HpOBaHHOCTH H, B UeJIOM, «npeccHHra HaceneHHfl» Ha npnpoflHyio cpeay no HanpaßJieHiiio c ceßepa Ha km. T.e. ot 30Hbi iyn;ip[>i, L icpc3 ncpcxo.uiyio 30Hy jiecoTyHflpu, k Tafire. IIjiOTHOCTb cyxonyTHoro h peHHoro TpaHcnopTa, hhcjio ropoaoß h apyrnx HacejieHHbix nyHKTOB TaK>Ke yßejiHHHßaeTca b stom HanpaßJieHHH. Mbi MO>KeM HaÖJHOflaTb 3Ty npocTpaHCTßeHHyio TeH/ieHHHK) aHajiH3Hpyfl KapTbi BceMHp- Horo ATJiaca Pecypcoß h Cpezibi (cm. Resources ... 1998). Mbi MO>KeM TaK>Ke HaÖJiiojiaTb, hto cpeAHaa njioTHocTb HacexieHHa b npeaenax 30- Hbi jiecoTyHApbi KOJieöJieTCTa ot oahoto h MeHee MejioßeK Ha 1 KBaapaTHbiii KHJiOMeTp (reorpacjjHHecKHH aTjiac... 1980). H3ojihhhh 1 mcjiobck Ha KBa/ipaT- Hbiii KHJiOMeTp oöbiMHo paccMaTpußaeTca b KanecTße norpaHHHHOH jihhhm Me>KAy 3KOHOMHHeCKH p33BHTbIMH, 3aCejieHHblMH perHOH3MH h cjia6opa3Bn- TbiMH panoHaMH e öonee hh3koh ruiOTHOCTb HacejieHHH (e peflKO BCTpenaio iHHMHca HacejieHHbiMH nyHKTaMH). TaKHM o6pa3oM, e counajibHO 3KOHOMHMeCKOH TOHKH 3peHHH, 30Ha JieCOTyHflpbl MO>KeT npaBOMepHO OTHO CHTbca k MaprHHajibHOH 30He. OnpeaejieHHe k»khoh h ceBepHOH rpaHHn 3toh 3oHbi - He TOHbKO TeopeTHHecKaa, ho h npaKTnnecKan 3aflana, nocKOJibKy cneuHajibHaa perno- HajibHaa sKOJiorHnecKaa h sKOHOMHnecKaa non HTHKa HeoGxoflHMa no otho- HieHHio k Ceßepy Pocchh b iienoM. B TeneHHH MHornx jieT yHeHbie nbiTajincb pa3pa6oTaTb HHTerpaiibHbie conHo-npnpoflHbie KpHTepun ajih ycTaHOBJieHHH rpaHHHbi Ceßepa. B 1970-bix rr. KaK b Pocchh, TaK h b KaHa/ie, b KaqecTße KpnrepHfl kmkhoh rpaHHnbi Ceßepa öbura npefljTO>KeHa arpoKJiHMaTnnecKaa rpaHHua hoctohhhoto 3eMjiejjejiHH oTKpbiToro rpyHTa (cyMMa aKTHBHbix TeM nepaTyp bo BpeMH BereTauHOHHoro nepnofla CBbiiue 1600° C). 3Ta rpaHnna coßnajiaeT b oölhhx nepTax e k»khoh rpaHnuen 30Hbi (MopTOH 1970; ArpaHaT 1984). CeßepHaa rpaHHua 30Hbi jiecoTynqpbi no rpaHHue jrecoß, 3a KOTopofi flepeßba y»e cobccm He BCTpenaiOTca. /Jepeßba oöbiMHo HaMHHaiOT noHBjiATbCH npH cyMMe aKTHBHbix TeMnepaTyp CBbiine 700° C ,xoth hx pocT TaoKHOCTH. 152 J\jin Toro, htoöbi cocTaBHTb öojree nojiHoe o coßpeMeHHbix npoöjieiviax OKpy>KaiomeH n pa3BHTHH b 30He JiecoTyHflpbi, iiocbhthm HeCKOJIbKO CJIOB HCTOpHH ee 3aCejieHHH H XO3HMCTBeHHOrO OCBOeHHfI. AHTponoreHHoe BO3fIeHCTBHe Ha npHpoay 30Hbi h TpaHC(J)opMa- Uhh ee jiaHfliua(})TOß ocoöchho Bo3pocjiH b 16 BeKe. 3to öbuio o6ycjiOßJieHO 3aAanaMH AanbHeKuiero ocbochhh hobmx TeppHTopHH b 3anaflHOH Chöhph, KOTopaa k TOMy BpeMeHH 6biJia aocTaTOMHo cjiaöo 3acejieHa. TpaflHUHOHHbie KyjibTypbi HapoflOß, Hacejunomnx 3th 3eMJin öbijiH aocTaTOHHO xopoiuo THpOB3HbI K nppipOflHO-KJIHMaTHMeCKHM yCJIOBHHM 3TOH MaprMHaJIbHOH 30HbI. 3th Hapoflbl OÖJiaflajlH AOCTaTOHHO THÖKHMH MexaHH3M3MH XO33HCTBeHHOrO npMCnOCOÖJieHHH K Ce3OHHO-M3MeH4MBbIM yCJIOBHHM OKpy>KaiOmeH MX npn pOÄHOH cpeabl, HTO AOCTaTOHHO HCHO npOflßJlfleTCfl B TpafIHUHOHHbIX cnocoöax npHpoflonoJlb3oßaHHH, npaKTHKOBaBUIHXCH B OJieHeBOfICTBe, JIOKaJIbHOM 3eM neflejiHH, coönpaTejibCTße n HanpHMep, HOMa,a,H3M, 6biJi HaHÖonee Kynb- TypHO h 3KOJTorHHecKH aflanTHpoßaHHbiM cnocoöoM TpaziHiiHOHHoro npnpo flonoJlb3oßaHH« fIJM HeCKOJTbKHX KOpeHHblX HapOflOß, "/KHByiIIHX B TV F [,ipe H jiecoTyHflpe. TpaflHunoHHbiH oöpa3 >kh3hh h KynbTypa ceßepHbix Hapoaoß, hx ueHHocra, noTpeÖHOcra h >KejTaHHH öbijiH TaK>Ke xopoiuo aflanrapoßaHbi k HeycTOHHMBbiM, npe3CKa3yeMbiM h HyBCTBHTejibHbiM k jiroöoMy aH- TponoreHHOMy BO3AeHCTBHio ycjiOBHHM. r.H.TaH(})Hjibeß (1953), LUHpOKO H3BeCTHbIM yHeHblfi, CHHTaJI, HTO OCeflJlblH OÖpa3 >KH3HH B TyHflpe 6bl npaKTHMeCKH HeBO3MO>KeH H HTO Ce3oHHbie KOMeBaHHa jiiOAeM co CTaaaMH ojieHeii b 30He JiecoTyH/ipbi- caMbiH oirrHManbHbiH o6pa3 >kh3hh. Oh no3BOJiaji CHH3HTb CTeneHb oTpnuaTejibHoro BO3fIeHCTBHa nejiOße- MecKOH fleaTejibHOCTH Ha npHpofly jiecoTyHflpbi, o/iHaKO Hejib3H OTpHu,aTb n to, mto BOKpyr nocejieHHH h Ha ecTecTßeHHbix nacTÖniuax TaK hjim HHawe, 06- jioKajibHbie onarn flerpaaauHH cpezibi, KOTopbie, OflHaKO, He MOryT ÖblTb CpaBHHMbI C nOCJiefICTBHSMH COBpeMeHHbIX BO3fIeHCT BHH. npoMbiiiiJieHHoe Bo3fleiiCTßHe b 30He jiecoTyHapbi Bo3pocjio c npnxoAOM 20- oro BeKa, BHanane b cbh3h c pa3BHTHeM jiecHOH npoMbiinjieHHOcra, a 3aTeM, 50-60 JieT Ha3aa, b cbh3h c KpynHOMaciirraÖHOH floöbmefi n nepepaöoTKOH MHHepajlbHblX H TOnjIHBHbIX peCypCOB. npHHHMaa BO BHHMaHHe 3KOJIOrHHe- CKyio 3Ha4HMOCTb 30Hbi h Bo3pacTaiomee aHTponoreHHoe 803- aeHCTBHe, b 1959 cneunajibHbiM 3aKOHOM npaßHTejibCTßa, b ee 6biJia o6pa3oßaHa 3amHTHaa nojioca npHTyH/ipoßbix necoß, oxßaTbißaiomaa 21.1 mjih. ra (JlecHaa 3Hu,HKjroneflHfl 1985). TaKHM o6pa3oM, okojio nonoßH- Hbi TeppHTopHH 30HM necoTyHflpbi nonana ocoöbrä npnpoflOoxpaHHbiH pe>KHM. CTpaTerHH, HanpaßjieHHaa Ha Hbix Hapoaoß öbuia pa3paöoTaHa b 20-om BeKe b paMKax «couHajiHCTHnecKOH peKOHCTpyKUHH» cejibCKoro xo3HHCTBa. C 1968 no 1989 rr. okojio 23.3 thchm ojieHeßOflOß öbijiH BbiHy>KfleHbi OTKa3aTbC5i ot CBoero Koneßoro oöpa3a >kh3hh h nocejiMTbca b KpynHbix (AMAP 1998). riofloÖHaa nojiHTHKa npH- Bejia k cepbe3HbiM counajibHbiM h 3kohomhm6ckhm npoÖJieMaM b >kh3hh ko peHHbix HapoflOß. Xoth, c 1990 ro/ia rocynapcTßeHHaa nojiHTHKa, HanpaßJieH- 153 Haa npoTHB Kowcßoro oöpa3a >kh3hh, nepecTana ocymecTßJiaTbca, kojihtcctbo ojieHefl c Tex nop He yßejiHHHJiocb. Ha oömeM (})OHe counajibHoro yna;uKHOH h TyHA poßbix 30Hax, HaöJiioaaeTca flerpaaauHa skochctcm, b tom HHCJie aHTponoreHHoe oöe3JiecHßaHMe JiecoTyHflpbi. OparMenranHa Jiecoß h pacinn peHHe nojiHOCTbio jiHmeHHbix jieciiOH pacTHTeJibHoera njiomaaen Haömojia eTca KaK okojio iohchoh rpaHHUbi 30Hbi Jieccnyii/ipbi , TaK n b npcaejiax Taeac- HOH 30HbI. Oin nponeccbl BbI3BaHbI KaK Me X a lIH L I e CIC H M BO3fIeHCTBHeM Ha 3KO - TaK H XHMHHCCKHM BOSfICHCTBHeM npOMbILUJieHHbIX BbIÖpOCOB H 3a rpa3HHTejieH. B KanecTße ohcbhahoio npHMepa aHTponoreHHO ro Bo3;ieHC'[ Bna b 30He MoaceT cnyacHTb tot (|)äKT, hto b ApxaH rejibCKOH oÖJiacTH h pecnyÖJiHKC Komh HaöjnojiaeMaa k nacToameMy BpexieiiH K»KHaa r paiiHna 30Hbi npoxoflHT Ha 40-100 km k rory ot 3amHi- Horo noaca Jiecoß (Semenov & Ogibin 1998). AHTponoreHHoe BOifleiicTßue aßJiaeTca raK>ice npHHHHOH ceßepHon rpaHHUbi 30Hbi ne coTyHflpbr (rpaHHua c TyH/ipoßofi 30hoh) k iory. B pe3yjibTaTe, b cooTßeTCT bhh c onyönHKOBaHHbiMH fIaHHbiMH, oömaa njiomaflb aHTponoreHHon h JiecoTyHflpbi, npoTarnßaioinaaca ot KoubCKoro nojiyocTpoßa flo HyKoiKH, cocTaßJiaeT okojio 470-500 Tbic. kb. km (KpionKOß, 1991). Han6ojiee CHJibHoe 803/ieHCTBHe Ha npHpoaHyro Ceßepa Pocchh oKa3bißaeT npoMbiiujieHHOCTb, xoTa 3KcnnyaTanHa b0306h0- BHMbix npnpoflHbix pecypcoß, ocoöchho BbipyÖKa Jiecoß, erajiM HaHOCHTb Bce öojiee cepbe3Hbiii ymepö. BKtia# TaKHX bhjjob aHTponoreHHoro Bo3flencTßHa KaK Typn3M h peKpeauna (BKJironaa cnopraßHbrä h pbiöojiOßCTßo) b pa3pyiueHHe 3kochctcm noßbimaeTca h, BnojiHe bo3mo>kho, hto b 6jiH>KaHmeM öy/iymeM hx BO3,neHCTBHe mo>kct öbiTb cpaBHHMO c aHajiorHH- HbiMH BM/taMH fleaTejibHOCTH Ha ceßepe AMepnKH h 3ana;iHOH EBponbi. y>Ke b 2000 rofly 6onee 1.5 mjih. TypHCTOB nocerano ApKTHKy b uejiOM (Arctic Flora and Fauna 2000). 3oHa jiecoryn;ipbi b pesyjibiare 3arpa3HeHHa Bosayxa, Boxibi, nOHB, OMOTbI, BbI3BaHHOrO npOMbIUIJieHHbIMH BbIÖpOCaMH MeCTHbIX ropHO- MeTajinyprHHecKHx h JieconepepaöaTbißaioinHx npeanpnaTHH, pa3Be;iKOH h aoöbineH HeKfleHHH, BJinaHHeM H3oJiHpoßaHHbix noceji kob, pa3ÖpocaHHbix no BceMy Ceßepy, a TaKace BO3fIeHCTBHeM TpaHcnoprabix cpeACTB. OinyTHMO TaK>Ke Bo3flencTßHe khcjiothhx oca/jKOB, b ochobhom no- CTynaiomHX c 3anaaa. 154 AHTponoreHHoe Bo3aencTßHe ropHO-MeTajuiyprnHecKHx KOMÖHHaTOB Ha jiaHjLuadrrbi 3QHbi jiecoTYHjpbi H3yrajiocb b HecKOJibKnx ropannx TOMKax, BKJiioHaa paMoH r. HopHJibCK n KojibCKHH noJiyocTpoß. 3;iecb CTeneHb Hapy- IIieHHOCTH 3KOCHCTCM 3aBHCHT KaK OT 06"beMa npOMbmiJieHHblX BbIÖpOCOB, HX XHMHHecKoro cocTaßa, ot BpeMeHM cymecTBOBaHHH 3aßOfla, xapaKTepa non- BeHHO-pacTHTenbHoro noxpoßa, pejibec|)a h KJiHMaTa, TaK n ot 3<|)cj)eK"rHßHOc rn cymecißyioincH chctcmm KompojiH 3a BbiöpocaMH n peKyjibTHßauHH jian/i- Uia(j)TOß. В зоне лесотундры наибольшее загрязнение вызывают три перерабаты вающих завода. Это Норильский комбинат в Красноярском Крае (город Норильск) с ежегодным объемом выбросов в атмосферу, составляющим 2140 тыс. тонн (1998) и два завода на Кольском полуострове в Мурман ской области - завод «Печенеганикель» (поселок Никель) с объемом вы бросов 197.4 тыс. тонн и завод «Североникель» (город Мончегорск) с выбросами в 99.3 тыс т (Государственный доклад ...1999). Недавно стали доступны новые данные касающиеся воздействия Норильского комбината (Integrated Ecosystem ... 2000). По этим данным, ежегодные выбросы Норильского комбината составляют уже 2.3-2.5 млн. тонн, 90 % которых образует двуокись серы. На основе спутниковой ин формации, в результате долговременного воздействия подобных выбро сов, на Таймыре (Долгано-Ненецкий Автономный Округ), 45 млн. га охотничьих угодий, обрабатываемых земель и оленьих пастбищ стали хо зяйственно непригодными (Toutoubalina and Rees 1999). B HCCJiejJOBaHHHX BO3fIeHCTBHSI TOpHO-MeTaJIJiyprHHeCKHX KOMÖHHaTOB B MoHHeropcKe h HopHJibCKe BbiflejiaeTca KaK npaßHJio 4-5 30H aerpaaauHH 3KOCHCTeM, OKpy>KaK>mHX 3TH KOMÖHHaTbI (KpFOHKOB 1991; KpaBUOBa B.H. H ap., 1996; AM AP 1998; Integrated Ecosystem ... 2000). Pa3JiHHHbie CHCTeMbi KjiaccHtJjHKauHH THnoB npoMbiuiJieHHoii aeipa;iai[HH skochctcm ömjih HHTer pHpoßaHbi, mto jtajio BO3MOSKHOCTb nojiyHHTb yHHßepcajibHyio CXeMy 30H fle rpa/iaunH (Vlassova 2002). OopMHpoeaHHe no/iooirbrx 30H ;ierpa;iaiiMH sko- CHCTeM npHBOfIHT K CflßHiy CeBepHOH H K))KHOH ipailHll 30HbI JieCOTyHflpbl K iory. Ha ceßepe 30Ha JiecoTyHjjpbi rpailajxipMHpyeTCJi b aHTponoreHHyio TyH flpy, b to BpeM» KaK Ha rare, aHiponoreimaM jiecoTyHflpa, a mi loivia h ryHapa, ocoöeHHO b 30He npoMbimjieHHoro oe/iJicHja, «BTopraiOTca» b Tae>KHyK) 30Hy. nOfICHHTaHO, MTO fIJM CTäÖMJIH3aHMM 3KOJIOrHieCKOH OÖCiaiIOBKH B HHflVCT pHajibHbix panoHax KojibCKoro nojiyocTpoßa TpeöyeTca, htoöm e>KeroflHbie Bbiöpocbi Ha Ka>KflOM H 3 npeflnpMHTHH ÖblJlH CHH>KeHbI flO 10 TbIC. TOHH B (KpioHKOB 1997). B qejiOM no MypMaHCKOH oöjiac™ oöteM Bbiöpocoß He fIOJDKeH npeßbimaTb 25-30 Tbic. tohh. no HaimiM noAcneTaM, ocho- BaHHbix Ha aaHHbix OTneTa «Coctohhhc OKpy>KaiomeH cpe/ibi» (1999), Bbiöpocbi BbimeyKa3aHHbix 3aBOfIOB b HacToamee BpeMH b 20 pa3 npe- BbimaiOT HopMy, npn KOTopon mo>kho öbmo 6bi HannHaTb peKyjibTHßanmo. Cepbe3Hoe BO3jeHCTBHe Ha 3qhv jiecoTVHjpbi OKa3bißaeT pa3pa6oTKa ra3OBbIX MeCTOpp>KjeHHH. CaMblM CHJIbHbIM H OnaCHblM BO3AeHCTBHeM He(})- Tera3oßoro KOMnjieKca Ha 3KOCncTeMbi HBjiaeTca xnMHnecKoe 155 3arpH3[ienne . Hecjrre/ioobißaioinaM iipoMbiiiuicmiocih 3arpa3HaeT aTMOC(})epy yuiciio;u)po;iaMH, oKCM/iaMH, TaacejibiMH MeTanjiaMH (b pe3yjibTaTe OKHiaiiHM ra3a h Hecjyra). 3HaHHTenbHbifi ymepö npcccopiibic craHUHH. Gofijiepubie, rpancnopinbie pa6o™ no CTpoHTejibCTßy ;iopor h TpyöonpoßOflOß, a TaioKe pa3HMßbi Hecj)TH iipn ee ;io öbine. HeKeHHK) ÖHOJTOrHHeCKOH npOfIyKTHBHOCTH. ,Zl,oporH, TpyöonpoßOflbi, jihhhh 3JieKTponepeflaH, H c pa3pa6oTKOH He(})Tera3oßbix MecTopoacfleHHH, k (j)panvieHTa- Hhh orpoMHbix no njioma/iH rcppnropHH, H3oJiHpya pacTHTejibHbie h >khbot- Hbie cooömecTßa (Arctic Flora and Fauna 2000). KojioccajibHbi noTepn He(J)TH bo Bpeivui ee TpaHcnoprapoßKH. Ha npecc- KOH(j)epeHnHH, npoßOflHßinenca b raaBHOM o(})Hce HmeptJiaKca 19 MapTa 2002 roaa, 6buio cooömeno, mto norepH iie(|)in npn TpaHcnopTnpoßKe b Pocchh cocTaßJiaioT ot 3 jjo 7 % oöteMa ee aoöbinn, b to Bpcvisi KaK, no MOK/iyiia poflHbiM CTaHjapTaM, Bo3MoacHbi noTepn He iipeiäbniiaioinHe 0,1 % ot o6be\ia fIOÖbIHH. /],eHCTBHTeJIbHbIH HHeH PoCCHHCKOH AlCafleMHH HayK H BHlie lipe3HfleHT POCCHHCKOH 3KOJIOrHH - BHKTOp /|aHHJIOB-/J,aHH.IHH, onoßecTHJi ripucyTCißyioinHx o tom, hto 73 % Bcex ochobhmx pocchhckhx öojiee 20 JieT, a 40 % H 3 hhx CTaprne 30 jieT. ITpn 3tom, cpoK SKcnjiyaTaijHH nec}rrenpoßO/[OB cocraßjiaer 33 ro;ia (Russian Pipelines ... 2002). To;ibKO b Xanm-MaHCHHCKOM h ilMajio -1 Ichcukom aBTOHOMHOM OKpyrax, pa3paÖoTKa HeTera3oßbix h Bee CB33aHHbie c Hen HeraraßHbie Bo3aencTßHH npHßejiH k HeBOcnojiHHMOH, B yCJIOBHHX XpynKHX K BO3fleiiCTBHK) apKTHHeCKHX 3KOCHCTCM, nOTepe 1 1 MJIH. ra ojieHbHx nacTÖnm b 30He h TyHflpbi, TaK5Ke 6ojiee 100 6ojib uihx h Majibix peK öbuiH 3arpa3HeHbi (IlpoeKT 2000). FlofloG- Hbie orpoMHbie nnoma/jn flerpa/iHpoßaHHbix 3eMenb Bbi3BaHbi ycHJieHHeM h pacinnpeHneM scjxfteKTa npaMoro bo3jchctbhsi Hecj)Tera3oßOH npoMbimneHHO cth. 3ohm He(jjrera3o;io6i>i LiH oömhho 3aHHMaioT 3eMJin ecTecTßeHHbix nacT 6hih, HbiH npecc na/iaci Ha apyrne ecTecTßeHHbie nacxÖHina, naxo/iHinHeca 3a npe flejiaMH caMon HHflycTpnajibHOH 30Hbi. Bo3aeHCTBHe jiepeßoo6pa6aTbißaroineH h nejunojio3HO-6vMa>KHOH npoMbim- JieHHOCTH OrpOMHQ B CBM3H C BbICOKHM ypOBHeM ee KOHIieHTpaHHH B Tae>KHOH 30He BÖJIH3H OT KWKHOH I pailHHbl 30HbI JiecoTyHflpbi. BbiöpacbißacMbie ero 3a rpsi3HjiK)inHe Bemecißa CKaa ca>iKHbiH KOMÖHHaT (b ApxaHrejibCKOH oGjiacxn), pacnojio>KeHHbiH Ha rpa- HHue jiecoTyii/ipbi c Tae)KHOH 30hoh. 3flecb, b 1998 roay Bbiöpocbi 3arpa3HH- Te.neK cocTaßHjiH 49,300 tohh. CjieayiomHM no oöteMy Bbiöpocoß cne^yeT 156 KoTjiaccKHH U,BK (r.Kopa>KMa, ApxaHrejibCKaa oÖJiacTb), KOTopbifi Bbiöpacbi- BaeT eaceroflHO 26,200 tohh 3arpH3HHTejieH. TpeTbe MecTO 3aHHMaeT CbiK- TbißKapcKHH JiecooöpaöaTbißaiomHH KOMÖHHaT b pecnyÖJiHKe Komh, KOTopbifi BbiöpacbißaeT 25,000 tohh 3arpH3HHTejieH (rocyaapcTßeHHMH flOKJiafl... 1999). Bo3AencTßHe 3Toro KOMÖHHaTa, KOTopbifi b 30He Tae>KHbix jiecoß c npeoÖJiaaaHHeM cochh h ejiH, c JiecHbiM noKpbiTHeM okojio 74% irjiomaiiH TeppHTopHH, öbiJio npoaHajiH3HpoßaHO yneHbiMH HayHHoro neirrpa Komh, Pocchhckoh HayK. 3th HCCJie/iOBaHHa noKa3anH, hto 30- BOJibHO MomHOMy aHTponoreHHOMy BO3,geHGTBHK> noflßeprjiHCb jieca, OKpy >KaK)IUHC ropoa CblKTblßKap KOJIbHOM IIIHpHHOH flO 50 KM. CaMOMy CHJIbHOMy Bo3fleiicTßHK), rae flonycTHMbrä ypoßeHb npeßbimeH b 100-150 pa3, noflßep r jiacb 30Ha, naxoAxmaacH b rfle flonycraMbie HopMbi npeßbiiueHbi b 20-100 pa3, HaxoflHTca Ha paccTOHHHH Tpex km ot nepBOH 30Hbi h BbiTHHyTa no HanpaßjieHHio npeßa jiHpyiomHX BeTpoß. 3a HeM npoTarMBaeTCH cjieayromaa 30Ha yMepeH- Horo BO3fIeHCTBHa, r/ie flonycTHMbie HopMbi npeßbiiueHbi b 4-20 pa3. npoTH «eHHOCTb 3toh 30Hbi noKa eme TOHHO He pa.. .1997). TeppHTopnH BOKpyr nofloÖHbix HH,aycTpnajibHbix ueinpoß, paHee b Tae>KHOH 30He, npeßpameHbi b aHTponoreHHbie JiecoTyHflpo- Bbie h Tyn;ipoßbie sKoencTeMbi. Bo3fIeHCTBHe H3oHHpoßaHHbix ceßepHbix nocejiKOß h HH(j)pacTpyKTypbi Ha 30- Hy jiccoryn,ipi)i He MO>KeT HrHopHpoßaTbca. BcjieflCTßHe HSOJiHpoßaiiiiocTH h OTfIaneHHOCTH, ocHOBHbiMH HCTOHHHKaMH nocTynjieHHH 3HeprHH, oöecnene hhh TennoM h CBeTOM b ceßepHbix nocenKax cny>KaT yrojib, acHflKoe TonjiHßo (flH3eJlbHbie 3JieKTpOCTaHHHM) H ApOßa. 3HepreTMHHeCKMH KpH3HC npHBOfIHT H MoaceT b flajibHeftuieM npHBecTH k yßenHMHßaiomeMyca oöteMy ncnojTb3oßa- HHa ;ipon h, cooTBeTCTBeHHO, k BbipyÖKe Jiecoß b 30He jiecoryn/ipßi h Tafirn b pafioHax npHMbiKaioiHHx k KpynHbiM cejieHHHM. IlocejiOK c HacejieHHeM 10 rae. /KH iejieH HMeeT oömhho He MeHee 10 KOTejibHbix. B pe3yjibTaTe b aTMO ci})epy BbiöpacbißaeTca öonbiuoe kojihhcctbo SO2, Ni, nbiJiH h apyrax 3arpa3- HHiomHX bcihcctb. Opeonbi 3arpa3HeHHH BOKpyr HacejieHHbix nyHKTOB pa;my- COM B HeCKOJIbKO KHJIOMeTpOB, COOTBCTCTBVtOT Harpy3KaM BTOpOH H TpeTbeH 30H 3arpH3HeHHH BOKpyr ro pho- m er aJi ;i vprhh e c k h x KOMÖHHaTOB. CnjibHoe aHTponoreHHoe Bo3flencTßHe Ha n TpafIHUHOHHbiH oöpa3 >KH3HH KOpeHHblX HapOflOß OKa3bIBaiOT TOpHbie 3JieKTpOCTaHL(HH. B HaCTHO cth, b pe3yjibTaTe CTpoHTeJibCTBa o/jhoh h 3 hhx Ha peKe KojibiMa, 3HanHTejib- Hbie njiomaflH ojieHbnx nacTÖHiu ömjih 3aTonjieHbi. Bojiee Toro, >khtcjih Ha- HHOHajibHoro nocejiKa OpoTyK (Tchckhh paikm), KOTopbiH Haxo/iHTCfI b Heno- CpefICTBeHHOH ÖJIH3OCTH K 3IOH CTaiIHHH He HMeiOT IIOCTOHHHOrO /locTyna K 3jieKTpo3HeprHH, a HHor/ia, b TeneHHe HecKOJibKHX Mecaueß b rogy b hx ,qo- Max H BOBCe HeT 3JieKTpHHeCTBa. npHHHMaa BO BHHMaHHe CymeCTByjOHIHH fIe(J)HHHT b oöecneneHMH SHeprnen H3oJiHpoßaHHbix h oxaaneHHbix nocenKOß b 30He JiecoTyHflpbi h ceBepHOH TaiiiH h yßCJiMHMßaiomnecM noTpeÖHOCTH b Apoßax, oxoTHHKaM h ojieHeßOflaM flOJi>KeH peryjiapHO nocTaßjurrbca öajuiOH- Hbiir ra 3, hto noMO>KeT ocTaHaßji n BaTb oTCTynneHHe necoß Ha ior h 6yaeT cnocoöcTßOßaTb yjiymueHHK) 3KOJiorHHecKoii o6cTaHOBKH Ha Ceßepe b uejiOM. 157 ryceHHHHbifi TpaHcnopT Taioice ycyryönaeT smnorHHecKyio oöcTaHOBKy b öojibLUHHCTBe ceßepHbix noce/ieHHH h ero OKpecTHOCTax. B pe3yjibTaTe ero BO3fI,eHCTBH>I OKpeCTHOCTH ÖOJIbHJHHCTBa CeßepHblX nOCejIKOB HMeiOT XOJIMH CTO-3pO3HOHHbiH pejibecj) h Heöojibinne KypTHHbi pacTeHHH, name Bcero 3Jia kob. ryceHH4Hbiii TpaHcnopT cymecTßeHHO pa3pymaeT pacraTenbHOCTb xaK 30Hbi TaK h jiecory H/ipi>i. I Ipoße/ieHHbie paHee HccjieaoßaHHa no- Ka3ajin, lito b Pocchh 15% TeppHToppiH TyHflpbi h jiecoTyHflpbi ho TpaHcnopTHoro BO3fIeHCTBHa. Oho TaioKe cnocoöcTßyeT jaa- HHK) BeHHOH Mep3HOTM, 3pO3HH H pa3BHTHK) TepMOKapCTa. B HCKOTOpbIX paH OHax, Ha lore TyHapbi h b 30He CKopocTb oöpa3oßaHHa TepMO- KapcTa cocTaßJiaeT 10-12 cm b rofl. (Arctic Research 1990). CnennajibHbie hc cjieflOßaHHH HeoöxoflHMbi fljia noHHMaHH» toto, b KaKHx paMoHax o6pa3oßa- HHe TepMOKapcTa oöycjiOßjieHO aHTponoreHHbiM Bo3AencTßneM, a xoaom ecTecTßeHHbix npoueccoß, HanpHMep H3MeHeHHeM KjiHMaTa. OöteM Bbiöpocoß (cepHHCTbiH aHrn,apH,zi, OKCHAbi a3OTa, yraeßOflopofla, efIHHeHHH CBHHua) ot aßTOTpaHcnopTa B 30He jrecoTyH/ipbi TaioKe 3HanHTejib- Hbi. HanpHMep, b MypMaHCKOH oönacTH, Bbiöpocbi ot aßTOTpaHcnopTa co- CTaßJiaeT 160.6 Tbic. tohh, hto non™ hto npnpaBHHBaeTCH k BbiöpocaM kom- ÖHHaTa neneHraHHKejib (FocynapcTßeHHbifl ,Z],OKJiafl.. .1999). YCTOHHHBOe OCBOeHHe JieCHblX peCVPCQB 30HbI JieCQTYHJPbI - HPe3BbIHaHHQ BajKHaa npo6jieMa, HecMOTpa Ha to, hto MeHee SKcnjiyarapyeTca b JiecHOH npoMbiiujieHHOCTH (b CHJiy MeHbuien npHBJieKaTejibHOCTH aepe- BOOÖpaÖOTKH H KOMMepHeCKOH UeHHOCTH HH3KOpOCJTOrO KyCTapHHKOBOTO H TOHKOMepHoro apeßecHoro MaTepnana), neM 30Ha TanrH. OflHaico Jieca Jieco- TyHflpbi npeflCTaßJiaiOT öojibiuyK) npnpoAOOxpaHHyio ueHHOCTb h 3th Jieca Hpe3BbIHaHHO Ba>KHbl B >KH3HH h TpafIHUHOHHOH XO33HCTBeHHOH fIefITCJIbHOCTH KopeHHbix HapoAOß, HacejiaromHx TeppHTopHH 30Hbi TeM He MeHee, b cflTHJieraa, KOMMepnecKan pyöica jiecoß cTajia npo,o,BH raTbca b 30Hy HanpHMep, Ha ceßepo-3ana#e Pocchh, Swjto 3a cj)HKCHpoBaHO, hto npoMbiniJieHHafl jieco3aroTOßKa erajia npojjßHraTbCH b 30- Hy jiecoTyHflpbi b HexoTopbix panoHax y>Ke c 1960-bix roflOß, npnoöpeTaa Bce 6ojibruHe Macurraöbi k 1990-mm (Arctic Flora and Fauna 2000). Ecjih cncTeMa Mep no 3amHTe ueHHbix MajioHapymeHHbix jiecoß Ha ceßepo- Pocchh He 6y.neT BBe/ieHa b TeneHHH ÖJiHacaHumx fleca- THjreTHH, to no MHeHHio rpnHnnc AjieKcea ilpomeHKO, «ecTe- CTBeHHbie Jieca npeßpaTHTca b rnraHTCKne njiaHTauHH 6epe3oßbix chh» (Greenpeace Protests ... 2002). Eojibinne bo3mo>khocth Ha ny™ ycTOH HHBOrO pa3BHTH3 30HbI JieCOTy Hflpbl B PoCCHH npeflCTaßJDieT HCnOJIb3OBaHHe onbiTa CBeToropcKoro KOMÖHHaTa, KOTopbiH npHHsui pemeHHe He 3axynaTb ApeßecHHy aeBCTBeHHbix Jiecoß. Ba>KHO, htoöh noaoÖHoe pemeHHe npHHHMa- JlOCb T3K>Ke H flpyrHMH pOCCHHCKHMH H 3apy6e)KHblMH neHJIK)JIO3HO -6yMa)KHbiMH KOMÖHHaTaMH (OTlynn 2002). CoßpeMeHHbie MeTOflbi npo- MbinuieHHoro ocßoeHna jiecHbix pecypcoß HaHOCMT orpoMHbrä ymepö KaK 6nojiornHecKOMy pa3Hooöpa3HK) TaK h HaMHHaa c 1960-bix rr. cnocoö cnnoniHbix jiecoceiHbix pyöoK npeßajiHpoßan b Pocchh. nofloÖHbrä cnocoö, ocoöeHHO Ha rpamine c 30hoh jiecoTyH/ipbi, a HHor/ja b ee npe flenax, Hpe3BbiHaHHO onaceH ajih 3KOCHCTeMbi, nocKOJibKy CKopocTb BoccTa- 158 HOBJieHHa pacTMTejibHOCTH b ycjiOßHax BeHHOH MepjjiOTbi h pacnpocTpaHeHHS TepMOKapcTa Kpaime 3aMe/yieHa. Apeajibi BbipyöoK öbiCTpo 3a6ojiaHHßaioTCfl, h 3tot npouecc iipaKiHMCCKH ncBOiMO/Kiio mie/uiH'ib. B pe3yjibTaTe, nojl 803/ieHCTBneM npoMbiuuieHHoro ocßoeHHa jiecHbix pecypcoß nponcxoflHT o6e3JiecHßaHHe ceßepHbix öopeanbHbix Jiecoß h rpamma 30Hbi jrecoTyHjipbi CABHraeTCH k iory, b iacvKiiyio 30Hy. TpaHc6opMauna ceBepHOH qacTH Taeac- HOH 3QHbI B aHTPOnOreHHVIO JieCOTYH/IPV B PoCCHH HaeT nOUHbIM XOfIOM. He cymecTßyeT CTaTHCTHKH nenocpcacißCHHO Kacaromeiica Jiecoß 30Hbi Jieco- TyHApbi. TeM He MeHee tot 4>aKT, hto Jieco3aroTOßHTejibHbie paöo- Tbi Syayr h flajiee pacumpHTboi, H3 Tae)KHOH 30Hbi b necoTyHfl py, rae eme cymecTßytOT AOCTaTOHHo öojibuiHe «ocTpoßa» CTapoßo3pacHbix npmyHflpoßbix Jiecoß. nofloÖHoe jieco3aroTOßHTejibHbix paöoT b 30Hy jiecoTyHflpbi b ochobhom öyzjeT KacaTbca EBponencKOH nacra Pocchh, äo cmx nop cymecTßyeT okojto 13 % Bcex CTapoßo3pacTHbix Jiecoß 6ope anbHoro iiosca (Aksenov et ai. 1999). PoMaHTHHecKoe npejicTaßJieHHe o cymecTBOBaHHH SecKpaHHHX npocTopoß Tae>KHbix Jiecoß noKpbmaiomHX npocTpaHCTBO Pocchh He o neM npeAynpeAHJTH HccjreaoßaTejiH Ha npe3eHTaHHH nepßoro aTJiaca Jiecoß cTpaHbi (o'Flynn 2002). B araace npeacTaßJieHa HH(j)opMauH>i 06 ocTaßuinxca Maccn- Bax AeBCTBeHHbix Jiecoß, ocHOBaHHaa Ha Tbicane KOCMHnecKHx CHHMKax h COTHH Ha3eMHbIX OÖCJieAOBaHHH B OTflajieHHblX HaCTHX CTpaHbi. J^eBCTBeHHbIH jiec onpeflenaeTCH KaK MaccHß njiomaflbio He MeHee 50 000 reicrapoß, He hc nbiTaßHiHH 3aMeTHoro aHTponoreHHoro /l,CßcnseiiiibiM jiec cjiy >kht MecTooÖHTaHHeM MHorHx BHAOB ([tjiopbi h rjiaynbi h uenoro p>i;ia cooö meciß. TonbKO 9 % jiecHOH ri:iouia;jH Hbpoiicmckoh TeppHTopHH Pocchh He HcnbiTajia 3aMeTHoro xo3HHCTBeHHoro h aHTponoreHHoro BO3fIeMcTBHH. Co rjracHO aBTopoB BbnueyiKapoß, Jieco3aroTOßHTejib- Hbix paöoT h ropHO,no6bißaK>meH npoMbiuiJieHHOCTH b coKpameHHH AeBCTBeHHbix Jiecoß (O 1 Flynn 2002). npoMbiujjieHHoe ocßoeHHe JiecHbix pecypcoß CTaHOBHTca Bce öojiee n öojiee BbiroflHon oTpacjibK) 3KOHOMH4ecKOH fIeHTejibHOCTH Ha Pocchhckom Ceßepe H npoH3BOjicTBO ApeßecHHbi yßejiHHHßaeTca. TojibKo b TeneHHe oflHoro jieco3aroTOßHTejibHoro ro,iia (1998-1999 rr.), oöteM npoH3Bo,ncTßa aenoßOH ApeßecHHbi yßejiHHHJica Ha 20-30 %. B ApxaHrejibCKOH, HpKyrcKOH oöJiacTax h pecnyöjiHKe Komh, HMeromnx Bbixoa k MopaM n, cooTBeTCTBeHHo, JiyHiime BO3MO>KHOCTH 3KCnOpTa, BbinyCK fIeJIOBOH flpeßeCHHbl yBejIHHHJICH Ha 25-30 % (floKJiaji, o ..., 2000). B paöoTe «riocjie/iHHe H 3 hto «öoubmaa nacTb apeßecHHbi, aoöbißaeMOH b HacToamee BpeMH b CTapo- Bo3pacTHbix Jiecax h aa>Ke, b jiecax (b 30He necoTyHflpbi) Eb poneficKOH näe™ Pocchh 3Kcnop™pyeTca b 3anaAHy«3 EBpony, ocoöeHHo b ceßepHbie CTpaHbi. HMnopTepbi h noTpeÖHTejin ,ioji>kii pas/ie.iflTb BMeCTe C pOCCHHCKHMH JieCOnpOMbIHJJieHHHKaMH H a/JMHHHCTpaHHHMH OTBeT CTBeHHOCTb 3a yHHHTo>KeHHe b Pocchh nocjieflHHx cTopoßo3pacTHbix Jiecoß. lIo3TOMy h 3am,HTa ocTaßuinxca MaccHBOB CTapoßo3pacTHbix Jiecoß b Ebpo 159 neficKOH HacTH Pocchh TaK»e AOJi>KHa bohth b ccj)epy m coßMecraofi otbct- CTBeHHOCTH». (Aksenov et ai. 1999). 3KOJiorHHeKaa opraHH3auHa rpnmmc hto 3anaflHoeßponeHCKHe KOMnaHHH nonynaioT xopomyio npnöbuib ot HMnopTa 30 mjih. Kyö. m apeßecHHbi H 3 Pocchh. Ho ohh Majio 3a6oTaTca 06 3KOJiornHecKHx no cueflCTßHHx jieco3aroTOßHTejibHbix paöoT b Pocchh, xota HeoöxoAHMbi CTaH /japTbi ycneuiHO npnMeHHioTCfl b hx coöctbchhmx CTpaHax (Europe's Timber ... 2002). «HeMUbi npoHßJiaiOT öojibinyio 03a6oneHHOCTb no noBO/iy coctoh hhh OKpy>KatomeH cpe/ibi y ceöa AOMa; xopomo öbuio 6bi, ecjiH ohh CMorjin 3KCnopTHpOB3Tb ee B PoCCHK)» - TOBOpHT CTe(|)aH XroeTHep, BOJIOHTep rpHH nnca H 3 BepjiHHa. Oh npHMKHyji kl 5 pocchhckhm, hcmchkhm h 3bctphhckhm aKTHBHCTaM, KOTopbie 15 MapTa 2002 ro.aa ycTponjiH aKUHK) npoTecTa okojio nocojibCTßa repMamiH b Mockbc h okojio flepeßonepepaöaTbmaiouiHx npe/i -npHHTHH b ApxaHrejibCKe. PoccnncKHe 3Kcnepra TaK>Ke 03a6oneHbi abohhm mh c raii;mp ra\in Tex CTpaH, KOTopbie iio.iyiiaioi npnöbuib Ha ochobc 3Kcnjiya- TaiiHH npnpoflHbix pecypcoß b Pocchh. «3ana,n oöhhho paccMaipHßaeT Poc chk) b KaiecTße HCTOHHHKa nocTynneHHa cwpba, He ayMaa o öyaymeM, h TOJibKO /KC.iaM öbiCTpo pa3ÖoraTeTb Ha ocBoeHHH npnpo/uibix ooraiciß Poc chh» - roBopHT AjieKcen cobbthhk öbißinero npe3H,qeHTa Pocchh Bopnca EjibHHHa. Гринпис считает, что администрация Архангельской области «следует безответственной и краткосрочной политике, не обращая внимания на хищнические методы рубки деревьев в этих уникальных лесах». Кроме того, в соответствии с данными экологов, местная администрация прекра тила создание проектируемых новых национальных парков, таких как «Онежское поморье и «Беломорско-Кулойское плато». В результате, ста рые ельники заменяются вторичными березово-осиновыми порослями и население, так называемых «лесных деревень», остается без необходимо го для жизни и традиционной хозяйственной деятельности леса и без на дежды на будущее» (Greenpeace Protests ... 2002). Местный житель, лес ник Анатолий Спицин, который содержит свою жену и одного ребенка на ежемесячную зарплату в 2500 рублей (около 85 американских долларов), считает, что если компании будут продолжать рубку старовозрастных лесов, то «они должны будут куда-нибудь переселить нас всех, потому что лес дает нам то, что позволяет жить» (Europe's Timber .. .2002). Учитывая то, что леса и пастбища зоны лесотундры и северной тайги ис пользуются коренными народами в традиционных видах хозяйственной деятельности, таких как охота, собирательство и оленеводство, дальней шая вырубка лесов нанесет значительный вред традиционному образу жизни этих народов. Экологи сейчас находятся в поиске практических решений, которые бы удовлетворяли и промышленников и коренных жи телей. К настоящему времени, разработано предложение по поддержке лесоуправленческих структур и компаний в приобретении сертификата Лесного Попечительского Совета - ЛПС - (FSC), который в всем мире является признанным свидетельством экологически приемлемого способа лесопользования. В соответствие с сертификацией по ЛПС, не допуска- 160 IOTCH cnjiouiHbie necoceHHbie pyÖKH, a npoH3BOflHTca BbiöopoHHaa pyÖKa Jie cob c yneTOM Bo3pacTa flepeßbeß, KOTopbie BbipyöaiOTCH b nepßyro ouepeflb. TaKHM o6pa3oM, coxpaHaiOTca öojree MOJiOAbie .qepeßb», KOTopbie uepe3 30 jieT MoryT aaTb xopomyio B 6naropoflHOM cnaceHHfl jieco- TyHflpOßblX JieCOB B POCCHH, 3KO.TIOrH TaK)Ke HafleiOTCH Ha OTBeTCTBeHHOCTb noTpeÖHTejiefi apeßecHHbi b cTpaHax 3ana,na. MHorae KOMnaHHH y>Ke Hauu- HaioT HHTepecoßaTbca hctohhhkom nocTynjreHHsi a TaK>Ke, KaKHM cnocoöoM oHa Bbipyöajiacb, h Bce öojibuuee mhcjio noTpeÖHTejreu xotat 3aKy naTb TOJIbKO npOfIyKUHK) npOH3Be,qeHHyK) B COOTBeTCTBHH C CepTH(})HKaTOM jinc. HeMeuKaa KOMnaHHH HDM-Holz-Dammers H 3 perHOHa PeuHa hbjihctch nno- HepoM npHMeHeHHH cncTeMbi JinC b Pocchh, ee b ynpaßjieHHe Tpex HeöojibiiiHX Jieco3aroTOßHTenbHbix KOMnaHHH, KOTopbie OHa Kyiin.na b ApxaH i c.ibCKC, 75 % iipo;iyKHHH 'mix komi munii 9KCiiopinpyeiCM (Europe's Timber ...2002). llpoöjieMbi QjieHeßoacTßa. B otjthhhh ot jiecHoro xo3»HCTBa, ojieHeßoacTßo HBJiaeTCH CTapeHiiiHM h Hanöojiee >KH3HeHHo Ba>KHbiM bhuom fleaTejibHocra KopeHHbix HapoflOß Ceßepa Pocchh. oneHeBOfICTBO oneHb He 3Ha4HTejibHyK) HacTb HauHOHajibHoro b achokhom Bbipa>KeHHH, ho ao chx nop ocTaeTca Ba>KHOH OTpacjibio 3KOHOMHKH h oöpa3a >kh3hh MHornx KopeHHbix HapoflOß, Hacejnuomux Tynnpoßyio h necoTyH/ipo- ByK) 30HbI. B 1998 r. HHCJieHHOCTb /jOMauiHHx ojieHen cocTaßJiajia jiHuib nojiOßHHy ot ypoBHH 1990 r. (FIpoeKT...2OOO; o couHajibHO-SKOHOMnuecKOM ...2000). OflHa H 3 rjiaßHbix npHHHH coKpameHna hhcjichhocth oneHbero no rojiOßb» - flerpa/jauHH 3hmhhx ojieHbnx nacTÖnm, BCJieACTBue o6e3JiecHBaHHH jiecoryn;ipbi b pe3yjibTaTe JiecoiaroTOßHTc.ibHbix paöoT h npoMbiuiJieHHoro 3arpH3HeHHH. TpafIHHHOHHbIH OÖpa3 )KH3HH MaJIOHHCJieHHbIX HapOflOß Ceßepa OCHOBaH Ha TeCHOH CBA3H c npHpOflOH, H OCHOBbIBaeTCa Ha 4epe,HOBaHHH Bbl naca ojieHen JieTOM b TyHflpe h ropax, a 3hmoh - b necoTyHflpe. CocToaHHe 3hmhhx nacTÖnm HrpaeT orpoMHyro pojib nm ojieHeßOflCTßa. B TeueHHH aoji- TOH apKTHHeCKOH 3HMbI COCTOJIHHe H HHCJieHHOCTb OJieHeH 3aBHCHT OT HX 803- mo>khocth aocTaßaTb H3-nofl CHera JIHUiaHHHK, hx ocHOßHyio nHLuy. OceHbio oiieHH HaHHHaiOT nepeKoneßbißaTb Ha o6jieceHHbie ynacTKH, CHemibiH no- KpOB MHTHe, H OJieHH MOryT ero npoÖHTb H fIOCTaTb JIHUiaHHHK. JIHHiaHHHKH - 3nH(|)HTbi, napa3HTHpyioiHHe Ha CTapbix ,iepeisbHx, ciiy>Kar pe3epßHbiM Kop- MOM, eCJIH OJieHH He MOryT fIOCTaTb OÖbIHHbIH H33eMHbIH JIHUiaHHHK H3-3a Jie flHHOH KopKH, hjih moiuhoto CHe>KHoro noKpoßa. JluuiaiiHHKH o6ecneHHßaioT no3BOJHnoiuyio ojieHio no/wepacHßaTb nocToaHHyio TeMnepaTypy Tejia bo BpeMH xojioahoh 3hmh (Bnacoßa, Bojikob 2001). npHHHHa yMeHbuieHHa HHCJieHHOcra ojreHeu - nepeßbinac Ha nacTÖH u;ax TyHApbi h JiecoTyHflpbi. KpoMe Toro, Bce öojiburue njiomaflH 3hmhhx na ct6hiu BbixoflaT H 3 oöpameHHH He(|)Te- h ra3ofloöbiHH. Bce 3to npuBOAHT k yBejiHHeHHK) npecca Ha TyHflpoßbie h jiecoTyHflpoßbie skochctc- Mbi, h TaKHM oöpa3oM yBejiHHHBaeT BO3MO)KHOCTb hx nepeßbinaca oneHHMu. B 161 pe3yjibTaTe nepeßbinaca, Ha 3HaHHTejibHbix njioiua/wx skochctcmm nonHO CTbK) HanpHMep, Ha nojiyocTpoße flMaji ojieHbe norojiOßbe npeßbiuiaeT BO3MO>KHyK) eMKOCTb nacTÖum b 1,5 pa3a, okojio 70 % nacTÖHiu 3Aecb OTHOC3T k nacTÖHiyaM HH3IUHX KaTeropHH (IlpMpoAa fliwajia 1995). Ile peßbinac Ha oneHbHx nacTÖHiuax oöhmho BeaeT k o6e3JiecHßaHHK> JiecoTyHji pbl, H TJiaBHblM OÖpa3OM, K BbITanTbIBaHHK) OJieHHMH KyCTapHHMKOB. B pe 3yjibTaTe, [pannua jiecoTyH/ipbi bo MHornx paiioHax k loi y (Arc tic Flora and Fauna 2000). CaMaa nacyinnaa npo6neMa cemac - peryjrapoßa- HHe Bbinaca h paunoHajibHoe Hcnojib3oßaHHe nacTÖHiuHbix 3eMejib. B Mae 2001 r npHHHT 33K0H «O TeppHTOpHflX TpafIHHHOHHOrO FIpHpOAOnOJIb3OBa- HHa» KOTopbrä npH3BaH 3aiuHiH'rb rpa/iMHMOHHbie ojieHbH nacrÖHina ot npo- MbIUIJieHHOH 3KCnaHCHH. BpaKOHbepcTßO, CBH3aHHoe c oÖHHiuaHHeM MecTHoro Hace jieHHH, b HaniH ahh npeßpamaeTca b moiuhmh cou,HajibHO-3KOHOMHHecKHH 4>aKTop BeaymHH k aerpa/iauHH npHpo/jHoii cpe/ibi, 3kochctcm h yMeHbme hhk) 6nopa3Hoo6pa iHM b .rrecoTyn/ipe. KaK OTMenaeTCH b PeiKHBaHHSI 3TOTO >KHBOTHOI O KaK BHfla, B TO BpCMH KaK ,0,0 1991 TOfla Ha 3TOH TeppHTopHH oÖHTano CBbiine 5000 oneHefi. BpaKOHbepbi H 3 ne peÖHJlH Bcex fIHKHX OJieHeH B OAHOM H 3 paHOHOB HX OÖHTaHH» Ha pOCCHHCKOM JJajlbHeM BoCTOKe, H BHHOBaTbI B 3TOM pOCCHHCKHe BOeHHbie», - KOHCTaTHpO- Baji Ohji. Oh TaioKe o6t>hchhji sto TeM, hto Ha öojibiueö Mac i n ceßepa KaM naTKH AHCJiouHpoßaHbi poccHHCKHe CTpaTernnecKHe paKerabie BOHCKa. Flocjie pacnaja CCCP h yxyauieHHH cnaö/iceimji apMHH b 1990-bix ro,aax, ()jmnanco- Bbie npOQjlCMbl BbIHyfIHJIH MeCTHOe KOMail/lOßailHe BbIHCKHBaTb BO3MO)KHOCTH HaÖTH nponHTaHHe. B pciyjibiare, b stom panoHe ojieHbe norojiOßbe CTano 6biCTpo coKpamaibCM. «Ohh npHKa3bißanH OTCTpeJiHBaTb ojieHeö, coji flaT 6biJio He iie\i KopMHTb», - /ioöaßHJi Ohji k BbiuiecKa3aHHOMy. Oh öbiJi cbh jCTe.ieM opaKOHbepcTßa, Haxo/iHjrcfl b 3tom pafione HecKOJibKO jieT Ha saa (Hungry Russian ... 2002). Bq3MO>KHOCTH fIJIH pa3BMTH3 3eMJiejeJlH}l H >KHBOTHOBOJCTBa. XOTH KOKHafl rpaHHua 30Hbi jiecoTyH/ipbi HBJiaeTCfl rpaHHuefi 30Hbi ycTOH HHBoro 3eMJieflejiHa b otkpmtom rpyHTe, JioKajibHoe h HHTpa3oHajibHoe (BflOJib pcHHbix 3eMJie,zjejiHe nojiyoTKpbiToro rpyHTa bo3mo>kho h k ceßepy, b npe/iejiax Bcefi 3oHbi. Hcnojib3oßaHHe pecypcoß b jiecoTyH/ipoBOH 30He ajih 3eMJieflejiHa h mojiohhoto CTB3 H HX BJIHHHHe Ha 3KOCHCTeMbI CTaHOBHTCK 3aMeTHbIM JIHIUb B OTfleJlbHblX MecTax. Apeanbi, HcnoJib3yeMbie b 3eMJie;tejiHH, cocpe;ioroL iem>i raaßHbiM 06- pa3OM BOKpyr ropoflOß h oxnejibHbix nocejiKOß 30Hbi jiecoTyn;ipi>i h upc;uia 3HaneHbi AJia CHa6)KeHHH npojjoßOJibCTßHeM HacejieHHH, 3aHHToro b npoMbiui jieHHOCTH, jieco3aroTOßKax hjih TpaHcnopTe. TepMOKapcTOßaa 3po3na Hauöo jiee cHJibHO pa3BHTa hmchho 3flecb h cocTaßjiaeT ot 10 ao 40 % njioiuaflH cejibxo3yroflHH (Tocy;iapcißeHHbiH aoKJum... 1999). 162 OÖHHmaHHe HacejieHHfl Pocchhckoto Ceßepa npHße.no k 3HaHHTejit>HOMy yße- UHHeHHK) (JiejieM. B HeKOTopbix cjiywaax 3Ta TeH/ieHUHfI npHBOfIHT k flajibHenineMy OÖCSJICCHBaiIHK) JTCCOTyH;ipOBOH 30HbI, a T3K)Ke K pa3BHTHK) TepMOKapCTOBOH 3pO3HH H 3a6oJiaHHBaHHK> (foCyflapCTßeHHblH flOKJia/1... 1999 ). Bonee HHTeHCHBHoe pa3BHTHe 3eMjie,a,ejiHa b JiecoTynapoßOH 30He oneHb npo- ÖJieMaTHHHO. HeoöxoflHMO ocymeHHe iiohb, ocoöeHHO b EBponeiicKOH nac™ b cjiynaax, ecJiH hx Bjia>KHOCTb oneHb Ben h Ka, a 3a6ojia4HßaHne- rjiaßHbifi 4>aKTop, or pa[iHHHiiäK)LUHH pa3BHTHe 3eMJieflejiHH. ripH npoße;iennn ;ipeHa>Ka BO3HHKaeT npoöJieMa, CBMsaiinaM c TeM, hto iiohth Bce apeHaacHbie tcxiiojio thh pa3paöoTaHbi ana yMepeHHbix mnpoT h He paöoTaioT b ceßepHbix 30Hax. B TO )Ke BpeMH, B ÖOJiee KOHTHHeHTajIbHOM KJIMMaTe, HanpHMep B iIKyTHH, Hp pHrauHa HeoöxoaHMa. TeM He MeHee, HppHrauHH k 3acojieHHK> noHB, a TaiOKe K nOAHSTHK) ypOBHS BeHHOH Mep3JloTbl H BbIXOJia>KHBaHHK) nO4B. AipojiecoMejiHopauMfl - Hanöojiee noJie3Hbm h r )KOJiorn4CCKH npneMJieMbi cnocoö MejiHopauHH sthx noHB. CpoK OKynaeMOCTH 3aTpaT Ha CO3/ianMe jie conojioc cocTaßJiaeT nopaflKa 5-7 jieT. Ha iIManbCKOH onbiTHOH CTaHHHH 6buio ycTaHOBjieHO, hto 100 MeTpoß jieconojiocbi H 3 200 aepeßbeß yBejiHHHBaeT ypo/icati Kaproc))eji« Ha 2-4 tohhm Ha reKTap no cpaßHeHHio c ypo>KaeM KapTO (J)ejiH Ha OTKpbiTOM nojie (Cnc"reMa Rejiennsi cejibCKoro...l969). 3to, npeacae Bcero, 3(J)(j)eKTa CHero3a,aep>KaHHfl h 3amHTbi ot BeTpa c noMombK) Aepeßbeß, yjiyniueHHfl 80/iHO-Bo3AyuiHoro pe>KHMa noHB h yßejimeHHa hx lIJIO/IOpO/tHfl. Проблемы самообеспечения продовольствием и препятствия для развития сельского хозяйства . Объемы сельхозпроизводства на Российском Севере, включая зону лесотундры, продолжали снижаться все 1990-е го ды, и сейчас этот регион стал полностью зависеть от ввоза продовольст вия из других регионов России и из других стран. Это положение, явно негативное с точки зрения устойчивого развития региона, осложняется и тем, что самообеспечение населения региона продовольствием находится на очень низком уровне, хотя мясо оленей- основа рациона питания мно гих малочисленных коренных народов, сейчас экспортируется из региона на Запад. Большое количество продовольствия и медикаментов поступает сейчас из Северных стран, и Евросоюза. Возможные последствия изменения климата для хозяйственной деятель ности человека и его здоровья в зоне лесотундры пока неочевидны и трудно предсказуемы. В настоящее время этому вопросу посвящены мно гие международные проекты, в частности проект «Оценка Воздействия Климата в Арктике» (ACIA) и проект ЮНЕП Грид/Арендал «Здоровье и состояние окружающей среды в регионах по сообщениям коренных наро дов Арктики». В течение 1990-ых гг. были сделаны чрезвычайно оптимистические про гнозы по поводу воздействия изменения климата на увеличение ресурсов 163 apeßecHHbi b 30Hax TaHrH h jiecoxyHzipbi Pocchh. B paMKax rocy;iapcTßen hoh HayHHO-HCCJiefIOBaTejibCKOH FlporpaMMbi P (1997) b flOKJta;ie «rjio öajibHbie Himchchhh JlblH pafl nporHo3oß H3MeHeHHSI KJIHMaTa. OfIHH H 3 HHX yKa3blßan Ha to, hto HaÖJiiOflaeMoe noTenjieHHe KJIHMaTa cymecTßeHHO noßbicmr oöteM pecypcoß apeßecHHbi b pafioHe floMopcKHx HH3MeHHOCTeH, k ceßepy ot HapbHH-Mapa, Haxo;iHinHxca b 30He jiecoTyHapa b6jih3h ot TyHflpoßofi 30Hbi). B iiacToainee BpeMH 3anacbi apeßecHHbi b 3tom panone jiecmyH/ipbi KpaHHe He3HaHHTejib- Hbi, TaK KaK Jieca BCTpenaioTca tojibko Ha CKjroHax knkhoh 3Kcno3HUHH h ot- LiacTH b KpynHbix aojiHHax. B pe3yjibTaTe »e nporHo3HpyeMoro noTenjieHHH (Ha 1.5° C b TeneHHH 50 jict), oöJieceHHio noflßeprHyTca Bce ckjiohh h aojih- Hbi h aaace ynacTKH Ha Boaopa3flejiax. OcoöeHHo CHjibHoe oöjiecemie h yße jiHneHHe 3anaca jipcßecHHbi nporHo3npoßajiocb fljia ckjiohob k»khoh 3Kcno 3HHHH, b HacTOMmee Bp e.m a saHSTbix jiecoTyHflpoßofi pacTHTejibHOCTbio. Tlpo- THo3HpoßajloCb, HTO llJlOlHaflb ÖOJIOT Ha IIOMOpCKHX HH3MeHHOCTHX 3a 50 JieT coKpaTHTca oojiee ne m b 2.5 pa3a (Tocy;iapcrßeHHa>i HayMHo-TexuHHecKaa nporpaMMa...l997). B 3thx ohthmhcthhcckhx nporHo3ax He yHHTbißanocb BJiHSHHe Ha pocT aepeßbeß yMeHbmeHHH BjiaacHoc™, yße;iH LienH>i HaceKOMbix- BpeflHTejieH, noßbiuieHHH Bepojrraoc™ bo3hhkhobchhsi KpynHbix no>Kapoß, a TatoKC, Bcex CBjnaHHbix c raniiMeM bcmhoh Mep3JiOTbi. Bce 3th HBJieHHH MOryT cymecTßeHHO IIOBJffIHTb Ha yCJIOBHH OÖHTaHH» H BO3OÖHOBJie- HHH fIpeBeCHOH paCTHTejIbHOCTH. I~IO3TOMy TpyflHO npOrHO3HpOBaTb C BblCO koh CTeneHbK) aociobcphocth, hto noTenjieHHe KJIHMaTa b 30He JiecoTyHflpbi npHßeaeT k npo/ißHaceHHio b ceßepHbie mnpoTbi rpaHHHbi jiecoß. K TOMy »e, neo6xo;iHMO ynHTbißaib HeraTHßHbrä xapaKTep oiiHcanHbix Bbime aHTpono reHHbix BO3ACHCTBHH Ha jieca, KOTopbie cvißHrafOT Ha lor rpaHHuy JiecoTyn/i --pOBOH 30HbI. He;ib3» oöohth BHHMaHHeM h /ipyrofi BaacHbin ripHpo/iHo-aHTponoreHHbiH (|)aKTop aerpaaauHH Jiecoß h nacrGmn 30Hbi JiecoTyH/ipbi - no>Kapbi, nacTOTa BO3HHKHOBCHHH KOTOpbIX H MaCIHTaÖ Bo3paCTaioT. B HaCTOfILUCC BpCMH TOJIbKO b Tiomchh, paftoHe, npnpoflHbie pecypcbi KOToporo b Hacroamee BpeM» hh- TeHCHBHO OCBaHB3K)TCH, OKOJIO 1.5 MJIH. ra OJieHbHX liaCIÖHIH yHHHTOaceHO no>KapaMH. H3 npHHHH ycHJieHH» no>Kapoß b 30He JiecoTyHjpbi MoaceT TaKace OKa3aTbca noTenjieHHe KJiHMara. BnoJiHe bo3momcho, hto HSMeiienne laiHMaTa MoaceT yBejiHHHTb KaK nacTOTy boshhkhobchhji noacapoß, TaK h hx pacnpocTpaHeHH». ripH BHeapeHHH CHCTeMbI 3KOCHCTeMHOfO ynpaßJieHHH HeOÖXOfIHMO npHHH- MaTb BO BHHMaHHe, HTO llO>Kapbl BbHIOJIHJHOT Ba>KHyK) (J)yHKHHOHajIbHyiO pojib b npouecce pereHepauHH Jiecoß, nocKonbKy oöecneHHßaioT nocryoneHHe b noHBy neo6xo;iHMbix eK MHHepanbHbix bghicctb, a TaK>Ke ocßo6o/K;iaior ee ot opraHHHecKoro ona;ia h jiecHOH paciHiejibHOH iio;ictmjikm, KOTopbie b cne- HH(J)HHeCKHX II pH p o/l Ho-K.TH MarH L l eCK H X yCJIOBHHX JieCOTyH/ipbl, nperiHTCTßy k)t pocTy aepeßbeß (Ceabix 1996). TaK>Ke bo3mo>kho, mto cnaa b ojieHeßOflCT- Be MOÄeT npHBecTH k npoueccaM, naryÖHO BJinaiomHM Ha npouecc bo3o6hob- JieHHH JiecHOH paCTHTejIbHOCTH, nOCKOJIbKy OJieHH BblTanTblßaHHeM cnocoöci- ByiOT OHHineiiHK) noHßbi ot pacTHTejibHoro ona/ia, yjiynmaa ycjiOBHH pocTa ajia HOBbix aepeßbeß. Kor/ia paciHiejn.iibiM ona;i aKKyMyjiHpyerca b oojibujiix 164 KOJiHHecTBax, oh HapymaeT BOfIHO-Tenjioßofi pe»HM noHßbi h cnocoöcTßyeT ee 3a6ojiaHHBaHHK) h, cooTBeTCTBeHHO, coKpameHHK) jiecoß b 30He jiecoTyHfl pbi. 4 Перспективы экосистемного управления в отношении вос становления и охраны природной среды 3KOCHCTeMHoe ynpaßjieHHe mojkct CTaTb hobmm HHCTpyMeHTOM, HHTerpH pyiomHM MHorae paccMOTpeHHbie Bbirne 3aflann ycTOHHHBoro pa3BHTna 30Hbi jiecoTyH;tpi>i. npH pa3paöoTKe CTpaTerHH 3KOCHCTeMHoro ynpaßJieHH», Heo6- XOfIHMO npHHHM3Tb BO BHHMaHHe He TOJIbKO UeJIH KOHCepBaiIHH (jaiHHTbl HJIH oxpaHbi) npHpo;ibi, ho h coHeraib sth 3a;iaLin c hobmmh bo3mo>khocthmh yc- TOHHHBOrO pa3BHTHH Tpa;iML[HOHHOH fIeHTeHbHOCTH CeßepHblX HapOflOß, paBHO KaK BHejipcHHeM ajibTepHaTHßHbix npHpoflOOxpaHHbix TexHOJiorHH h bh;iob /ICfITCJIbHOCTH. HeOÖXOfIHMO OCymeCTBHTb CfIBHT OT KOHUeiHJHH OXpaHbl H sainMTbi npnpoflbi h nepcHTH k ocymecTßJieHHio CTpaTerHH BoccraiiOßjienna h BOCnpOH3BOfICTBa npnpoflbl C HCnOJIb3OBaHHeM HHCTpyMeHTOB 3KOCHCTeMHOrO ynpaßJieHHH. B CTpaTerHH BOcnpoH3BoacTßa iipupo/ibi, Mepbi no ee oxpaHe jiojDKHbi npn- MeHHTbCfI TOJIbKO KaK O/IHH H 3 pbIHarOB HHCipyMeilTapHM 3KOCHCTeMHOrO yripaßJieHHJi. B HeKOTopbix panonax 30Hbi hcoöxojhmo (})opMH pOB3HHe CTpOrO OXpaHfleMblX TeppHTOpHH. npH BblfleJieHHH flaHHblX TeppHTO pHH Ba>KHO yHHTbIBaTb HX 3KOJIOrHHeCKyK> HeHHOCTb H oöihhh ypoßeHb fle ipa;iauHH h 3arpa3HeHHH. I IpHopnieibi ;ijih BbifleJieHHS CTporo oxpaHMCMbix TeppHTOpHH He onpe/iejieHbi. B stom OTHomeHHH HayHHoe cooömecTßO aOJI>KHO OÖpaTHTb BHHMaHHe JIHH npHHHMaiOIHHX peUieHHe Ha OCOÖyK) 3Ha- HHMOCTb CO3aaHHH CeTH OCOÖO OXpaHflöMblX TeppHTOpHH CTpOrO pe>KHMa B 30He jrecoryii/ipbi. B 30He JiecoTyHflpbi fljia co3flaHHH npnpoaooxpaHHbix Tep pHTopHH CTporo pe>KHMa ocoöoe BHHMaHHe fIOJi>KHO öbiTb o6pameHo Ha eine COXpaiIHBIiJHCCH MaCCHBbI CTapOBO3paCTHbIX ;ieBCIBCHHbIX JieCOB, HC3Iia iIH- TenbHbie 3anacbi apeßecHHbi b KOTopbix He aojihchm npeflCTaBJMTb oco6oro HHTepeca. B paMKax npHHSToro b 2001 3aKOHa «O TeppHTopnax Tpa;innnoHHoro npHpoflonojib3oßaHH» KopeHHbix napo;iOß Ceßepa, Chöhph h ,Z],ajibHero Boc- TOKa», npn pa3JiHHHbix cnocoöax h pe>KHMax opi annsauHH npnpoflooxpaHHbix TeppHTOpHH MOryT OblTb 3aKOHOfIaTeJIbHO o(|)opMJieHbl TeppHTOpHH rpaiIHUH OHHOrO npHpOaOnOJlb3oßaHHa KopeHHbix MajIOMHCJieHHbIX HapOflOß. OfIHHM H 3 BO3MOSKHbIX CIIOCOÖOB peaJ!H3aUHH npaß KopeHHbix HapOJIOB Ha HCnOJlb3oßa- HHe, KOHTpOJIb H OXpaHy npHpOflHblX pecypCOß TeppHTOpHH HX TpafIHUHOHHO ro paccejieHHa h xo3hhctbchhoh ;iearejibHocTH MO>KeT CTaTb raK>Ke CO3/iaHHe 3THO3KOJiorHHecKoro pecfiyrnyMa (y6e>KHma) hjih, apyrnMH cjioßaMH, ocoöo OXpaHHeMOH npnpOflHOH 30HbI C peMCHMOM, nO3BOJIHK)UIHM HCnOJIb3OBaTb TeppHTopHio b TpaAHHHOHHOH fleaTejibHOCTH MecTHbiM KopeHHbiM HacejieHH eM. 3to, no cymecTßy, enocoö orpa>KfleHHa ot npoMbiuiJieHHoro h KOMMepne- CKOrO BTOp>[Ke [io;ißepiaK)Tca hckopchchhio b OTcyTCTBHM no,n;iep>KKH co CTopoHbi rocyaap- CTB3. Floaflep>KKa nOfIOÖHbIX HHMU,HaTMB npOBOfIHMbIX KOpeHHbIMH HapOflaMH Hpe3Bbl4aHHo Ba>KHa /UI 51 MCllOjlbJOßailMfl HHCTpyMCIIiapHH 3KOCHCTeMHOrO ynpaßjieHHa b cTpaTeran BOCCTaHOBJieHHa h oxpaHbi npHpo/ibi.. HaKoruieH- HbiH b TeneHHe hctophh onbiT TpaflHUHOHHoro Hepa3pyuiHTejibHoro npwpo flonojib3oßaHH« KopeHHbix y>iKHbic H 3 hhx: 1. Bceo6in.ee npeßajinpoßaHHe KOHnenuun 3KOHOMnnecKoro pocTa (a He pa3- bhtha), opneHTHpoßaHHoii Ha pecypconoTpeGjiarouiHe npon3BOflCTßa h HrHOpHpyiOIIIHe KOHHenUHH yCTOHHHBOH 3KOHOMHKH. 2. UrHopHpoßaHHe y>Ke cymecTßyioiuHx npoeKTOB ajibTepHaraßHbix hctoh hhkob 3HeprocHa6>KeHHs) (cHaöaceHHe MecTHbix )KHTejieö öajuiOHHbiM ra 30M, CTpOHTeJTbCTBO MaJlblX Ha ÖbICTpblX ropHbix peKaX HJIH rOpHHHX KJIIO LiaX, BCipMIIbIX 3JieKTpOCTaHUHH), H OTCyTCTBHe HHHOBaHHOHHbIX TeXHOJIOrHHeCKHX pa3paÖOTOK B 3THX OÖJiaCTHX. 3. YcHJiHßaioiuHeca oöteMbi SKCiuiyaranHH necjne-ra'iOßbix MecTopoicaeHMM 6e3 CymeCTBeHHblX yjiyHLUeHHH COUHajIbHO-3KOHOMHHeCKHX yCJIOBHH. 4. FlpeHe6pe>KeHHe KOMnaHHHMH, BKjnonaa HHOCTpaHHbie, Me>KflyHapoAHbiMH SKOJIOrHHeCKHMH CTatl/iapTaVIM B CBOeÖ /IOITCMbHOCTH. OpHCinnpOßaHHe Ha HaHÖojiee BapnaHT ocßoeHna Heap 3a cneT skohomhh Ha 3ko jiorHHecKHx H3xicp>KKax h no3TOMy Ha HecoßepmeHHbie TexHOJiornn. 5. HeiaKomiaa peajiH3auHa npoeKTOB npoMbiraneHHoro ocbochhh, He npo meflUJHX KB3JIH(J)HUHpOBaHHyK) OUeHKy BO3JieiICTBHH Ha COCTOHHHe OKpy ■/KafomeH cpeflbi, noHHVKenna npHpo/jooxpaHHoro CTaiyca TeppnTopun, Ha KOTopbix npeanoiiaraeTca xosaHCTBCHHoe ocßoeHne. 3aHH>KeHHe HaHOCH- Moro ymepöa. 6. Mcnojib3oßaHHe MecTHbiMH opraHaMM BJiacTH He no Ha3Ha4eHHK> KOMneH cauHH 3a HaHeceHHbiH ymepö ot KOMnaHnn- Heflponojib3oßaTejieH. 7. MrHopHpoßaHHe HHTepecoß KopeHHbix Hapo,aoß, HanpaMyio 3aßncainHx ot coctoshhh npnpoflHbix pecypcoß m ycjioßHÖ. npHopHTeraocTb npaß He flponojib3oßaTeneH Ha pacnopa>KeHHe 3eMJieö nepea TpaannnoHHbiM npH p o;i oiiojibio b a n n e m KopeHHbix napo;i,Oß. 166 5 Участие местного населения и заинтересованных сторон в процессе принятия решений и разработке местных программ устойчивого развития KpynHOMacuiTaÖHaa pa3paöoTKa pecypcoß b 30He JiccoTyHjpbi CBHjcTejibcr- ByeT o o nnaneßHOM onbiTe n pncice npHHaran pemeHHH «CBepy-BHH3» n öojibuiHe 3aTpaTbi CBH3aHHbie c pa3peineHHeM kohcJuihktob. 3oHa JiecoTyH/ipbi CTaHOBHTCH apeHOH ctojikhobchmh TeKymHx KpaTKOcpoHHbix h CTpaTerHne ckhx HHTepecoß HeJiOßenecKoro oömecTßa. HHTepecbi «BapßapcKOH skohomh kh», opHeHTHpoßaHHbie TOJibKO Ha floöbiny Bce öojibuiero oGteMa npnpoflHbix pecypcoß,JiHinaioT öyaymHe iiokojichhh bo3mo>khocth yflOßJicißopaib cboh noipeöiiociH. Minepecbi "koböohckoh" skohomh kh b HacToamee BpeMH npcßajiHpyioi n npoaojraaiOT yflOßJieTßopHTbca Ha POCCHHCKOM Ceßepe. 3Ta 3KOHOMHKa CTpOHTCH raKHM OÖpa3OM, HTO npHpOfl- Han perna öy/ier onriaHHßarbca oy/iyruHMH noKOJiemuiMH. bo3mo>kho 3a chct HX TpKO npOCJIOFCHBaCTCJI Ha npHMepe HCHC 3aiomHx MajiOHHCJieHHbix HapoflOß peraoHa. 3Ta "Bapßapcicaa" SKOHOMHKa noompaeT aHCKpHMHHaiiHOHHoe Bbiro/i ot Hcnojib3oßaHHa pecypcoß b ymepö MecraoMy HacejieHHio, HaacjiHH ynacTHHKOB pecypcononb3oßaHHH hctohhhkom npnöbijiH. 3Ta skoho- MHKa, npw nojiHOM npeneöpoKenHH 3aTpaTaM Ha skojioi hio, (j)opMHpycT pe cypcHbifl xapaKTep poccnncKoro iKcnopia, KOTopbrä CTHMynnpyeTca 3aßbi uieHHbiM KypcoM flojuiapa no othouichhk) k poccnöcKOMy pyöjno. mnpoKoro KOHceHcyca b pa3paöoTKe MecTHbix njiaHOß h npo rpaMM pa3BHTHH He caMon,ejib, a HeoöxoflHMoe ycjioßne aim ycTOHHHBoro pa3- bhthh 30Hbi jiecoTyHflpbi. BianoHeHHe mnpoKHX rpynn rpa>KflaHCKoro oöme- CTBa, nacTHoro ceKTopa, mccthoh panoHHon ajjMHHHCTpauHH, pa3Hooöpa3Hbix c;iy>K"6, Bcex 3aHHTepecoßaHHbix :ihh b npouecc njiaHHpOßaHHa h npHHaraa pemeHHH Tpeoyer 3aTpaTbi öojibinnx i B n BpeMeHH, ho .aoJirocpoHHbie pe3yjibTaTbi raKOi o HacejieHHa noMoraeT MOÖHJiH3OBaTb 3anHTepecoßaHHbix jihu b paMKax corjia coßaHHbix ucjich, CKOimeinpHpoßari) n cjKOHOvmxb Heo6xoanMbie pecypcbi (MecTHoe h Tpa;iHi[HOHHOc 3HaHne, c|)miancbi, rpyaoßbie pecypcbi n t.ji) hcoo xo;iHMbie jinx peajiHianHH HHHUMaxHR no pa3BHTHio. I laKOHCu, mnpoKoe yna cth Bcex 3anHTepecoßamibix CTopoH no3BOJiaeT onpc/iejiHTb b npnopnTeTax pa3BHraa, ocoöeHHO Ha KpaTKOcpoHHyio nepcneKTHßy, bo3hh- KaiouiHe Ha pa3Hbix ypoßHax npnHaraa pemeHHH - mccthom, HauHOHa.ibiiOM h rjioöajibHOM. HanpnMep, sahana coxpaHeHHa ÖHopa3HOo6pa3Ha Ha rjioöanb hom ypoßHe TpeöyeT BbinojiHeHna oxpaHbi npnpoflHOH cpeabi b pan- OHax, Toraa KaK norpeonocrH MecTHoro HacejieHna, b nacTHOCTH Hanöojiee o6e3;iojreiiHbix rpynn, MoryT öbirb tojibko 3a chct hhtchch (J)HKannH OXOTbI, cöopa apOB AJIH OTOnjieHH» SKHJIHIU HJIM pocTa nOrOJIOBbÄ oneHen, a noTpeÖHOCTH jicco3arorobH reji bnbix h ropno;io6bißaK)inHX KOMna hhh 3aKjnoHaioTca b npoflOJDKeHnn ;io6biL iH n 3KCiuiyaranHH npnpo;iHbix pe cypcoß b npeaejiax toh >Ke caMOH TeppnTopnn. B npeaenax 30Hbi jiecoTyHapbi Pocchh cymecTßyeT mhokcctbo nn(j)HHecKOH CHiyanHH b Pocchh h b 30He JiecoTynjipbi, b nacTHOCTH, cymecT- ByeT npnHnnnnajibHaa BO3MO>KHOCTb cnocoficißOßaib HinerpanHH pemeHHH 167 rjio6ajibHbix 3KonorHHCCKHX npoÖJieM ycroHHHßoro paiBHTHH (H3MeHeHne KJiHMaTa, coxpaHeHHe OHopaiiiooöpasMH) c yerpaHeHHeM oeanocTH h yjiyn iueHHeM KanecTßa >kh3hh HaccJieHHH. Библиография AöayjiaTHnoß P. AöopnreHHoe jihlio Pocchh. He3aBHCHMaa ra3eTa.CueHapHH Ns 5.c.. 7. ArpaHaT T.A.1984. Hcnojib3oßaHHe pecypcoß h ocßoeHne TeppHTopHH 3apy 6e>KHoro Ceßepa. M.: HayKa, 1984. 263 c. CncTeMa BeaeHHH cejibCKoro h npoMbicjiOßoro xo3»HCTBa Ha KparäeM Ceße pe. KpacHoapcK, 1969. 105 c. Aksenov, D., Karpachevsky, M., Lloyd, S., & Yaroshenko, A. 1999. The Last of the Last. The Old-growth Forests of Boreal Europe. Taiga Rescue Network. 67 p. AMAP 1998 = AMAP Assessment Report: Arctic pollution issues. Arctic Monitoring and Assessment Program, Oslo. 859 p. Arctic Flora and Fauna.. Status and Conservation 2000. Edita / CAFF, Flelsin ki. 272 p. Arctic Research: Advances and Prospects. 1990. Part 2. Proceedings of the Conference of Arctic and Nordic Countries on Coordination of Re search in the Arctic, Leningrad, December 1988. Academy of Sciences of the USSR / Commission of the Arctic Research, Moscow. 448 p. Callaghan, T. V., Crawford, R. M. M., Eronen, M. Hofgaard, A., Payette, S., Rees, W. G., Skre, 0., Sveinbjörnsson, 8., Vlassova, T. K. & Werk man, B. R. 2002. The dynamics of the tundra taiga boundary: an over view and a co-ordinated and integrated approach to research. Ambio Special Report 11 xxx. CTpaHbi h Hapoabi. CCCP. PoccnHCKaa OeflepauHH.l9B3.MocKßa. 461 c. Development of the North and Problems of Re-cultivation. 1997. Reports of the 111 International Conference. St- Petersburg, Syktyvkar. 453 p. IlpoeKT (JjeaepajibHOH ueueßOH nporpaMMbi « 3KOHOMHnecKoe h couwajibHoe pa3BHTHe KopeHHbix MajiOHHCJiemibix HapoAOß Ceßepa ;io 2010 ro/ia» MocKßa, 2000 r., 52 c. Europe's Timber Demand Destroys Its Last Ancient Forests. 2002. Deutsche Presse-Agentur, March 30, 2002. FAO 2001 = Global Forest Resources Assessment 2000. Main Report. FAO forestry paper 14. Rome. TocynapcTßeHHafl HayHHO-TexHHHecKaa FlporpaMMa Pocchh «rjioöajibHbie Il3MeHeHna npnpoflHOH Cpeflbi h KjiHMaTa». H3ÖpaHHbie HayHHbie Tpyflbi. 1997. MocKßa- 434 c. JlecHaa 3HunKJioneflna: tom 1-2. 1985. MocKßa. 563 c. n 631 c reorpatj)HHecKHH ATjiac. 1980. MocKßa . 237 c. /],OKjiafl TocKOMceßepa. 1999. TocyAapcTßeHHaH no/wep>KKa pafioHOß Ceßepa: npHHunnbi, HanpaßjieHHa, MexaHH3Mbi. TocKOMceßep, 1999 r.-124 c. Greenpeace Protests Cutting of Russia's Forests. 2002. Interfax News Agency, March 25, 2002. 168 Xpymeß C.A., Kjiokob K.B. 2001.CeBepHbiH HOMafIH3M b Pocchh. CaHKT nexepoypr. 32 c. Hungry Russian Soldiers Helped Poach Wild Reindeer to Extinction, Scientist Says. 2002. The Record (Kitchener-Waterloo), March 23, 2002. Integrated Ecosystem Approach to Conserve Biodiversity and Minimize Habi tat Fragmentation in the Russian Arctic. 2000. GEF Project. Workshop Report. Moscow 2-4 February 2000. 27 p. Kpaßuoßa 8.H., Peccjie A.H., TyryöajiHHa 0.8. KapTorpacj)HpoßaHne npo- MbiujjieHHoro BO3AeHCTBHJi Ha ceßepoTae>KHyK) n TyHApoßyro pacra- TenbHOCTb b pauoHe MoHHeropcKa. B: /],OKJiaflbi 111 Me>KayHapoflHOH KOHcj)epeHUHH «OcßoeHHe Ceßepa h npoSjieMbi peKyjibTHßa- UHH».CaHKT-neTep6ypr,l966. CbiKTbißKap, 1977. c. 267-268. KpK)HKOB 8.8. 1991. npeAejibHbie aHTponoreHHbie Harpy3KH h cocTOHHue 3KocncTeM Ceßepa. 3KOJiorns, 1991, N° 3, c. 28-40. Lausala, T. & Valkonen, L. (eds.). Economic geography and structure of the Russian territories of the Barents Region. 1999. University of Lapland, Rovaniemi. 250 p. Morton, W. L. 1970. The «North» in Canadian Historiogeography. Trans. Roy. Soc. Canad., ser. 4, vol. 8. .flMajr. 1995.EicaTepHH6ypr: YHO «Hayica». 1995-435 c. O'Flynn, K. 2002. New Atlas: Russia Wilderness No More. Moscow Times, April 4, 2002. 1 ly'ianeHKO K).r. KjiHMaTHnecKaa oGycjiOßjreimocrb kwkhoh rpaHHUbi ryH,i pbi. B kh.: CooömecTßa KpaiiHero Ceßepa h nejiOßeK. M.: Hayxa, 1985. c.22-56 o couHanbHO-3KOHOMHHecKOM nojioHceHHH h 3cj)(J)eKTHBHOCTH rocy flapcTßeHHoii paKoHOB Ceßepa b 1999 roay. TocyflapcT- BeHHbiM KOMHTeT Pocchhckoh no AenaM Ceßepa. MocKßa 2000 r. Resources and Environment World Atlas. 2002. Hotzel, Vienna and IGRAS, Moscow, 1998. Russian Environment Digest. 2002. Vol. 3. 190 p Russian Pipelines Said to Be in Catastrophic State. 2002. Russian Environ mental Digest, Vol. 4, No. 12: 18-24. B.H. Ce/ibix. 1996. Jleca 3anaanoid Chöhph h iie(|)rera3oßbiH KOMnjieicc. M. 3K0Ji0rHH,1996.-Bbin. 1.-36 c. Semenov B. A. & Ogibin B. N. 1998. Determination of the border between pretundra and taiga forest zones in the northeastern part of European Russia. In: Research and management of the northern timberline region. Finnish Forest Research Institute, Research Papers 677, Kolari, p. 103- 105. T flOKJiaa o Coctohhhh OicpyacaioiueH npupo/uiOH Cpe;u>i Pocchhckoh b 1998 ro/iy. 1999. MocKßa, 1999 r. 573 c. TaH({)HJTbeB r.H. 1953. Jiecoß nojiapHOH Pocchh. B: reorpa(J)HHe- CKne paöoTbi. 1953. c. 146-149. Toutoubalina, O. V. & Rees W. G. 1999. Remote sensing of industrial impact on Arctic vegetation around Norilsk, Northern Siberia: preliminary re sults. International Journal of Remote Sensing 20: 2979-2990. 169 Vlassova, T. K. 2002. Human impacts on the tundra - taiga zone dynamics: the case of Russia with some international comparatives. Ambio Special Report 11 xxx-xxx Bjiacoßa T.K. h Bojikob CX. 2001. 3icoJiorHHecKoe CTCToaHHe ojieHbnx nacT 6hiu b Pocchh h 3apy6e>KoM. PoccuHCKaa AKaaeMHH CejibCKOXO3aHCT- BeHHbix HayK. JVe2: c. 101-117. 170 Жизнь на Границе Леса- Саамы и Горные Березовые Леса Крайнего Севера Европы Мария София Айкио и Людгер Мюллер-Уилле Резюме B CTaTbe oocy>K;iaeTCJi Hcnojib3oßaHHe ceßepHbix 6epe3oßbix jiecoryii/ipoßbix JieCOB CaaMaMH H BO'iHHKaKMUHC lipu 3TOM KOH(j>JIHKTM C flpyrHMH nOJIb3OBa- TejiHMH. Hccjie;iOßanne 6a3HpyioTCfl Ha npoße/iennbix c caawaMH hhtchchb- Hbix HHTepßbio, npH 3tom ocoooe BHHMaHHe y/iejifljiocb hx ueHHOCTHM h Tpa- Ahuhohhmm 3HaHHHM, a Taioice hx uejiocTHOMy BoenpHaTHK) 6epe3bi. CneHH cj)HKa Hcnojib3oßaHHsi 6epe3bi ocHOBaHa Ha ee KanecTßax npeKpacHoro TonjiH- Ba h oTUHHHoro MaTepnajia ajia npoH3BOACTBa npeAMeTOB HaunoHajibHoro TBopMecTßa. B 3aKjiioMeHne, ncnojib3oßaHne caaiwaMH 6epe3bi paccMaTpiißaeT cm b CBA3H c öyAymHM ynpaßjieHHeM h KOHTpojieM 6epe3oßbix jrecoß h ripeA jiaraiOTCH peKOMeHAauHH, yHHTbißaiomne BbicoKyio 3HaMHMOCTb ropHoii 6epe 3bl fIJIH CaaMOB. Северные березовые лесотундровые леса: проблемы контро ля, доступности и устойчивости TopHbie 6epe3oßbie Jieca b CanMH, KyjibTypHOH h cohho-3kohomhh6ckoh po flHHe caaMOB Ha KpafiHeM Ceßepe EBponbi, b nocjieAHee BpeMH npHßjieKaioT OHeHb ÖOJIbIHOe BHHMaHHe CO CTOpOHbI KOpeHHblX HapOflOß, HayHHblX h npo- MbiiujieHHbix Kpyroß. 3to BHHMaHHe - HecoMHeHHasi peaKUHfl Ha H3MeHHio iHHeca npeacTaßJieHHH h 3KOJiorH4ecKyio oöciaHOßKy. CneuHcj)HHecKHH npn poAHbiH pecypc, 6epe3a, CTana oöteicroM CTOJiKHOBeHHH pa3Hbix BHeuiHHX h BHyTpeHHHX HHTepeCOB. M3MeHSIK)mHeCSI 3KOJIOrHHeCKHe yCJIOBHH BCJieACT BHe KJIHMaTHHeCKHX H3MCHeHHH OCJIO>KHHIOT CHTyaUHIO B CeßepHblX HHpKyM nojiapHbix perHOHax. M3MeHeHHH b JiecoTyHApoßbix Jiecax (coctojhhhx H 3 6epe3bi, cochm hjih ejin), HBJUHOTCfI HaCTblO TJIOÖajIbHbIX npOUeCCOB, B KOTOpbIX CBH3b HejIOBeK - Jiec AeTanbHo HccjieayeTca bo BceM MHpe (Abramovitz 1998, Goenner 2002). B 3THX HCCJieAOBaHHfIX OTMeHaeTCfI HCHHOCTb 3HaHHH H HäBbIKOB KOpeHHOrO H MecTHoro HacejieHHH, Heo6xoAHMocTb pa3pa6oTKH HOBbix noAxoAOB k ycToii- HHBOMy pa3BHTHio h k ynpaßJieHHio npnpoAHbiMH pecypcaMH, a TaioKe k no 171 JieCHbie 3KOCHCTeMbI ÖblJlH H OCTaiOTCH OCHOBOH )KH3HH HejlOßCKa. IICOTOMy caMH neca b itoctohhhom yxofle, h eeßepHbie JiecoTyHflpoßbie jie ca He aßjisiK)TCsi HCKjnoneHHeM. 3th öopeajibHbie jieca coöoh 3kotoh, pacTHTejibHOCTH, no/ipa3flejiHK)mHHca Ha BepxHioro jiecoTyHflpy, npocrapaio myrocH Me>K/iy jiecoM h TyH,npoH h hh>khk)K) Me>K,ny jiecoM h KycTapHHHKaMH hjih JiyraMH (Cox and Moor 1993). Ha KpaÖHeM Ceßepe EBporibi, KaK OTMenaeT JTapc-AHAepc Baep, caaMbi m- JIHK3TCH «)KHTejiHMn öopeanbHbix jiecoû c He3anaMHTHbix BpeMeH, co BpeMe hh nocjieflHero Me>KneAHHKoßbsi. Bce sto BpeMH ohh Hcnojib3oßajiH b 0306- HOBJiaiomHecfl JieCHbie pecypcbi b pa3Hbix qejiax: äjih oxotm (KaK KanKaHaMH, TaK h apyrHMH cnocoöaMu), ojieHeßoacxßa, cöopa aroa, Ha tohjihbo (Baer 1996:19). YcjioßHa skh3hh b CanMH, BCJieACTBHe aKTHBHOH HMMHrpa- Uhh, b nocneflHee BpeMa 3HaHHTejibHO H3MeHHHHCb. Pecypcbi ceßepHbix rop- Hbix Jiecoß CTanH HHTepeca He TOJibKO MecTHoro Hacejiemifl, ho h np H BJieKJIH BHHMaHHe CTOpOHHHX OOllieCTßemiblX H 'iaCTHLIX OpraHH3aUHH, BCJiefl 3a cejibCKOxo3HHCTBeHHOH 3KcnaHcneH npoflßHraromHX rpaHHuy xo3hh- CTBeHHoro ocBoeHHH Bce flajibine h b 3OHy (cpaBHH Hustich 1946, 1979 ajih öojiee paHHHx Kalakoski 1999). C KOHua 20-ro h b Hanane 21-ro BeKOB npoÖJieMbi Hcnojib3oßaHHH 3thx jiecoß b cjiyraeß BbiJiHJiHCb b nonHOMacniTaÖHyK) «jiecoTyHflpoßyio BOHHy» Me>KAy KOHuenuHHMH «oömecTßeHHofi TpaHccjjopMauHH «ahkoh npnpoflbi» h «KOHcepßauHH ahkoh npnpo/ibi h npoMbiuiJieHHoro ocbochha npHpoAHbix pecypcoû. Ohh TaK>Ke npHßejin k nojiapn3ariHM «sraHnecKOH HanpH>KeHHOCTH» Meacay caaMCKHM h (})mhckhm HacejieHHeM Ha mccthom ypoßHe. Ari Aukusti Lehtinen (1991) aeTajibHO pa3ÖHpaeT Bce 3th KOHuenuHH H HX npHMeHeHHe B CBOHX HCCJiefIOBaHHHX COBpeMeHHOH JieCHOH nOJIHTHKH Ohhjihhahh. B oömeM, Bo3HHKuiaa noflHHMaeT Bonpocbi, 3aTparHßaiom,He cy meCTBO KOHuenuHH «3HaHHH H HayKH» H npOTHBOpeHHH MOKfly OÖmeCTBOM H aöopnreHHbiM HacejieHHeM, hx HincjuiCKTyajihiioH ncTopneH h KyjibTypofl. Kopone, oocy'/ic.aae'rcH, KaK m e 3iiannsi h HaynHbie ahchhilihhli oKa3bißaioT BJIHHHHe Ha (J)OpMHpOBaHHe HfleH H npHHHTHe pemeHHH B HC nojrb3oßaHMH npnpoAHbix pecypcoß. B CanMH, cpe;in ;ipyrnx caaMCKHx vi ie- Hbix, Elina Helander (1992, 1996 6) h John Klemet Hastta Kalstad (1996, 1997) BbUißMi aiOT Ha nepßbifi nnaH uejiocrabie iiiaiiMH caaMOB, ueHHocrabie opnen- THpbl H npOTHBOnOCTaBJIHIOT HX ÖOJiee KOCTHbIM, CHCTeMaTH3HpOBaHHbIM H jiHHefiHbiM noflxoaaM 3anaAHO-opHeHTHpoBaHHOH HayKe. B 3thx Bce apryMeHTbi h (J)aKTbi Hy>KAaiOTCsi b TinaTejibHoii npo- BepKe, 6e3 Bna/iauHa b KpaHHOCTH h fleneHHH Ha BepHbie h HeßepHbie, öejioe h nepHoe. 3Ta Ba>KHa, h HHTynuHio paccMaTpn- BaiOT b KanecTße cnocoöa oötacHeHHa «HayHHOH hcthhh». 3to He hbjihctch OTKJIOHeHHeM OT nOJIO)KeHH>I O TOM, HTO «3HaHMfI» CaaMOB, TaK>Ke KaK H b apyrnx oömecTßax, hbjihk)tch, b npHHunne, nejiocTHbiMH, h cßH3bißaioT 172 npnpo,ay h KyjibTypy b uHKJitmecKOM npouecce B3anMOfleflcTßHH nejiOßeKa c okpy>ka K) mc m ero cpe/ioii (Aikio 1990). 3tot iio;ixo;i ymiTbißaeT npnporuibie OrpaHHHeHHH, CJieflOßaTeJlbHO Tpa/tHUHOHHbie 3H3HHSI BO3MO>KHOCTb BbDKHBaTb npH MHHHMaJIbHOM ypOBHe nOTpeÖJieHHJI Ha MeCTHOM ypOBHe H npHHMMaTb pemeHHa He3aßncHMO ot bhchihhx oöcTOjrrejibCTß. K Hanajiy 21- ro CTOJieTHH nOJIO>KeHHe H3MeHHJIOCb nofl BO3,HeHCTBHeM BHeiIIHHX H BHyT peHHHx npoqeccoß oÖMeHa HfleaMH h HHHOBauHHMH, a TaioKe nponeccoß npH- HfITHH peilieHHH. B HCnOJIb3OBaHMH peCypCOB 3TO 3HaHHT, HTO MOryT ÖblTb HaiifleHbi HHTerpauHOHHbie n KOJiJieKTHBHbie Mo/iejTH, cnocoÖHbie CMarnaTb BO3HMKaK3IHHe KOH(j)JIHKTbI. B JHOÖOM CJiyHae, 6y,0,b 3TO OJieHeBOfICTBO (Kalstad 1997), TypH3M (Aikio 1998), hjih ncno.rib3oßaHHe 6epe3bi, npoöneMbi H K HX penieHHK) MOryT ÖblTb OfIHHaKOBbIMH. B Ohhjmhahh, c 1990-bix to/iob ycnoBHH Hcnojib3oßaHHa jiecoTyHjipoßbix necoß Bcero mipKyMnojuipHoro öopeajibHoro noaca öbura Hanöojiee nojiHo ocßemeHbi b paöoTax Pertti Veijola (1998), Sihvo (2000) h Sandström h flp. (1999). HeKOTopbie aßTopbi npeflCTaßJiaioT laKne oomccTßcmibre HHCTHxy i bi. KaK JlecHoe ynpaßJieiine Ohilimii;ihh (Metsähallitus). Ha reppHiopuH Bcex ceßepHbix uHpKVMno.TJipHMx pemoHOß övviyiucc öopeajibHbix Jiecoß oöcy>K flaeTca b KOHTeKCTe öbicTpoö 3KcnaHcnn jreconepepaöaTbißaiomeH npoMbini jieHHOCTH, ocoöeHHO Ha Ceßepe Pocchh (flpomeHKO h ap. 2001). Me>KflyHapoAHbie paöonne coßemaHna, npeAinecTßyfomHe 3TOMy (Kankaanpää et ai.. 2002), TaKHe KaK «YcTOHHHBoe pa3BHTHe b ceBepHOH Jie- (Kankaanpää et ai.. 1999) n «YcTOHMHBoe pa3BHTne Apkthkh: yc- BoeHHbie ypoKH h ny™ Bnepea»(Canada 1998) coöpajin mnpoKne cjioh aöo pHreHHoro h MecTHoro HacejieHHH, yneHbix h npe/tnpHHHMaTeneH. Onyöjra- KOBaHHbie MaTepnajibi npe/jCTaBHJiH nojiHyK) KapTHHy pa3Hooöpa3HH mhchhh OTHOCHTeJIbHO TOTO, HTO 03HaHaeT «yCTOHHHBOCTb». Bonpoc O TOM, KaK, KeM H fljiH nero .qojmHbi Hcnojib3oßaTbCH ceßepHbie ropHbie 6epe3oßbie jieca b Kane- CTBe pecypca ne HMeeT oflHo3HanHoro OTBeTa. IlocjieayiomHe b 3toh CTaTbe hcho noKa>KyT Bce pa3HooÖpa3He npeflCTaBJieHHH h tohck 3peHHH no 3TOMy Bonpocy (TaK>Ke cm. Muller-Wille et ai. 2001). Предыдущий опыт и методология HH>ti<;iaioiCM HeKOTopbie pe3yjibTaTbi wcc;ie;ioßannw, npo- flByMH aBTopaMH (npn yLiacinn .ipyrnx b paMKax npoeKTa, ct})OKycHpoßaHHoro Ha B3aHMOOTHomeHHax Me>KAy nejioßeKOM h 6epe3on (cm. öojiee no/tpoÖHo HIBECO 2000-2003). Flohth 150 Hnrepßbio öbijin B3HTbi y npevTCTaßHTe.ieH MecTHbix /Khtcjicm (caaMOB h (Jjhhhob), Topro- Bbix KOMnaHHH, opraHH3aqHH h opraHOß MecTHoro caMoynpaßJieHna b He 6ojibiHHX cenbCKHX nocejreHHax h afIMHHHCTpaTHBHbix nempax Ha KpaiiHeM Ceßepe Ohhjihhahh (MBajio, TaperacHapra (KapnracHHeMH), TyxTyp (Kyiry pa), HiooprraH (HyopraM), HeßeraßpH OxnenoxKa (Ytchokh), h Byoxwy (ByoTco), h b ceßepHoii HopßeraH (Maue, OjiMManßar th HHTepßbranpoßaHHe b nepnoa c OKTHÖpa 2000 no c[)eßpajib 2002 rr. (HIBECO, 2000-2003). 173 Bonpocbi aHKeTbi 6wjih ctjiopMyjinpoßaHbi b npouecce coßMecTHoro oöcy>K- Aehha HCCJieflOßaTejiefi h pecnonneHTOß. TjiaßHaa uejib öbina b oxßaTe Bcex acneKTOB ncnojib3oßamisi jiecoTynnpoßOH 6epe3bi (Miiller-Wille 2000). 1) Общие сведения о березовых лесах иих природные условия. 2) Политика, управление, иих проявления. 3) Законодательные, политические и экономические механизмы исполь зования березы. 4) Типы использования березы: производство и потребление топлива, получение березового топлива в прошлом и настоящем, использование березы для строительства и производства изделий народного творчества, использование в художественном творчестве, производстве декора тивных изделий, в лечебных целях, ритуалах, традиционных и ду ховных обрядах, 5) Восприятие и рефлексия по поводу березовых лесов. AHKeTHbie Bonpocbi ömjih nepeßeaeHbi Ha (Jjhhckhh, ceßepo-caaMCKHH h Hop- Be>KCKHH H3bIKH (OCHOBHbie H3bIKH 3THX TeppHTOpHH), H 3aflaHbl BCeM peCnOH aeHTaM, npn stom pa3pa6oTHHKH aHKeT noHHMajin, hto ohh nojiynaT OTBeTbi He Ha Bce Bonpocbi, h «aHOHHMHOCTb» OTBeTOB noHHMaTbca no- pa3HO- My. MeTOflOJiorHM npoBOAHMoro onpoca opneHTHpoßanacb Ha to, htoöbi ycTpa- HHTb pa3flejieHHe BHeuraero onpauiHßaFomero (nccjieflOßaTejra) n peenoH/ieH- Ta ("/KHTC.IH). /J.JIH AOCTH'/FCCHHM 3TOTO, MeCTHbie /KHTCJIH. HJieHbl OÖIUHIIbI, 6bl jih BKJiioqeHbi b onpauiHßaiouiHx (nccjie/iOßaTejieH). 3aflaßanH bo npocbi o tom, kto BbinrpaeT ot sthx HccnejioßaHHH h ot hx pe3yiibTaTOß. Me- CTHbie >KHTejiH ömjih yßepeHbi, hto 3Ta paöoTa MoaceT 6biTb ycneumoH TOJibKO npn hx ynacTHH KaK nojiHonpaßHbix hjichob HCCJiefIOBaTeubCKOH KOMaHAbi. 3Toro SbiJiH npc/uipuHMTbi inaru, lapainnpyiomuc OTKpbiTbie o6cv>k;ic hhh, paöonne BCTpenH h nyöJiHKauHio Bcex pe3yjibTaTOß. KaK CTano acho H 3 otbctob Ha Bonpocbi aHKeTbi, pecnonneHTOß He HHTepeco- BajiH KOHKpeTHbie aaHHbie 06 oöteMe BbipyöJieHHOH apeßecHHbi b 6epe3oßbix jiecax h ee ctohmocth, a b ochobhom ohh öbuin oöecnoKoeHbi BonpocaMH coxpaHeHHa 3HaHHH h HaBbiKOB b Hcnojib3oßaHHH h ynpaßjie hhh 6epe3oßbiMH jiecaMH. Ohh TaK>Ke yßepeHHo 3aaßJiajiH o tom, hto hx BKjnoHeHHe b 3th HCCJieflOBaHHfl npHße,nyT k oöcy>K/ieHHio h nepecMOTpy cy mecTßyioiHHx nojio)KeHHH, ycTaHOBOK h HopM peryjiHpoßaHHa co CTopoHbi rocyaapcTßeHHbix opraHH3auHH h HHCTHTyTOB, OTBenaioiHHx 3a SKcnnyaTa- Hhio jiecHbix pecypcoß b CanMH. HHTepßblO npOBOfIHJIHCb B CanMH B (J)HHCKHX fIOMaX H TpafIHUHOHHbIX >KHJIH max caaMOB, >KHTejien, iipe/inpHiiHMaie.ieH, otjiHUHa/ibiibix jinn, My>K hhh h >KemnHH, oöbiHHo CTaprne 40 jieT, c HiHpoKHM ynacTHeM peCnOHfIeHTOB CTapiue 70 JieT, KOTopbie ao chx nop npo/iojmaioT HaxoflHTbca b TecHOM 174 B3anMoflencTßHn c OKpy>KaiomeH npHpoflHOH h pecypcaMH, h He Te pajiH 3Ty CB33b Ha npoTa>KeHHH Been CBoeii >kh3hh. HeKOTopbie pecnoHfleHTbi HeraTHBHO oraocHJiHCb k onpocy, Ha3bmasi ero «hobbim 6ecnojie3HbiM aHKe- THpOBaHHeM». BoJIbUIHHCTBO H 3 HHX HMejIH OnblT HHTepeCOBaBIIMH HCCJieAO- BaTeneH, 3a;uißajiH mhoto Bonpocoß, HeKOTopbie vxo;ihjih, He npejjocTaßhb cboh aHKeTbi, xoth ohh h oöJia/iajiH TeMH 3HaHHHMH, KOTopbie onpaniHßaio iyne xoTejiH nojiynHTb. riocKOJibKy oo.ibiiiHiicrßO HCCJie,K)BarejieH, naripn- Mep, Mapufl Co(J)h>i Ahko, «BJianHCb Mecraoro HaceneHHa, cpeflH KOToporo iipoßO.aHJineb MCCJie/iOBaiiMH, 3to npH/uißa.io oojibinyio yBe peHHOCTb TOMy, hto öyayr nojiyneHbi HeoöxoflHMbie CBe,a,eHHa. HHTepßbio c caaMaMH, ocoöeHHO c no>KHJibiMH Jiio/ibMH, m OxqeftoxKH, Ha HbHx 3HaHHax ocHOßaHbi HH>Kecjre/iyK)mHe oöcy>KfleHHsi n aHajiH3, 3aÖHpajio mhoto BpeMeHH, npnHOCHJio oneHb öonbiuoH pe 3yjlbTaT. CTapHKH C ÖOJIbUIOH OXOTOH paCCKa3bIBaJIH O CBOeM OTHOUieHHII K 6epe3e, h Booöme, k npnpo,ne. Ohh He npoflßjifljiH HHTepeca k 3kohomhh6Ckhm acneKTaM cßoero rpyaa, hjih k tohhomv no/icreTy npnöbiJin ot HcnojibiOßa hhh 6epe3bi. Ho Ka>K,nbiH 3Haji, CKOJibKO 6epe3oßoH .upeßecHHbi e>Ke- AHeBHO aJlfl OTOnneHHH, HJIH fljlfl CTpOHTejIbCTBa, HJIH Ha HHbie Hy>Kflbl, H CKOJibKO Tpy.ua TpeöyeTca ajih ee 3aroTOBKH. 3th «no/iCHe rhi b yMe» hbjihiot ca b3)khoh sananen, KOTopyio ohh pemaioT b TeneHHe roflOßoro h ce3oHHoro Uhkjiob, coxpaHaa, npH 3tom, rapMOHHio c OKpyacaiomefi npHpo/iHOH cpeAon (n, rjiaßHbiM o6pa3oM, c 6epe3oßbiMH jiecaMH). B oömeM, öojibiiiHHCTßO noaouibix 3KcnepTOß-caaMOB HMeiOT öojibinoii 3anac TpaAHUHOHHbIX 3KOJIOrHHeCKHX 3HaHHH, OCOÖeHHO 3TO OTHOCHTC3 K OXOTHH- KaM, pbiöaKaM, h bccm tcm, kto öojibmyio nacib CBoen >kh3hh npoBOAHT Ha npHpofle. Ohh rjiyöoKHMH 3HaHHHMH o npnpo/iHbix yc jiobhhx, npHHeM, rjiaßHbiM oöpa3oM, CBfl3aHHbiMH c 6epe3oH, caMbiM pacnpo- CTpaHeHHbiM jjepeßOM b CanMH. Cjiynajiocb, hto pecnoH/jeHTbi coßeTOßajin oöpaTHTbca k KaKOMy-JiHÖo apyroMy nejiOßeKy, 3HaioineMy Jiymue, neM ohh, hjih BcnoMHHajiH paccKa3bi y»e yme/niMX H 3 >kh3hh. TpaflHnnoHHbie 3HaHHH h HaßbiKH, Booöme, oneHb Ba)KHbi fljia caaMOB. Iloxo)Ke, mto öojiee MOJioflbie caaMbi eme oöJiajiaioT nacTbio sthx 3HaHHH, ho nyBCTByiOT ceöa He cobccm yBepeHHO, h onacaioTca, hto He aocTaTOHHbiMH 3HaHH»MH, Kacaio iuhmhch B3aHMoaeHCTBMH lejiOßeKa h npnpoAbi. 3t& cymecTßeHHaa pa3HHua B ypOBHe TpaAHUHOHHbIX 3HaHHH MOKfly nOKOJieHHJIMH, no npe/IJ10)KeHHIO KO peHHbix /KHTCJieH Hy>K;iaeTCsi b ycTpaHeHHH nyTeM hx oöpaöoTKH b OTne- Ta O npOBOfIHMOM HCCJieAOBaHHH H BHeflpeHHH B UIKOJIbHbie nporpaMMbi Bcex ypoßHen (Helander 1999). Взаимоотношения Человек-береза: Целостный Подход к Ок ружающей среде HHTepßbio ÖbIJIH C(})OKyCHpOBaHbI Ha cth 6epe3oßbix jiecoß j\m MecTHoro caaMCKoro HacejieHHH, Hacejisiomero 3Ty ceßepHyio ropncTyio 30Hy 6epe3oßoH jiecoTyH/ipbi. PaHee noaoÖHoe H3yqe- HHe Bo3fleiicTßHsi HeJiOßeKa Ha ceßepHyio jiecoTyHjjpy npoßOflmiocb b cepeji,H- He 1980-bix roflOß, b OxnefioxKe. Oho 6a3npoßajiocb Ha onpoce MecTHoro Ha 175 cejieHHH c Hcnojib3oßaHneM h KapTorpacjDHHecKoro MaTe pnajia .zyia oueHKH cocTOAHHa h noTeHUHajra Jiecoß (Mattsson 1987, 1995). B coBpeMeHHOM yAeJiaeTca BHHMaHHe KaK oöluhm HayHHbiM 3HaHHHM, TaK h TpafIHUHOHHbiM cneuHajibHbiM 3H3HHSM caaMOB 6epe3oßbix Jiecoß, hx 3KOJiorHH, HanpHMep, cocToaHHa /ipeBOCTOH h CTeneHH pacTHTejibHOCTH b uejioM. TaioKe oöcy>KAajiHCb tohkocth caaMCKOH TepMHHO jiorHH, CBH3aHHbie c 6epe3oii. Bce ocHOßHbie npHHUHnbi 3eMjrenojib3oßaHHsi caaMOB 6a3npyiOTC>i jihöo Ha «nanxKH» (ceMbe), hjih «CHH.ua» (öojiee oömnp hoh coceACKOH oöiijHHe) (Helander 1996 a: 112-114). 3aecb reH/jepHbie otho rneHHH bjihshot Ha paBeHCTBO npaß b 3eMJienojib3oßaHHH h b pacnpeaejieHHH npoayKTOß Tpyaa (Aikio 1990). B 3tom othouichhh, Hcnojib3oßaHHe 6epe3bi TaK>Ke BKjnmaeTca b CHCTeMy coHHajibHO npocTpaHCTBeHHOH opraHH3aHHH 3eMJienojib3oßaHHH nepe3 oöecneneHHe Ma- TepnajioM h tohjihbom ajm BeaeHHa aoMauiHero xo3AHCTBa, h CBsoaHHbix c hhm ueflTejibHOCTH: nepeAßHaceHHeM no 3eMjie, BOfle, CHery, fljia OXOTbI, pbIÖOJIOBCTBa, COOHpaiCJIbCTBa H OJICHCBOZICTBa. MHorne pecnoHaeHTbi, ocoöchho noamjibie My>KMHHbi c öojibuiHM onbiTOM TpaAHHHOHHOH »CH3HH, XOpOHIO nOHHMaiOT, HTO OKpyacaiOma» Cpe/ja H3MeHH nacb He TOJibKO b TeppHTopHH hx TpaflHHHOHHoro npHpoaonojib3o- BaHHa, ho h b pernoHax. Ohh otmcthjih, hto njioma/iH 6epe3oßbix Jiecoß b OxuenoxKe 3a nocjieflHHe 50 JieT 3HaHHTejibHo yMeHbuiHjincb. 3to othochtca npeayje Bcero k .necaM c öojTbiuHMH cTapbiMH .nepeßbflMH, pacTy ihhmh rycTO b peHHbix AOJiHHax, Ha3bißaeMbix caaMaMH «ByoriMH». Y>Ke k 2001 rofly He CTa.no «reaßOßyonMH», uinpoKO H3BecTHoro MaccHßa ao jthhhoto Jieca, Ha3bißaeMoro «/JojiHHHbiii Jlec Teaßßy (KeBo)». CeroflHH Ty pncT (xafiKep) MO)KeT nepecenb penHyio /jojiHHy b jhoöom MecTe, h He no nacTb b rycTOH 6epe3H»K. 3to 6biJio HeBO3Mo>KHo ao 3nnfleMHH Epirrita au tumnata 1960-bix roflOß, KOTopaa yHHHToacHJia öojibuioe KOJinnecTßO 6epe3o - Jiecoß. /JaHHoe 3KOJiornHecKoe H3MeHeHHe noflTßepacflaiOT BOcnoMHHa hhh oflHoro caaMa, npoxoflHßUiero Ha jibDKax b stom panoHe b 1947 ro,ay h nonbiTaßmerocH pa3aceHb oroHb Ha CHery H 3 cyxoro 6epe3oßoro BareacHHKa. Pa3sKenb oroHb oh He CMor, xoth b npeAbWymne 6epe3oßbiH Bajie>KHHK npeKpacHo 3aropajica, necvio rpM Ha to, hto oh 6bm TaKace japa>KCH Epirrita autumnata. Elocjie 1960-bix, KaK oh paccKa3bißaji, 3th OTMepume aepeßba bo o6m,e He ropejiH. B OxueöoxKe TOJibKO b flOJiHHax peK BeaxnaxnoxKa h OxuenoxKa coxpaHH jiHCb jieca «ByoMHT», ho hx iijioiiuuih cymecTßeHHO coKpaTHJiHCb. He CTOJib KpynHbie no anomaan pomn c öojibuiHM kojihhcctbom 6epe3, TaKHM »e KaK b peHHbix B uenax pa3JIHHeHHH HX OT «ByOnMH», Ha3bIBaiOTCSI «jieax kh» (=AOJiHHa), a Ha Bo3BbiuieHHbix BOAopa3flejiax - «CKanra» hjih «Mapac» Ha3bißaK)TC>i «ByoBflH»-(=poma), hjih coaxKeöoxTTyT (=6epe3oßaH poma). Co- HeTaHHe «ByonMH» (pomn hjih jieca) h «naxun» (bom) - oneHb Ba>KHbiH npn poflHbiH cj)aKTop Bbiöopa MecTonojio>KeHHa nocejieHHH b CanMH. MHorne «By onMH» b OxuenoxKe cennac npeßpameHbi b «ayorrap» 176 (=6e3Jiecaa ryn.ipa). hto crajio cjic/ic i bhcm m mac mmm Epirrita autumnata 1960-bIX., HTO ABHJIOCb CHJIbHeHHieH SKOJIOTHHeCKOH KaTaCTpO(j)OH, HMeßllieH oneHb flJiHTeiibHoe OTpnnaie;ibiioc iiocjic;ictbhc, KOTopoe caaMbi ncnbiTbißa- K)T flO CHX nop. YBejiHMHßaioLuaacfl aojih b cocraße jiecoß n Bce öojiee ceßepHoe pacnpocTpa- HeHHe cocHbi CTajiH oneHb 3aMeTHbi b jiecoTyHApe, ocoöchho nocne hhh Ohhckoh jiecHOH aflMHHHCTpannen b 1930-1970-bie nporpaMM nc- KyccTßeHHbix jiecoHaca>K/ieHHH. j\nn MecTHbix >KHTejTen cocHa He npeacTaßJia eT CTOJib BbicoKOH neHHOcra, KaK 6epe3a. Ilpaßfla, cocHa HaxoanT npnivieHe- HHe fljra CTpoHTejibCTßa aomob n Apyrnx nocTpoeK, H3roTOßJieHna h BeTpo3amnTHbix mHTOB. TeM He MeHee, MecTHbie »HTejin Bce >Ke npe,anoHH- TaiOT 6epe3y, h CKynaiOT no 3TOMy aepeßy, ecun ero HeT no6jin3oCTn. IIoTpeÖHOCTH b ncnojib3oßaHnn 6epe3bi Ha TonjinßO 3HaHHTejibHO yMeHbinn jincb c Tex nop, KaK öbuia npoße;iena ;iopo>KHafl ceTb n HHfJjpaeipyKTypa, no -3BOJisnomne nocTaBJiHTb He(|>Tb, ra 3, Ma3yT h 3JieKTpo3Heprnio ajih OTonneHna. B pe3yjibTaTe TpaflnnnoHHbie MecTa BbipyöoK nepecTajin ncnojib3oßaTbca. B HacToamee BpeMH aocTaTOHHO rycToro h HCKpHBJieHHoro MenKoro 6e pe3HHKa h;ivt nponeccbi ruHCHHM n pa3.io>KCiinM, nocKOJibKy TaM He xßaTaeT CBeTa ajih pocTa 6onee cnnbHbix n bhcokhx Bce caaMCKne SKcnep- Tbi 03aÖ0HeHbi tcm, hto jieca, npeflHa3HaneHHbie ajih ncnojib3oßaHna b Kane- CTBe Tonjinßa, TpeöyiOT nocTOflHHoro fljia toto, htoöm b hhx nponcxo- Ahjio HeoöxoflHMoe BO3OÖHOBjieHHe aepeßbeß n öbuio rapaHTnpoßaHO nx nc nojib3oßaHne b öyaymeM. CaaMCKne pecnoHfleHTbi ocoöo noAHepKHßann, mto Bce TeppnTopnn b npeae- Jiax AOCTynHOCTH nocTOHHHO ncnojib3oßajincb, n to, hto ohh He 3HaiOT hh oji- Horo MecTa, KOTopoe He öbuio 6bi BKjnoneHO b ccj)epy Hcnojib3oßaHna KopeH- HbiMn >KHTeji»Mn. 3th TeppnTopnn Monin öbiTb BpeMeHHO He 3aH«Tbi, nun Ha xoflHTbca nofl napoM, ho caaMOB ohh ocTaßajincb nacTbio nx nejio- CTHoro BOcnpnHTna 3eMjin. B OxnenoxKe >KHTejin (Jjhhckoh CTopoHbi jiojiHHbi peKn /JeaTHy (TeHo nun TaHa), aKTHBHO ncnojib3yiOT 6epe3y n Ha hopbok ckoh CTopoHe, KaK Ha TonjinßO, TaK n ana npon3BojcTßa h3,tcjihh KyerapHoro npoMbicjia, n Ha HHbie Hy>Kj],bi. Tpa.nHUHomio Kaacaaa cexiba, njin poa HMejin cboh TeppnTopnn /yia 3aroTOß- Kn /ipoß, puöojiOßCTßa, c6opa htoa (rjiaßHbiM oöpa3oM MopouiKn), jiobjih Ky ponaTOK npn noMomn jiOßyineK, c/jenaHHMx n 3 6epe3oßbix npyTbeß, oxoth (ocoöeHHO b KOHne 3HMbi), n jipyrnx flejrrejibHOCTH. TTo BnojiHe oöocHOßaHHbiM npnnnnaM, JioßyniKa Ha KyponaTKy, cocToamaa H 3 TpaßHHoro MeniKa c BHyTpeHHen noTanHon nacTbio n 3 6epe3oßon ApeßecnHbi, pa3Mem,aj[acb Ha öepery peKn hjm 03epa (npnjio>KeHHe D. Pnc.3). 3th MecTa Maccoßbix CKonjieHnn KyponaTOK TaK>Ke uinpoKO ncnojib3oßajincb ojieHeßO- n pbiöojiOßaMH. TeppnTopnn 3Toro npoMbicjia oömnpHbi n npnyponeHbi k MecTaM pacnpocTpaHeHna KaK KyponaTOK, TaK n 6epe3bi. JIo- BymeHHaH jiobjis KyponaTOK, npoMbiceji jiococeßbix (rnaßHbiM oöpa3oM npn noMomn TpexonopHon CHCTeMbi 3anpy/i Ha peKe /],eaTHy), oJieHeBOACTBO, oxo- 177 Ta, HapoflHhiH npoMbicen h HCKyccTBO- Bee sto eme ecTb b CanMH. Bee 3th BMflbl fIeHTeJIbHOCTH CHJIbHO 3aBHCHT OT TOpHOH 6epe3bl. Знания и Ценности: Значение и Использование Березы Саамы до сих пор сохраняют свой традиционный образ мышления, осно ванный на целостном понимании жизни и восприятии природы, требую щий постоянного ее изучения постижения. Без этого невозможно никакое действие, даже такое простое, как рубка деревьев. Более того, оперируя понятием устойчивости с точки зрения саамов, мы затрагиваем сущность целостного мировоззрения этого народа. Поэтому очень важно учитывать то, что понятие «окружающая среда» включает в себя такие составляю щие элементы, как экологический, культурный, социальный и лингвис тический. Все эти элементы составляют единое целое (Helander 1996 б: 1). Elina Helander (1996 б: 2), а также John Klemet Haetta Kalstad (1996, 1997) полностью согласны с тем, что контакты с приезжими людь ми и современные процессы глобализации и научно-технического про гресса заставили саамов принять несвойственный и чуждый им образ жизни. B /[ooaiiJieiiHe cjie/iyer otmcthtb, hto CaaMCKHe iiannoHa;ibHbie HnciHiyrbi. nojiHTHHecKaa h oopasoßaTe-ibHasi 3JiHTa (niaßHbiM o6pa3oM M.ieiibi napjia- MeHTa CaaMH) b HacToaiyee BpeMa npHuuin k efIHHOMy c npe>KHHM kojiohh anbHblM HCTeÖjIHUIMeHTOM MHeHHIO H nOHHM3HHK) pojin CBOHX KyjlbTypHblX H JJHHrBHCTHHeCKHX OCOÖeHHOCTeH. OaKTHHeCKH MO>KHO CKa3aTb, hto caaMbi, KaK h apyrae MajiOHHCJieHHbie KopeHHbie Hapo/ibi MHpa BKjnoneHbi bo BHein- HHe k hhm CHCTeMbi, HanpHMep coßMecTHoro ynpaßJieHHH h Hcnojib3oßaHHa npnpoflHbix pecypcoß Ha «oöihhx» hjih «oömecTßeHHbix jbmjimx» (Kalstad 1997: 119-121). nofloÖHaa HHTepnpeTauHa pa3BHTHH H MOfIepHH3aHHH, HaßJi -3aHHaa co CTopoHbi BHeuiHero MHpa, aocTaTOHHO npoöneMaTHHHa npn pac- CMOTpeHHH H yHeTe OTKpblTblX H CBOÖOfIHbIX nOTOKOB B OÖMeHe HfIeHMH, TO- BapaMH, riepeceKaioiiiHMH KyjibTypHbie i paimiibi, OKa3bißafomHMH BHeuiHee h BHyTpeHHee bjihhhha - hhkto He Mo>KeT mm> b h3ojihlihh. TeM He Me- Hee, b Hauien CTaTbe paccMaTpHßatOTC» h paccTaHOßKa pa3- jiHHHbix no3HUHH He TOJibKO b ynpaßJieHHH pecypcaMH, ho h b HayKe h HCCJie- AOBaHHax (Keskitalo 1994). B 3tom nnaHe Hcnojib3oßaHHe 6epe3bi - jinujb OfIHH H 3 MHOrHX npHMepOB B KOHTeKCTe HejIOCTHOTO B3aHMOfIeHCTBHH HejlOße- Ka c OKpy>KaiomeH ero npnpoflHOH b KOTopow caaMbi ocymecTßJiaioT CBOK) >KH3HefleaTejTbHOCTb. Древесное топливо: Сохранение Тепла и Теплота B OxneiioxKC Bce caaMCKHe pecnoHAembi Hcnojib3yioT 6epe3y b KanecTße to njiHßa, h OTMenaioT, hto KanecTßO 6epe3oßoro TonxiHßa Bbiuie cocho- Boro, aa>Ke caMoro cyxoro «coapßH», HHor/ja Hcnojib3yeMoro b KanecTße pac- TonKH. Bo Bcex AOMaujHHx xo33HCTBax ecTb onar hjih neHKa, MHorne onarn HaxoflHTCH iio.n OTKpbiTbiM HeöoM, HeKOTopbie >KHie;iH Hcnojib3yioT ;ipoßa b 178 ueHTpanbHbix OTonMTejibHbix CHCTeMax (BMecTo Ma3yTa huh 3JieKTpo3Hep thh). Jlflx npoAOJi>KeHHH nocxoflHHoro Hcnojib3oßaHHH 6epe3 Ha TaK Ha3bißaeMbix 6epe3oßbix jiecax», npeaJiaracrcM tipoßO.inih pau,HOHanbHoe ynpaßJieHHe, no3BOJi>noinee ncnojib3oßaTb 6epe3y oflHOBpeMeHHo ,zyia oto n.icHHM h fljiH Apyrnx iiy>K/i. (Flphjiovkchhc D. Phc.4). 3th jiecHbie pecypcbi Hcnojib3oßaiiHCb CTOJieTHaMH b CHCTeMe TuiaTejibHO opraHH3oßaHHoro Tpa/iH HHOHHOrO JieCOnOJIb3OBaHHH. B COOTBeTCTBHH C 3TOH CHCTeMOH pa3JlHHHbie ynacTKH Hcnojib3oßajiHCb no BpeMeHHbiM uHKjiaM, kopotkhm (10-20 jieT), hjih fIJIHHHbIM (100 H 6ojree JieT). /JjIHTejIbHOCTb UHKJia 3aBHCHT OT yCJIOBHH pOCTa 6epe3bi, THna JiaH/nua(|)Ta, KanecTßa noHßbi h KJiHMaTHnecKHx ycjiOBHH. Mh- Tepßaubi hhkjiob TaK>Ke 3aBHCSiT h OT HanHHHfl /ipyrax jiecHbix ynacTKOB, TaK »e Hcnojib3yeMbix Ha TonjiHßO. TaKaa CHCTeMa nepeAOßaHHa ynacTKOB chh >KaeT Harpy3Ky Ha ocHOßHbie MaccHßbi Jiecoß, ncnojib3yeMbix b KanecTße Ton jiHßa. npH Bbiöope Aepeßbeß, CHanana HeoöxoflHMO onpeflejiHTb, KaKHe H 3 hhx fIOJDKHbi ociaibCM pacTH ,uim öy;iymero HciTOJibioiuuiHH. 3to Hanöojiee 3,io poßbie, KpacHßbie .nepeßbfl, He nopaaceHHbie 6ojre3HaMH h Bpe/jHTe jihmh, h 6e3 apyrnx bhahmhx noßpe>KfleHHH. Bbiöop aepeßbeß ocHOßbißaeTca TaK)Ke Ha ocoöeHHoerax oKpyxaiomero JiaHflmaijjTa, TaK KaK Te hjih HHbie fle peßba flon>KHbi 3aiu,HmaTb .qpyrne pacTeHH» h >khbothwx h noMBy ot BeTpa, flo>KaH, CHera h 3po3nn, npaMbix cojiHeHHbix yjibTpacJ)HOJieTOßbix Jiynen H npOHHX BHfIOB /3,epeßb3, KOTOpbie 6bIJIO OCTaBHTb, iiV/K.iaioiCM b TaKHx onTHMajibHbix ycjiOßHMx pocTa KaK ocßcmcimocTb, oöec neHeHHOCTb sjieMemaMH nHTaHHH, a TaK>Ke b OKpy»eHHH /jepeßbeß, KOTOpbie 3amHmaiOT H noflflepacHßaiOT hx pocT. FIosTOMy He npoßO flHTca oflHOßpeMeHHaa BbipyÖKa Bcex aepeßbeß Ha ynacTKe. ITocjie Toro, KaK Bbiöop flepeßbeß a-ha pyÖKH npoßeaeH, CTapbie, öojibHbie, yrHeTeHHbie, no- Bpe>KAeHHbie aepeßba cpyöaioTCfl b nepßyK) onepeflb. HHor.ua, fljia toto htoöm OTKpblTb OKpy)KaK)mHM AepeßbHM flOCTyn K CBeTy H Bo3Ayxy, pyÖfITCH TOJIbKO BeTKH. Be3ycjiOßHO, Jiynmee TonjiHßO aaiOT 3/iopoßbie, CHiibHbie, tojicto- CTBOJibHbie flepeßba. K BamibiM (JjaKTopaM, bjihhioihhm Ha KanecTßO TonjiHßa OTHOCHTCH jiyHHaa (J)a3a h BpeMH ro/ja, (o6>!3aTejibHO ao jieTa), a TaKace ycjiOBHH cyuiKH cpyöJieHHbix /i,e -peßbeß (c ocTaBJieHHeM CBOKecnHJieHHbix BeTOK ajia Jiynmero HCTeneHHa co- Ka). B OxueHOXKe chx nop npaKTHKyeTca TpaannHOHHaH pyÖKa 6epe3 b Hanajie JieTa, 6e3 ohhctkh ctbojiob ot BeTOK h cynbeß. JIeTOM oneHb b3>kho npoßOflHTb pyÖKy BOBpeMa, to ecTb jiyHa Ha ymepöe. B 3to BpeMH cpyöJieHHbie flepeßba He thhiot, n TonjiHßO OTJinnaeTca xopomnM KanecTßOM. PaHHejieTHHe pyÖKH TaoKHOCTb pocTa noöeraM 6e pe3bi b caMoe önaronpnaTHoe hhx BpeMH. HeKOTopbie caaMbi noKa3ajin BjiajjeHHe tothhmh 3HaHHHMH jrywujero BpeMeHH fljia pyöoK, KOTOpbie ohh nojiyHHjiH ot >KHTejiefi CTapmero Bo3pacTa. Ohh 3H3K)t caMbie 6;iai oiipH>n- Hbie cpoKH, KOTopbie, KaK OTMenaFOT SKcneprbi, oöhhho eoc raßJiJiioT He öojiee oähoh nocjie noHBjieHHH jiHCTbeB b Hanajie BereTaunoHHoro nepnoaa. B 3tom cjiy-iae nei BH ocTaß.iMioi Ha CTBOJiax. PyÖKH MoryT npoiiO.iH i hcJi TaK >Ke oceHbio, nocjie jiHCTona^a. 179 OceHbio, nepeA ycraHOßjieHHeM chokhoto noKpoßa, bctbh oöpyöaiOTCfl, a CTBOJibi pacnHjiHßaiOTCH ajih flajibHeHinen cyuiKH h b «coaxrry», ko- Hycoo6pa3HbiH inaTep (IlpHJio>KeHHe D. Phc.s). «Coaxrry» oömhho ycTpaw- BaK)T Ha xojiMax co CKajiHCTbiM ocHOBaHHeM, rae BJiara cboöoaho CTeKaeT, He a/icopÖHpyacb apoBaMH. 3to no3BOJiaeT flpoßaM coxHyTb öbiCTpee h coxpa- HflTb CBOe BbICOKOe KaMeCTBO OHeHb flOJirO. B 3HMHee BpeMH xopomo TOpHT H CBe>Kne bctbh 6epe3bi, ho y>Ke k MapTy 6epe3a BbiTarnßaeT MHoro BJiarH H3 noHßbi h ropHT xy>Ke. CTBOJibi CpyÖJieHHblX Jiepeßbeß BbIBO3HTCfI B 3aBHCHMOCTH OT MeCTOnOJIO>Ke- HHfl JieCHblX ynaCTKOB H HX paCCTOHHHH flO >KHJIbfI H no Mepe yCTaHOBJieHHH ycToiiHHßoro CHe>KHoro noKpoßa, Kor.ua ;ioci i i, ,ipoßa craiiOßu rcM Jierne. 3aTeM, nocjie aocTaBKH, aepeßb» yKJiaflbißaiOTCH jih6o ropH3oHTajibHo b uiTa- ÖeJIH, JIHÖO B «COaXTTy», B 3aBHCHMOCTH OT Toro, KaK .IOJII'O CTBOJibi oytyr jie>KaTb ;io pacnHJiHBaHHH h kojikh. «Coaxiry» Hcnojib3yeTca jjia öojiee p,jih- TenbHoro xpaHeHM ctbojiob. Ha TeppiiTopHH npo/iykthrhmx jiecoß, ncnojib3yeMbix Ha tohjihbo, peryjiapHo npoßoaaTca hhctkh, yöopKa XBopocTa h SojibHbix Hepe3 20-100 JICT )TM Jieca IipOHiBC-IVI BbICOKOKa'ICCTBCHHyiO TOnJIHBHyiO .ipCBCCHIiy, KO- Topoii SyayT nojib3oßaTbca noKOJieHna. Taxoe .JiojiroßpeMeHHoe njiaHHpoßaHMe 6bino cocTaßHon nacTbio caaMCKoft Tpa/HinnoHHOH cJjh jiococJihh. CiieayeT no/iHepKHyTb, hto ajia ycTOHHHBOcra (J)yHKHHOHHpOBaHHSI nOfIOÖHOH CHCTCMbI TpafIHHHOHHOrO XO3SIHCTBa H OÖeC neHeHHa apoBaMH cjieayiomHx noKOJieHHH, HeoöxoAHMbi fIocTaTOHHO 6ojib uine Jiecoß. Cjieaya 3toh moacjih, pe3epßHbie TaK>Ke He oöxoflHMbi b KanecTße rapaHTHH ot BO3MO>KHoro ymepöa b cjiynae npnpofl- Hbix KaTacTpo<}j, KaK h b cjiynaax, ecjin nenoßeK no npHHHHe 6ojie3HH, hjih ripeKjioHHoro Bo3pacTa He cmtokct npoßo/jHTb pyÖKy c coöjnoaeHHeM Bcex npaßHJi ynpaßJieHHH nofloÖHbiMH necaMH Ha mccthom ypoßHe. OÖbIHHO, B Ka>K/],OM flOMe HMeiOTCH TOTOBbie CyXHe JipOßa. KojIHHeCTBO cyxnx apoß .nojiacHO öbiTb ;iocia'io LuibiM ;uim Bcero OTonnTejibHoro ce3oHa, ho, KaK npaßHjio, apoßa 3anacaiOT Ha Becb toa. Flo cnx nop MHorne ceMbn aepacaT 3a nac ;ipoß Ha HecKOJibKo jieT. B Teweime leiuioi o jieTHero riepno/ia oTonneHne He Tpe6yeT MHoro 3Heprnn, no3TOMy b 3tot nepnoa OKiiraeTcx xbopoct . B pe3yjibTaTe oKHraeTca bch HMeioinaHOi apeßecnHa, 6e3 ocTaTKa. PacnnjiHßaHne n KOJiKa apeßecHHbi npoBOAHTCH 3hmoh, Korjja OHa 3aMopo>Ke- Ha. Jlyimee BpeMH fljia cyuiKH 6epe3oßon flpeßecnHbi - KOHen 3hmbi h Bee jie to. flpeßecHHa cHHTaeTca cyxon, ecjin OHa 3aroTOßjieHa Tpa/nmHOHHbiM cno co6om, hto rapaHTHpyeT BbicoKoe KanecTßo apob Ha AOJirne roAbi (KaK oTMe naioT MHorHe pecnoHfleHTbi) ecjin , KOHeHHO, OHa xpaHHTca npaBHJibHO, noa HaßecoM, hjih b xopomo BeHTHjinpyeMOM apobhhom capae. CyinecTßyiOT cnennajibHbie TeppHTopHH, rae jieca oxpaHaroTca h nojiHOCTbio HCKJHonaiOTca H3 npouecca BbipyÖKH. K hum othocstch ynacTKH, pacnojio «eHHbie 6jih3ko k pyHbHM n poAHHKaM, rae AepeßbH HHKoraa He TporaiOT. 180 TaiöKe BflOJib peHHbix aojihh, tekhx KaK fIOJMHa peKH /JeaTHy, 6epe3bi ocTaß jijhotch b KanecTße «JieflOKOJioû. Cue/iya sthm npaßHjiaM, coxpaHsHOTca He TOJibKO Aepeßba, ho h MecTa oÖHTaHHH n™u, 3anaeß, h »hbothmx. K TOMy ace, 6epe3oßbie Jieca HBJunoTCfl TaK>Ke «CBameHHbiMH MecTaMH», koto pbie no BepoBaHHHM caaMOB HacejieHbi jxyxauw, t3khmh KaK «TpojuiH» h «rpeMJiHHbi», >KHTejiSiMH noA3eMHoro MHpa. Ecjih >Ke b KaKOM-jraöo MecTe 06- Hapy>KHßaeTCsl, HTO nO/yieCOK, KyCTapHHHKH, HJIH JIHHiaHHHKH He Bblflep>KH- BaiOT Bo3fleiicTßHfl BbipyöoK h rnÖHyT, npHHHMaeTca pemeHHe o nojiHOM npe- KpameHHH BbipyöoK. Bcex, BKJnonaa aeTeK, oöynaioT xo/jHTb ranbKo no Tpo naM /yi» toto, htoöh He öpo/jHTb no Jiecy n He npHHHHSTb eMy ymepöa. OöbiiHO, aepeßo, cpyöJTeHHoe b rycTOM jiecy, He oöecnennßaeT aocTaTOHHoro KOJiHnecTßa Tenua npn OKnraHHH, TaK KaK oho Bbipocjio b ycjiOßHax Heaoc- TaTKa CBeia, Bo3flyxa h npocTpaHCTßa. /J,pcßccnHa, riojiyieHHaa c ynacTKOB «na;iia». pacnojio>KeHHbix Ha rpaHnn,e c OTKpbiTbiMH 6e3JiecbiMH ropncTbiMH TeppHTopHHMn, /jaeT ropa3flo öojibme sHeprnn npn ropeHHH. IIpHMOCTBOJib- Hbie jepcßf.a «pHKTec» jrerne ;iep>KaTb, pyön ri, n nnjiHTb, ohh ouiHMaiorcM ÖOJIbHIHM KOJIH'ICCTBOM 3HeprHH, >KapKO ropHT, H c.iy>Kai npeKpacHbiM TOnjlH bom. y 6epe3bi KopoTKHH BereTanHOHHbiH nepnofl, h ee apeßecHoe bojiokho npn co3peBaHHH CTaHOBHTC» oneHb T>i>KejibiM h njioTHbiM, hto oöecneHHßaeT ee BbicoKyio TenjioeMKOCTb. IlpaMbie Aepeßb» c anaMeTpoM cTBOJia ao 15 cm., Henoßpe>KAeHHbie h c öejioii Kopon, OTJinnaiOTCfl xoponiHM KanecTßOM n nx nacTO ocTaßJiaiOT, He cpyöaa. CaaMCKHe coAep>KaT cßeaeHHa o tom, KaK oöpaöaTbißaTb HanpnMep, b maMaHa «PyofiflHa» (tolhhh hcjiobck) co,nep>KaTCfl 3Ha- HH3 o 6ojie3Hsix aepeßbeß, Bbi3bißaeMbix rHHeHneM h rpHÖKOBbiMH 3a6ojießa- HHHMH. nPH nOfIrOTOBKe flpOß HeOÖXOfIHMO BblÖHpaTb HHCTyiO ApeßeCHHy. B jiereHfle, He peKOMenqyeTCJi ncnojib3oßaTb b «roaxTH» (= xo3ahctbo) apeße- CHHy c rHHJibK), noTOMy hto /iyx «PyonflHbi» npnHeceT « ryopuy» (=HecnacTbe). Использование Березовой Древесины в Художественном Творче стве и Кустарном Производстве ITpn OTÖope KanecTBeHHOH Hy>KHO MHoroe 3HaTb n coöraoflaTb on pefleneHHbie npaßHita. MacTep AOJiaceH CKa3aTb, jih Ta hjth HHaa ape- BecHHa fljia npoH3BOfICTBa KaKoro-JiHÖo H3flejiHH. HanpnMep, fljia H3roTOßjie hm nojio3beß caHeö HyacHbi HCKpnßJieHHbie ctbojim, no3TOMy fljia noncKa Hy>KHbix aepeßbeß TpeöyeTca oöohth öonbiuyK) TeppnTopnio neca, hto ao- BOJibHo TpyjiHo. MHorne caaMbi ao chx nop TaK h aenaioT, xoth cennac co- BpeMeHHbie npncnocoÖJieHna no3BOJiSHOT rayTb h nojinpoßaTb nK)6yio apeße cnHy. KpoMe toto, MHorwe CTann noKynaTb y>Ke oöpaöoTaHHyro apeßecHHy, h caMa 3aflana noHCKa hckphbjichhoh jipeßecHHbi b rycTOM Jiecy noTepajia CBoe 3HaHeHne. rioHCKH KanecTBeHHOH ApeßecHHbi KOTOpbIH B Jiecy, H CaM BblÖHpaeT Hy>KHOe flJia H3rOTOBJieHHS! Tex HJin HHbix 181 MOKeT OKaSaibCH, HTO OHO BblCOTbl, HJTH JiyHa B 3TOT MOMeHT He b toh (J)a3e, hjih no toh hjih hhoh npHHHHe oho He MO>KeT öbiTb cpyÖJieHO cpa3y. Tor/ia MecTonojio>KeHHe 3Toro Hy>KHO 3anoMHHTb hjih 3aMe- THTb, a Ba>KHO cpyÖHTb BOKpyr Hero HecKOJibKO jjpyrax HTOÖbi co3/iaTb BbiöpaHHOMy aepeßy onraMajibHbie ycjiOBHH fljia pocTa. PyÖKa BbiöpaHHoro flepeßa ,aoji>KHa npoH3BOflHTbca b HywHbie BpeMfl ro/ia h (J>a3y jiyHbi. Kate npaßHJio, TaKHe aepeßbH HHKor/ia He pyÖHT bo Bpe\i>i «'tepiiOH» hjih «MOJiofloii» jiyHbi, KOTopaa He RMzina. 3Ty nyHy TaK>Ke iiaibißaior «crHHBHiaH JiyHa», noTOMy hto /jepeßba, cpyÖJieHHbie b 3to Bp e Ma, oy/iyr rHHTb. flepeßba jiynuie Bcero pyomb bo ispeMH nocjieflHefi hctbcpth jiyHbi, hjih bo BpeMH nojiHOJiyHHH. BpeMa pyÖKH - Ba>KHeHiuHH cJjaKTop nojiyneHHa KanecTßeHHoii Koraa caaMbi 6epyT aepeiio H3 Jieca, ohh py ko bo;ictrv iotcs npaBHJioM no ko- TOpOMy, eCJIH Tbl ÖepeiUb HTO-HHÖyqb, Xbl fIOJDKCH H OCTaBHTb. 3to noßeaeHne »BjiaeTca nacTbio hx ayxoBHOCTH n yßa>KHTejibHoro OTHOuie- HH5i ko BceMy >KHBOMy h MHpy b HejiOM. Y caaMOB cymecTßyer oöbinan no- CTynaTb raxoHbKO no jiepeßy TonopoM hjih hojkom 3 pa3a, KaK 3to ;iejraeiCH c KOCTbio, nepea TeM KaK ee pa3ipbi3Tb, htoöm jocTaib BKyciibiii Mo3r. 3tot pmyaji, H3 rjiyÖHHbi bckob, Byer 06 yßa>KennH k KaacflOH BeiHH. TaKHM o6pa3oM, caaMbi He MeTHT cbok) TeppHTopHio, a KaK 6bi nojiy- MaK)T pa3pemeHHe Ha ncnojib3oßaHHe toh hjih hhoh Bemn. lIpHHHMaiOTCH bo BHHMaHHe raiwKe h ;ipyi ne (juiKTopbi. HanpHMep, BavKiio 3HaTb, K3K3M CTopoHa flepeßa noflßepraeTca bo3,ichctbhio iipco6jia, :iaioiunx BeTpoß h fleöcTßHio cojiHHa, io>KHasi hjih ceßepHaa. Bee 3to, BMecTe c npa- BHjibHo BbiöpaHHbiM BpeMeHeM pyÖKH rapaHTHpyeT to, hto ,'ipeßecHiia 6y;icr xoporno coxHyTb h fljifl BO3OÖHOBJieHHH jieca co3flaHbi Hafljie>KaiHHe ycjioßHH. ripouecc cyuiKH oneHb Ba>KeH /yia apeßecHHbi, ncnojib3yeMOH npn npoH3BOfICTBe opyaHH h H3flejiHH. ();[Hai«) MHoroe 3aBHCHT ot npot})eccHO- HajibHoro yMeHHH h HHTejuieKTa KOHKpeTHoro HCJioBCKa. BbicoKOKanecTßeH- Hyio, xoporno BbicymeHHyio ;ipeßecHHy movk n o xpaHHTb HecKOJibKO jieT, npn neM co BpeMeHeM OHa CTaHOBHTCH Bee Jiynrne h Jiynme. HeKOTopbie OTMenajiH, hto MacTepy hcbo3mo>kho KynHTb Hy>K- Hyio eMy /ipcßeeHiiy, noTOMy hto ;uih ycranoßJieiiHa HeoöxoflHMOH cb«3h «MacTep-aepeßO» (=npnpo,na), aepeßO aojdkho öbiTb HanaeHO, BbiöpaHO, cpyÖJieHO, AOCTaBJieHO h oöpaöoTaHO caMHM MacTepoM. Bbiöop flepeßa, ero pyÖKa h oöpaöoTKa - 3BeHba Hepa3pbißHoro nponecca. IloflaßJiaiomee öojibuiHHCTßO caaMCKHx MacTepoß no /icpcßy cnmaeT, hto npoMbiuuieHHo i[pon3Be;ieii[iaM jipenecHHa He oojia;iaer HyacHbiM KanecTßOM, xoih sanacTyio h Hcnojib3yioT ee. TeM He MeHee, ajih H3roTOßjieHH» cbohx Jiyniunx paöoT MacTepy 3HaTb bcio «Hcropnio aepcßa», BKjnoMaa rocnoflCTßyio mne HanpaßJieHHa BeTpa, cojiHenHyio 3Kcno3HUHK), xapaKTep jiaH/iuia(|)Ta, pacTHTejibHOCTH, noHßeHHbix ycjioßHH MecTa, rae oho pocjio, a TaK>Ke to, Ka khm oöpa3oM aepeßo öbiJio cpyÖJieHO. Bee 3th 3HaHHa, b kohchhom cneTe, OTpajKaioTca b oo.thkc hsacjihm, «BJiHiomerocM qacibio h cnocoöoM KyjibTyp- Horo h eoHHajibHoro caMOßbipa>KeHHH, HenocpeacTßeHHO CBH3aHHoro c OKpy >KaiomeH npHpoflHoii cpeAOH. 182 K Hanany 21 Bexa Hcnojib3oßaHne 6epe3oßOH ApeßecHHbi j\jir npon3BOACTBa H3aejiHH HauHOHajibHoro TBopnecTßa yßenHHHJiocb. ITofl BJiHHHHeM MoaepHH -3 cli im h h r.iooa.iHianHH KvvibTypnaH h npnpoflHaa cpeja. nii(|)pacrpyKiypa, cijjepa oöcjiyacHßaHHa, h npnßbi4Kn Jiro/jen 3HaHHTejibHO h3mchh jracb. CaaMbi He CTajiH hckjuohchhcm h 3 sthx npoueccoß. KaK h b /ipyrnx pa3BHTbix CTpaHax, coßpeMeHHbie HHtjDpacTpyKTypa, cpeacTßa KOMMyHHKaHHH h TpaHcnopTa, sjickiphmcctbo h nponne TexHHHecKHe ;u)crH>KeiiHsi cemac AOCTynHbi n b Cai im n (Kalstad 1996). 3nannH caaMOB o /icpeßMimoM KycTap hom ripoMbicjie, k cnacTbio coxpaHHjracb b apxHßax hjih onyÖJiHKOBaHbi h cjiy>KaT 3HiiHKJioneflHeH HaKonHßineroca onbiTa MHoroßeKOßoro ncnojib3oßa hhh 6epe3oßoH (HanpnMep, Nielsen 1932-1962). J\o chx nop MHoro caaMOB npoaojiacaioT H3roTaßJiHßaTb H 3 6epe3bi TaKne H - aenm, KaK ,o,Jia nHTba, qaiim, Ba3bi, cfmrypKH, H3o6pa>KaK>mHe juoden H )KHBOTHbIX, H APVTHC MC-IKHC H3;iejlMsl. THn KpynHblX H3;ie.lHH Hi 6epe3bi - pa3JiH4Hbie bhaw caHen, b nocneflHee BpeMH ncnojib3yeMbie ropa3flo MeHbine, neM CHeroMOÖHJin. HecKOJibKO BbicoKOKßajiH<})nunpoßaHHbix yMejib ueß äo chx nop 3HaK)T, KaK cAenaTb «repec», ojieHbH HapTbi, H3roTOBJieHHe KOTOpbIX TpeÖyeT OCOÖbIX 3HaHHH H yMeHHH. Человеческий Фактор: Управление Березовыми Лесами в Бу дущем HHTepBbK), npoßegeHHbie b OxueiioxKe, no3BOJiHJiH nonyHHTb HejiocTHyio KapTHHy TpaflHHHOHHoro h coßpeMeHHoro Hcnoj]b3oßaHHH 6epe3bi Ha Meer hom ypoßHe. 3th MoryT b KanecTße 3HHHKJione/iHH Kyjib- TypHoro HacjieAHH caaMOB, npeflocTaßJijnomen ncropHHecKyio h coßpeMeH- HyK) MH(J)OpMaHHK) O Tpa/IHHHOHHbIX SKOJIOrHHeCKHX 3H3HHHX, npaKTHHeCKHX acneKTax ynpaßJieHHJi pecypcaMH, o KanecTße Hcnonb3yeMoro MaTepnajia, a TaK>Ke 06 ochobhhx h npaßMjiax ycTOHHHBoro Hcnojib3o - npnpoflHbix pecypcoß 30Hbi necoTyH/ipbi. Ilocjie 3KOJiorHHecKnx h sko- HOMHHecKHx acneKTOB (nocjrejiHHe b hbhom BH,a,e b CTaTbe He o6cy)KflaK)Tca), caaMCKHe 3KcnepTbi npnaaiOT Hanöojibiuee 3HaneHMe MecTy 6epe3bi b Hanno- HaJibHOH KyJibiype h oöpa3e >kh3HH, roßopa, hto «...6e3 oepeibi Jictruih nyc ma.» Bepe3a cjiy>KHT Ba>KHon cocTaßJiaromeH nacTbio OKpyacaiomeH cpeflbi CanMH. IlosTOMy npHpoflHbie ycjioßHH, kojihhcctbo h KanecTßO apeßecHHbi h jiecHbix pecypcoß ocoöeHHO Ba>KHbi /yia caaMOB, Beflymnx xo3AHCTBeHHyio AeaTejib- HOCTb H TpafIHHHOHHbIH OÖpa3 >KH3HH. KpOMe TOTO, HX KyjlbTypHOe M AyXOB HOe CaMOßbipa>KeHHe CJiy>KaT Ba>KHbIMH 3JieMeHTaMH H CHMBOJiaMH )KH3HH caaMOB. CaaMCKHe SKcnepTbi npnßOAflT HHTaTbi, noflnepKHßaiomHe Tec- Hyio CBa3b Me>Kfly nejiOBeKOM h 6epe3oH b ceBepHOH necoTyH^pe. « ....jiemoM maM maKou npeKpacHbiu 3anax u Hucmeuiuuu eo3dyx, e 6epe3oebix necax.»; 183 « ...жить было бы так холодно и неуютно без березы....»; « ...а без березы все превратится в тундру »; « ...так мило и свежо, бродить по березовому лесу ....сосновый лес слиш ком сух, а в березовом лесу воздух достаточно влажен, он дает ощуще ние полной жизни ...... 3th KOMMeHTapHH nOKa3bIBaiOT B3>KHOCTb 6epe3bl, He TOJIbKO KaK MCTOHHHKa 3Heprnn j\m oöorpeßa »hjihui h nponnx bhaob Hcnojib3oßamifl, ho h j\sik JIHHHOrO ZtyXOBHOrO 3£OpOßbfl M OAyXOTBOpeHHOCTH. IIOHHTHO, HTO (JtaKTHHe- CKM, 6epe3a HBJIHeTCH CB>I3yK)mHM 3BCHOM MOKfly KyjTbTypHblMH TpaAHU,HHMH, TpyflOßOH fIeaTeHbHOCTbK), H3bIKOM, 3nOCOM, TaKCOHOMHeH h TepMHHOJiorneH. Eojiee Toro, Hcnojib3oßanne 6epe3bi, KaK npeflMeTa cnocoöcTßyeT co xpaHeHHK) 3KOJiorHHecKHx 3HaHHH, npHOÖperaeMbix b npouecce HaöJiiOAeHHH 3a npnpoflOH. Bee 3th acneKTbi bhocht BKJia/i b KyjibTypHoe h counajibHO 3KOHOMHHecKoe ÖJiaronojiyHMe jnoAen, npo>KHßaK)mnx b cneuncj)HHecKHx npHpOAHbIX yCJIOBHfIX. MecTHbie caaMbi nojiHOCTbro oco3HaiOT to, hto b Hanajie 21 BeKa ycmimiHCb He TOJIbKO BHeillHHe, HO H BHyTpeHHHe H3MeHeHHH H BO3POCJIO flaßJieHHe, OKa3bißaeMoe Ha ceßepHbie Hapojjbi h OKpy>KaiomyK) hx Be3ycjiOßHO, npoflojwaromeecfl ncnojib3oßaHHe JiecoTynopoßOH 6epe3bi KaK b KanecTße TOnJIHBa, TaK H flJlfl npOH3BOfICTBa pa3J!HHHbIX KyCTapHblX H3flejlHH, OHeHb b3>kho pjia MecTHoro HacejieHHH. IlosTOMy Bonpocbi coGctbchhocth, flocTyn hocth Hcnojib3oßaHHsi h ynpaßJiemifl 3THMH yHHKajibHbiMH npHpoflHbiMH pe cypcaMH HaxoflHTca Ha ocTpne Mecrabix aeöaTOß. CaaMCKne pecnoHfleHTbi o6ecnoKoeHbi cjihuikom öojibuiHM BjraHHHeM JlecHo ro VnpaiiJiciiHM Ohiijihii.ihh (Metsähallitus), ()6iuecrßennoH opraHH3au,HH, 3amHmaiomeH Hau,HOHajibHbie HHTepecbi Omhjiahzihh h nocTOHHHO BMeuiH- BaiomeHca b MecTHbie flejia b CanMH. Ee nojiHOMO4Ha aojmHbi öbiTb nepe- CMOTpeHbi, h cTeneHb bjihhhmh 3Toro HHCTMTyTa BjiacTH Ha ynpaßJieHHe jieca- MH fIOJDKHa ÖblTb CHH>KeHa. YBeJIHHHBaK)maaCSI KOMMepUHaHH3aHHfI HCnOJlb 30BaHHa 6epe3oßbix jiecoß KaK h ycHJieHHe TypncTHHecKOH flejrrejibHOCTM, He- COMHeHHO, HBJTSHOTCSI (J)aKTOp3MH, yrpO>KaK)LL[HMH HenpepblßHOH HeJTOCTHOCTH npouecca Hcnoj7b3oßaHHa caaMaMM 6epe3bi. Hoßbie HH(J)pacTpyKTypbi h npoMbiuiJieHHOCTH, TaKne KaK aßTOMaracTpaj™, npoMbiujjieHHbie Jieco3aro- TOBKH, CTpOHTejIbCTBO H TOpHOAOÖbIBaiOmaH npoMbim- JieHHOCTb, AOJI>KHbI BHe/ipaTbCH OHeHb OCTOpO>KHO, C yHeTOM OUeHKM BO3fIeH CTBHSI Ha OKpy>KaK3inyK) cpeay, counajibHO- skohomhhcckhx h KyjibTypHbix acneKTOB. riocjieACTBHH noaoÖHbix BO3fIeHCTBHH pecnoH/jeHTbi onHCbißaio cjieflyrouiHM oöpa3oM. «Mbt donoKHbi jicumb, coöjuoöan mpaduifuoHHbie npaerna, nojiynan öo.nbiue 3Hamiu u naebiKoe u nepedaeamb ux HaiuuM demHM. Mbi öohdkhu xodurnh no mponaM, a He öpodumb no eceMy .necy. Mbi 3auuiu cjiuiukom dajieKO, muu cjiuiuKOM öbicmpo no nymu e ioöaiiuaifuu e .uupe KOHKypemfuu . Mbi öomichm ocmanoeumbCH, umoöbi nodyMamb a Kepnymbcn k hchuu.m mpaöuijUHM». «CaaMbi, ane emcrnu nacmomque 3aufumuiiKu OKpy.i/caioufeii cpedbi». 184 «Heiiitocmu ii HopMamuebi dpyzux uapodoe npueueawmcn hom. Ohu nodnep- Kueatom eavcuocmh coxpaiieiiiiH u 3aufumbi npupodu, ho ecmt eufe Koe-umo, k he mv ohu npueodnm. Ohu eujbieamm KOHKypemfim e ucnojib3oeaHuu npu poduux pecypcoe u cmuicarom uyecmeo omeemcmeeuHOcmu 3a oikho noHATb m npn- Mepa, /jßa TOMy Ha3a/i 3HaMHTejibHbin ymepö npnpoAe öbiji HaHe- CeH HeOÖfIyMaHHbIMH fIeHCTBHHMH BJiaCTeH. B HeCKOJIbKHX KHJTOMeTpaX OT 71. OxuefioxKH, bhh3 no TeneHHio peKH U,eHTp no OxpaHe Cpeflbi nocTaHOßHji cpyönTb n bhcokhh öepe3HHK, pacTymuft Me >Kjiy öeperoM n mocce, ana toto, htoöm OTKpbiTb npoe3>KaromnM no mocce bha Ha peicy. BecHoM Ha cjieflyromnn roji npoiueji mohihuh Jie/joxo/i no /Jearay, h MHorne ocTaßiuneoi Aepeßba He h öbuin yHHHTO>Ke- Hbi. B pe3yjibTaTe, oöpa3oßajica nojiHOCTbio oöe3JieceHHbin h HesamnmeHHbiH aepeßbaMH öeper. noHarao, hto caaMbi c nx 3HaHMHMn h HaßbiKaMH ynpaß jieHHH HHKoraa öbi He coflencTßOßajra npHHaraio noflOÖHoro peiueHna, Ha npaßneHHoro Ha yAOßJieTßopeHne cniOMHHyTHOH npnxoTH nyTemecTBeHHH KOB, «ejiaromnx nojiyMHTb yAOBOJibCTBne ot co3epuaHHH neii3a>Ka. MHeHHe h oueHKa MecTHbiMH whtcjihmh noaoÖHbix coöbiTHH cjieflyromaa: « ...e JJecHOM ynpaejieuuu (Puhjihhöuu (Metsähallitus) u /leumpe no Oxpane Ok-pyjicaioufeu Cpedbi ( Ympäristökeskus) jiiaiom, KaK pa3pymamb». AHa.no rHHHaa CHTyauMH Haöjiioflajiacb b nepnoa c 1920 no 1970-bie roflbi bo BpeMfl npoßefleHHH rocyqapcTßOM non™ öe3ycneniHbix MeponpHjrnrä no pa3Befle hhk) ejin h cocHbi b OxuenoxKe. B 3to BpeMa 6epe3a paccMaTpnßajiacb sthmh opraHH3aiiHHMH, KaK MeHee KanecTßeHHbiH pecypc, no cpaBHeHMO c öbiCTpee pacTymMMH ejibio h cochoh. 3ia no3HUHH Me/yieHHO HcnpaßjiaeTca b Hauin flHn, Kor.ua npeanoHTeHne BHOBb OT/iaeTca 6epe3e. Ho ymepö, npnHHHeHHbiii ero ropHbiM 6epe3oßbiM jiecaM öbiji 3HaHHTejibHbiM. Перспектива: Предложения и Политические Рекомендации KaK we b öyaymeM, npn coßpeMeHHbix cou,no-3KOHOMHHecKnx h nojiHTHMe- CKnx ycjiOßnax öy/jeT npoßOAHTbca ynpaßJieHne 6epe3oßbiMH JiecaMH? Kom- MeHTMpya cj)pa3bi «... 6e3 6epe3bi DKiisub nycma; ... mu ne mowcm cyufecm eoeamb 6e3 6epe3bi; iuiu...6epe3a cma.ua hom, caaMOM, ecezo», mo>k ho CKa3aTb, hto >KM3Hb 3TOTO no-npe>KHeMy HanojraeHa n nponnTaHa 6epe3on. Bce noHHMaroT, hto TpeöyeTca perynnpoßaHne, BKJironaa njiaHbi ynpaßJieHna, nocKOJibKy Bce öojibmee KOJinnecTßO Jiroaen, KaK Mecrabix, TaK h npne3>KHx, ofIHOBpeMeHHO npoaßjiaroT pa3JinnHbie HHTepecbi no OTHOuie hhk) k oflHOMy h TOMy »e pecypcy, HaxoflameMyca b ojihom n tom >Ke MecTe. KaK mo>kho 3aKjrroHHTb H 3 flaHHbix npoßeaeHHoro onpoca, Mecrabie >KHTejin, 6yAb ohh caaMaMn, (J)HHHaMn, hjih npeACTaßHTejiaMn apyrnx HapoflOß, aojdk- Hbi öbiTb BOBJieneHbi b nponecc npHHHTHH peuieHMH no ncnonb3oßaHHro Me 185 cthmx pecypcoß cennac, h hx BO3MO>KHOMy Hcnojib3oßaHMio b öyAymeM (Nysto 1998). TaK KaK 6epe3a - rjiaßHeHumii 3JieMeHT JiecoTyHflpbi, o6pa3a >kh3hh h 3HaHHH MecTHbix acHTejieK, npeaJio>KeHHsi no ynpaßJieHHio 6epe3oßbiMH jiecaMH n no- JIHTHMeCKHe pemeHHH AOJI>KHbI HCXOfIMTb OT CaMMX )KHTejieH, a He OT HHHOB HHKOB, CHfIJHIIHX B ropOfICKHX OCjjcjjHCaX. TaKOH THII ynpaßJieHHH MO)KeT ocy meCTßJiaTbCH nyTeM paCIIIHpeHHH nOJIHOMOHHH HHCTHTyTOB MeCTHOro CaMO ynpaßjieHH» h KOHTpojia KaK, HanpHMep, caaMCKon cMCTeMbi hjih MecTHbiMH accouHauHHMH, 3aHMMaK)inHMHca ynpaßjTeHHeM 3eMjrenojib3oßa- HHH B JieCHOM XO3SIHCTBe, CTOpTHBHbIM pbIÖOJIOBCTBOM H OXOTOH, TypH3MOM H OTflbixoM, h T.fl.. HanpHMep, nporpaMMbi no KOHcepßauHH «ahkoh npnpo flbl», KaK T3KOBOH, AOJT}KHbI yHHTbIBaTb H 3KTHBHO HCnoJlb3oßaTb TpafIHHHOH- Hbie 3KOJiorHMecKne 3HaHHH, noKajibHbin onbiT h npaKTHKy npnpoflonojib3o - KaK MecTHbie 3HaHHH, TaK h npHHHnnbi ynpaßJieHHH fIOJDKHbi öbiTb BKjnoneHbi b uiKOJibHbie nporpaMMbi ajth Toro, htoöm ae™, pacTymHe Ha Ce- Bepe, He noTepajin nyBCTBa «MecTa». Eonee Toro, 3H3hhji h HaßbiKH nepeAaßaTbca H 3 noKOJieHHH b noKoneHne, Hrpaa pojib CBoeo6pa3Hon oöy- HaiomeH cncTeMbi b oÖJiac™ panHOHajibHoro Hcno;ib3oßaHHH npnpo/iHbix pe cypcoß, yxoAflmeö kophhmh b HaKonjieHHbiß noKOJieHHHMH onbiT. KaK cKa3aji OfIHH caaM, « ...He ece oxommiKU npoui.nozo, öujiu ydcm.nuebi e oxome, ecun ohu ne npudaeann ma'tonm moMy, KciKyto UAienno eemKy cjiedyem cpyöumb u ucnojib3oeamb dji.h .7oeyuiKii na KyponamKy». Bee corjiainaiOTCfl c TeM, hto cennac Ha3pena b or paHHHHTejibHbix Mep. BpeMeHa mchhiotoi, h CTapbie He Bcer/ja paöo- TaK)T, ho, TeM He MeHee, HHoraa eme MoryT öbiTb Hcnojib3oßaHbi. CoßpeMeH- Hoe oömecTßo copneHTHpoßaHO öonee Ha MaTepnanbHbie hchhocth neM Ha npnpofly h Ha enraajibi, KOTopwe OHa no/iaeT. Ha rvmax MHornx caaMOB opneHTanHH Ha noflOÖHbie uchhocth HaHocHT HenonpaßHMbin ymepö npHpo- Ae. Hto KacaeTca 6epe3bi, »cnre™ Hcnojib3yiOT ee ajih oöorpeßa cbohx >kh jihhj, Kpyrjibiii roA, b tom nncjie h b KOHne 3hmbt, anpejie n Mae, Kor/ja eme jre>KHT MOiyHbiH CHe>KHbin noKpoß. B 3to BpeMs yaoÖHee h jrerne aocTaBJiHTb CTBOJibi Ha CHeroMo6njie, npeHeöperaa npoueccoM cyujKM h pncKyji nojiynHTb apeßecHHy njioxoro KanecTßa. OpneHTannro Ha ycTOHHHBoe Hcnojib3oßaHHH 6epe3bi ocoöeHHO Ba>KHO noji- Aep>KHßaTb Ha MecTax. CaaMbi nyBCTByioT, hto «...6epe3a ,uaeT oMeHb mhoto: Tenjio, 3amHTy, ygoßOJibCTßue, KOMnaHnio, 3flopoßbe. OHa KpacHßa, h nocTaß jiaeT MaTepnaji ajih MHornx Beujen, y Hee 3ejieHbie jiHCTbH n MyAecHbin 3a nax». Chmboji, KOTopbiH HeceT 6epe3a, «coaxKH», b caaMCKOH KyjibType h >kh3hh Jiynme Bcero Bbipa>KeH b craxax oneHb H3BecTHoro n noMHTaeMoro ca aMCKoro no3Ta nayjiyca Ytch (1918-1975). 3th cthxh MoryT ejiy>KHTb 3nn jioroM Hauieii CTaTbH (Ytch 1970: 4; aHrjiHHCKaa Bepcna aßTopa). 186 MyL!MTE J]bHAfl JIIOEOBb Nugo roarjke soahki orru duottarravddas, пи lea biegga botnjan mu nai eallima Nugo soagi matta bievlla vuosta cuovgä, nu ohcalan väriide, laguide ja orohagaide. Dat lea mu eallin, man топ rähkistan. Как витая береза на краю скалы Так ветер перекосил всю мою жизнь Как березовый ствол стелется по бесплодной земле Так и я тоскую по горам, растениям и поселениям Все это моя жизнь, все это я люблю. Благодарности ABTopbi önaro/iapaT 3a 4)HHaHCOByro noaziepwKy 3Toro HCCJiefIOBaHHH Ko mhcchk) no MccjieAOBaHHHM EBpocoio3a (HIBECO 2000- 2003), mccthmx 3KcnepTOß 3a mx OTKpbiTOCTb npn npeflocTaßjieHHe .naHHbix n 3a aKTHBHoe yqacrae b paöcrre. Pe3yjibTaTbi öbiJTH flOJio>KeHbi Ha 1-om PaöoneM Coßema hhh (raMÖyprcKHH YHMBepcHTeT). OcoöyK) ÖJiaroAapHOCTb Bbipa>KaeM JlHJibe Cennajia (HBano n MycTaapßH, Ohhjihhamh) 3a ee orpoMHyio noMomb, oKa 3aHHyio KOMaH^e. Библиография Abramovitz, J. N. 1998. Taking a stand: cultivating a new relationship with the world's forests. Worldwatch Paper 140. Worldwatch Institute, Washing ton, DC. Aikio, M. S. 1990. The Changing Role of Women in Sami Society. In: Miiller- Wille. L. (ed.). Social Change and Space. Indigenous Nations and Eth nic Communities in Canada and Finland. Minor in Northern Studies Program, McGill University, Montreal, p. 13-17. Aikio, M. S. 1998. Tourism in the North and Sami Culture. Juridica Lapponica 19: 87-92. Baer, L-A. 1996. Boreal forest dwellers: the Saami in Sweden. Unasylva 186, 47:16-21. [Canada] 1998. Proceedings of'Sustainable Development in the Arctic: Les sons Learned and the Way Ahead. Circumpolar Conference and Work shop, Whitehorse (Yukon Territory) Canada, May 12-14, 1998. North ern Review 18: 1-256. Cox, C. B. & Moore, P. D. 1993. Biogeography. An Ecological and Evolution ary Approach. Blackwell, Oxford. Goenner, C. 2002. Forest Tribe of Borneo: Resource use among the Dayak De nuaq. Man and Forest Series 3.: D. K. Printworld, New Delhi. 187 Helander, E. 1992. Sami knowledge - subjective opinion or science? Diehto giisä, Newsletter from [the] Nordic Saarni Institute 1/92: 3^4. Helander, E. 1996 a. Development, knowledge and Sami reindeer herding, in: Cultural and Social research in Greenland 95/96. Essays in Honour of Robert Petersen. Ilisimatusarfik / Atuakkiorfik, Nuuk p. 107-118. Helander, E. 1996b. Sustainability in the Sami area: The X-fde factor. In: Helander, E (ed.) 1996. Awakened Voice. The Return of Sami Knowl edge. Diedut 1996: 4. Nordic Sami Institute, Guovdageaidnu/Kautokeino. p. 1-6. Helander, E. 1999. Traditional Sami Knowledge. Arctic Centre Reports 26 25-27. Helander, E. (ed.) 1996. Awakened Voice. The Return of Sami Knowledge. Diedut 1996: 4. Nordic Sami Institute, Guovdageaidnu/Kautokeino. HIBECO (Human Interactions with the Mountain Birch Forest Ecosystem: Im plications for Sustainable Development.) 2000-2003. Workpackage 1: Socioeconomic Studies in Rural Communities, Department of Geogra phy, Hamburg University, Germany. Interviews and surveys conducted by Maria Sofia Aikio, Jorunn Eikjok, Heidi Kitti, Vesa Luhta, Ludger Miiller-Wille, Maiju Pasanen, C. Blair Stevenson, Maiju Pasanen and Astrid Solhaug, October 2000 to May 2002. Other participating re searchers: Dietbert Thannheiser (leader) and Pekka Aikio, John E. Lewis, Junhua Li, Karl-Dieter Meier, Linna Weber Miiller-Wille, Jan Wehberg. Program: "Quality of Life and Management of Living Re sources", Key Action 5.3. "Sustainable and multipurpose utilization of forest resources: integrated forest-wood chain". Funded financially by the European Union Research Commission, contract QLKS-CT-1999- 011515. Hustich, I. 1946. Lappland lever [Lapland lives.]. Holger Schildt, Helsingfors Hustich, I. 1979. Ecological concepts and biogeographical zonation in the North: the need for a generally accepted terminology. Holarctic Ecol ogy 2: 208-217. Kalakoski, M. 1999. The threats to the traditional sami livelihood in timberline forests in Finnish upper Lapland. In: Kankaapää et al. (eds.). Sustain able development in northern timberline forests. Finnish Forest Re search Institute. Research Papers 734. p. 157-163. Kalstad, J. K. H. 1996. Modern Challenge Facing Knowledge in Sami Subsis tence. In Helander, E. (ed.). 1996. Awakened Voice. The Return of Sami Knowledge. Diedut 1996: 4. Nordic Sami Institute, Guovdageaidnu/Kautokeino. p. 21-30. Kalstad, J. K. H. 1997. Aspects of Managing Renewable Resources in Sami Areas in Norway. In: Gaski, H. (ed.). Sami Culture in a New Era. The Norwegian Sami Experience. Davvi Girji OS, Käräsjohka. p. 109-126. Kankaanpää, S., Tasanen, T. & Sutinen M-L. 1999. Sustainable development in northern timberline forests. Proceedings of the Timberline workshop, May 10-11, 1998 in Whitehorse, Canada. Finnish Forest Research In stitute. Research Papers 734. Kankaanpää, S., Miiller-Wille, L., Susiluoto, P. & Sutinen, M-L. (eds.) 2002. Northern Timberline Forests. Finnish Forest Research Institute. Re search Papers. In print. 188 Keskitalo, A-l. 1994. Research as an inter-ethnic relation. Arctic Centre Re ports 11 / Diedut 7/1994: 7-31. Lehtinen, A. A. 1991. The northern natures - a study of the forest question emerging within the timber-line conflict in Finland. Fennia 169, 1: 57- 169. Mattsson, J. 1987. Ihmisen vaikutus Utsjoen metsärajametsiin [Human impact on the timberline forests in Utsjoki], Pro gradu thesis. Department of Geography. University of Turku. Mattsson, J. 1995. Human impact on the timberline in the Far North of Europe. Zeszyty Naukowe Uniwersytetu Jagiellonskiego MCLVI, Prace Geograficzne - Zeszyt 98: 41-55. Muller-Wille, L. 2000. Human-birch relations in northern Fenno-Scandian eco systems. Survey questions, HIBECO, Workpackage 1. Manuscript. Bp. Muller-Wille, L., Eikjok, J. & Thannheiser, D. 2001. People and Birch: The Sami Perspective of the Environment and its Sustainability. In: Wielgo laski, F. E. (ed.) Nordic Mountain Birch Ecosystems. Man and the Bio sphere Series 27: 369-376. Nielsen, K. [and Nesheim, A.] 1932-1962. Lappisk ordbok - Lappish diction ary. Vol. lnstitutt for sammenlignende kulturforskning, Oslo. Nysto, S-R. 1998. Decision-Making and Priority-Setting in the Circumpolar. Northern Review 18: 119-128. Sandström, O. et ai. 2000. Ylä-Lapin luonnonvarasuunnitelma [Natural Re source Plan for Upper Lapland], Metsähallituksen metsätalouden jul kaisuja 38. Sihvo, J. 2000. Mountain birch forests in Northern Lapland. Paper given at the HIBECO workshop "People and Birch - Human environmental interac tions in northern forest systems", Siida - Sami Museum, Inari, October 21-23, 2000. Utsi, P. 1970. Reagganan rähkesvuohta - Smärtande kärlek. in: Dikter. Fran Bygd och Vildmark. Luleä stiftelse ärbok 61: 4. [also in: Utsi, Paulus and Inger Utsi 1980. Giela gielain, divttat/dikter. Alltryck, Luleä. p. 9], Veijola, Pertti 1998. Suomen metsänrajametsien käyttöjä suojelu [Utilization and Protection of Finland's Timberline Forests], Metsätutkimuslaitok sen tiedonantoja / Finnish Forest Research Institute. Research Papers 692. Yaroshenko, A. Y., Potapov, P. V. & Turnbanova, S. A. 2001. The Last Intact Forest Landscapes of Northern European Russia. Mapping of intact for est landscapes in northern European Russia using high-resolution satel lite images. Greenpeace Russia, Moscow: www.globalforestwatch.org (accessed April 26, 2002). 189 Моделирование Лесных Ресурсов с Помощью Дистанционных Методов и Геоинформационных Систем Шивананд Балрам и Джон £ Левис Резюме TcXHOJIOTHH 30HflHp0BaHHfl H reOrpacJ)HHeCKHX HH(})OpMa- HHOHHbIX CHCTeM (THC) flaiOT BOSMO/KHOCTb npoßecTH npocrpaiicTßeiinbiH aHajiH3 h co3flaTb cnciCMy ynpaßJieHHH, no3Bo.raioiHHe yHHTbiBaTb miioi omhc jieHHbie (j)aKTopbi HeoöxoAHMbie ajih 3<})(j)eKTHBHOH oueHKH h ynpaßJieHHa jiecHbiMH pecypcaMH. KaK /(HCxannHomioc 30HHpoBaHHe, TaK h THC hbjihiot- Cfl TCXHO.IOrHMMH IHHpOKOrO CneKTpa aeHCTBHfI, H HX nOJie3HOCTb asia TOH HJIH HHOH OTpaCJIH 3HaHHSI He OHeBHfIHa. 110 npHMeHeHHK) TCXHOjIOrHH AHCTaHUHOHHoro 30HflHpoBaHH3 h THC b ynpaßneHHH JiecaMH ony6jiHKOBaHO MHoro CTaTeft, h cyTb npocTpaHCTßeHHbix TexHOJiorHH MO>KeT öbiTb B CTaTbe npeACTaßjieHa KJiaccHcJ)HKauHa ochobhbix TeXHOJIOrHH fIHCTaHUMOHHOrO 30HflHp0BaHHH H THC OnHCaHHbIX B paöoTax no ynpaßJieHHK) JiecHbiMH 3KocncTeMaMn. 3th TexHOJiornn KjiaccH(})HUHpoßaHbi c tohkh 3peHna no,zuiep>KKM HHTerpMpoBaHHSi aaHHbix h ynpaßJieHHH; npoßeAe hha HHBeHTapH3aij,HH m oueHKH; npocTpaHCTßeHHoro aHajiH3a; HHH H BH3yajlH3ailHH; BblflßJieHHfl H3MeHeHHH; H COqnajlbHO-3KOHOMHMeCKHX npoueccoß h ynacTHJi oömecTßeHHOcra. 3aTparHBaiOTCH HeKOTopbie Bonpocbi oueHKH norpemHOCTeii H3-3a Ba>KHOCTH nocjie/iCTBHn hx bjihhhhh Ha uponecc npHHHTHH pemeHHH h njiaHHpoBaHHH. 3HaHHe sthx TexHOJiorHH yMeHbuiaeT BepOSTHOCTb fIyÖJIHpOBaHHH paÖOT H CO3/iaCT OCHOBy nil a paiBHIHM HOBbIX TexHOJiorHH, /laiomnx öojibmne bo3mo>khocth ajih ycToÖHHBoro ynpaß.icHHM JiecaMH. Kjuoneßbie cjioßa: necoß, /iHCTaHUHOHHoe 30H,gHpoBaHHe, reorpa(|)H i iecKHe HHtjiopManHOHHbie chctcmh, npocTpaHCTßeHHoe MOflejinpo- BaHHe 190 1 Введение Леса представляют собой важный экономический и экологический ре сурс, которым необходимо устойчиво управлять на благо всего общества. Леса обеспечивают такими важными для существования человека това рами и услугами как древесина, недревесные продукты леса. Леса - это среда обитания и укрытие, они защищают почвы и водные ресурсы, со храняют биоразнообразие, являются основными поглотителями углерода (Lund и Iremonder 2000). Тем не менее, сельскохозяйственное освоение, социально-экономические факторы и политические интересы привели к радикальной трансформации многих лесных экосистем. Последствия этих изменений трудно оценить, но главное то, что они могут быть необрати мыми. Поэтому сохранение экологической целостности - наша главная цель. Управление лесными экосистемами обычно включает следующие положения (Church и др. 2000): • -понимание природных процессов и циклов развития, • -адекватное представление коммерческих интересов по использо ванию лесов, • -системы по предписанию и оценке принимаемых решений, • -процедуры оценки риска и методика устранения погрешностей, • -участие заинтересованных сторон и общественности, • -схемы и протоколы для политической оценки Так как в последнее время противоречия между пользователями и видами использования ресурсов леса усиливаются, потребность в более содержа тельных и направленных на достижение консенсуса решений будет воз растать. Поэтому будет наблюдаться также рост потребностей в про странственном управлении и интегрированных технологиях, таких как географические информационные системы (ГИС), дистанционное зонди рование и глобальные позиционные системы (ГПС). Этот процесс уже начался с широкого внедрения этих технологий в работу исследователей лесов и менеджеров (Lachowski и др. 1992), как ключевого вспомогатель ного инструмента для мониторинга, картирования, оценки и моделирова ния лесных процессов и их отображения в пространственном и времен ном масштабах (Рисунок!). /],HCTaHHHOHHoe 30HflnpoBaHHe, cbohm CHHoncHnecKHM, Myjib- THCneKTpajlbHblM H MyjIbTHBpeMeHHbIM BO3MO>KHOCTaM, aßJiaeTCa OfIHHM H 3 Hanöojiee xjx|)eKTnmiwx mcio/iob nonyneHHa /lanHbix fljia ynpaßJieHHa jieca mh h hx H3yneHHa. - HHCTpyMeHT nonyneHHa HH(J)opMauHH 06 oöbeKTe HccneflOßaHna nepe3 aHajiH3 nojiyHaeMbix nyTeM KOHipojmpyeMoio s.ieKTpoManiHTHoro B3anMo,neHCTBHa MOK/iy o6b eKTOM (oöbiHHO naxo;iainHMCM Ha 3eMne) h /laxHHKaMM, He KOHiaicrHpypollih mh c o6i>eKTOM. (Lillesand h Kiefer 1994). TeorpatJiHHecKHe HH(J)opMaHHOH- Hbie CHCTeMbi (rMC) paccMaTpHßaiOTca b KanecTße HHCTpyMeHTa h npouecca cocToam,HX H 3 KOMnbiOTepHoro nporpaMMHoro oöecneneHHa h noflroTOßjieHHoro nepcoHajia h npejHasHaneHHMx /yia 3(})(})eKTHßHoro cöo pa, xpaHeHHa, HaKonjieHHa, MaHHnyjinpoßaHHa, BH3yajiH3anHH h aHajiH3a reo rpa(})HHecKH npHßa3aHHbix ;iannbix b uejiax nojiyneHHa Hii(j)opManHH h 3Ha 191 hhh b ycTaHOBjieHHOM pemiivie 3jih peineHHH HecTpyKTypHpoßaHHbix 3aaan ynpaßJieHHH h njiaHHpoBaHHH (Maguare 1991). OcymecTßJieHHe npouecca FHC oneHb cjiO)KHaH paöoTa, ajih BbinojiHeHHH KOTopon TpeöyeTCH TpynoeM KHH cöop HH(})OpMaiIHH, OÖyCJIOBJieHHbIH OÖHIHpHbIMH TeppHTOpHHMH, paC- HneHeHHbiM pejibe(})OM, KHOCTeH sthx TexHOJiorHH ajih peuieHHH 3aaaHH ynpaßJieHHH JiecaMH. KpoMe toto, paccMaTpHßatoTcn HeKO- Topbie Bonpocbi KoppeKUHH norpeumocTeH hx b3>khocth ajih njiaHHpo- B3HHH H npHHHTHH peilieHHH B JieCHOM XO3HHCTBe. OÖ3opbl nO BOnpOCaM fIHC- TaHHHOHHoro 30HflHpoBaHHH b CKaHfIHHaBHH CMOTpHTe b paöoTax Jaakkola h ap. (1988) h Holmgren and Thuresson (1998). B OTHonieHHH sth bo npocbi ocßemeHbi b JiHTepaTypHOM oÖ3ope KpoMe Toro, HiOHbCKHH HOMep )KypHajia no JIecoBOACTBy (2000) uejiHKOM nOCBHiyeH MCTOfIaM fIHCTaHHHOHHOrO 30HHpOBaHHH B JieCHOM XO3HHCTBe. 192 2 Метод C ncnojib3oßaHHeM CTaHflapraoro noHCKa no KjnoneßbiM cjioßaM, SbiJin n3y qeHbi o63opHbie »ypHanbi, npocMOTpeHbi MOHorpatjjnn, npaßHTeubCTßeHHbie nocTaHOßjieHH» n caHTbi MHTepHeT, MaTepnanbi no AncTaHUH OHHOMy THC h Hcnojib3oßaHmo nx b ynpaßJieHnn jrecHbiMH 3KocncTeMaMH. B Taöjinue 1 npHßeaeHa KJiaccncjjnKanna ochobhmx TexHOJio rnn TMC n flHCTaHnnoHHoro 30HflHpoBaHHa h noKa3aHa nx pojrb b noAflepacKe ynpaßJieHnn necHbiMH SKOcncTeiviaMH. 3th TexHOJiornn KJiacen(j)Hu,HpoßaHbi c TO4KM 3peHHH noflaepacKn nHTerpHpoBaHHH h ynpaßJieHHa; npoße/ie hhh HHBeHTapn3annn n ouchkh; npocTpaHCTßeHHoro aHajiH3a; MOflejinpoßa- HHH H BH3yajiH3aiinn; BbiaßJieHHa H3MeHeHHn; H connajibHO-3KOHOMHMecKnx nponeccoß n oöinecTßeHHOcra. CneunajibHbie npocTpaHCTßeHHbie MeTOfIHKH nepenncjiHiOTCH BMecTe c onncaHneM MaccHBOB JiecHbix 3kochctcm KOTopbix npoßOflHTca aaHHaa paöoTa. 3Ta KJiaccncjiHKanHfl HMeeT 0606- maiOLUHH xapaKTep, OHa He yHHßepcajibHa n bo3mo>kho coßMemeHne TexHOJio rnn fljia paccMOTpeHHH pa3Hooöpa3Hbix npoÖJieM ynpaßJieHHH JiecHbiMH 3ko- CHCTeMaMH. 3 Моделирование Лесных Ресурсов и Управление 3.1 Интеграция Данных и Управление Ilpn ynpaßJieHnn JiecHbiMH SKOcncTeMaiviH, TexHOJiorna THC ninpoKO nc nojib3yeTCH MeHea>KMeHTa .qaHHbiMn, njiaHHpoßaHna, BH3yajin3annn n npocTpaHCTßeHHoro aHann3a, b to BpeMa KaK flncTaHqnoHHoe 30HflnpoBaHne ncnojib3yeTCfl b KanecTße ncTOHHMKa HHcfjopMaijHH fljia MOHHTopnHra n nofl aep>KKn. /],HCTaHu,noHHoe 30HanpoBaHne - cpaßHHTejibHO floporocToainaa TexHOJiorna, ho TOHHbie n CBoeßpeMeHHbie o JiecHbix pecypcax Heoö xoflHMbi fljia Mo/iejinpoßaHna cOHHanbHO-3KOHOMHHecKnx n önoxnMnqecKnx npoueccoß Ha mccthom, pernoHajibHOM h nnoöanbHOM ypoßHax. rio3TOMy b TeneHHH 1990-bix ycTaHOßJieHHbie Ha cnyTHHKax xapaKTepn 3yioinnecH coßepmeHHbiM npocTpaHCTßeHhbim, cneKTpajibHbiM w BpeMennbiM pa3peLueHneM, ÖMJIH ycTaHOßjieHbi, n BC» nojiyneHHaa c hhx nHcfiopMauna öbijia TOTMac »e ncnojib3oßaHa /yia MOAenHpoßaHna n aHanH3a nponeccoß, npoTeKaroiynx b jiecHbix SKoencTeMax. CnncoK sthx cnyranKOßbix mthhkob, Hcnojib3yeMbix ajia HCCJieAOBaHna jiecoß, nx xapaKTepncTHKn, (J)yHKHHH n bo3mo>khocth npeACTaßJieHbi b nyönHKaunax Davis n Simonett (1991) n b no cjieaHen paöoTe Franklin (2001). Ho, npn Hajinnnn innpoKO/iocTynHOH cnyr- HHKOBOH nH(j3opMannn, C pa3JIHHHbIMH nOKa3aTejiaMH .ZjaTHHKOB, BO3HHKJia npoöneMa HHTerpauHn AaHHbix, nx coBMecraMOCTH, cxoacecTH MacinTaöoß n pa3pemaK)men cnocoÖHOCTn. B jiHTepaType (Hyyppä et ai. 2000) noxa eme He xßaTaeT cpaßHHTenbHbix nccjie/ioBaHMH no Hcnojib3oßaHHio flaHHbix flucTaH nnoHHoro 30HflnpoBaHna fljia H3yHeHHH n3MeHeHnn jiecHbix skochctcm. 193 Таблица 1. Классификация Технологий ГИС и Дистанционного Зондирования в Управлении Лесными Экосистемами. CnocoÖHOCTb HaKanjiHßaTb h oöpaöaTbißaTb nepapxHHecKH pacnpeflejieHHyio npocTpaHCTßeHHyio HH(J)opMauHK) flenaeT THC TexHOJiorHK) Ba>KHeHuiHM hh- CTpyMeHTOM no;i;iep>KKn mneipanHH jaHHbix h ynpaßJieHHH b pasBHTHH hh cjDopMauHOHHbix HH({)pacTpyKTyp fljia npHHHTHS pemeHHH b oSjiacTH ynpaßJie- HHa jiecHbiMH 3KOCHCTeMaMH. MecTHbie h CTpyKiypbi, pa3- BHiiaiomnecsi BOKpyr THC ceftnac npe/uiaraioT HOBbie nyTH coßMecTHbix hc cjieflOßaHHH b ynpaßJieHHH jiecaMH. Ha opraHH jaunonHOM ypoßHe /xencHTpa- HH3OBaHHbiH nofIXOA rae MO>Ker HMeTb mhoto npcHMymeci R jxsih yjiynmeHHH npouecca npneivia HHtjiopMauHH, KOMMyHHKaunn h npouecca npHHHTHJi peine 194 hhh b ynpaßJieHHH JiecaMH (Bettinger 1999). B aoöaBJieHHH, aaHHbix THC oÖJiernaeT HHTerpaumo hjih BbmjieHeHHe SKOJioniHecKOH HH(f>opMauHH Ha jho6om nepapxHHecKOM ypoßHe, Hcnojib3ya cejieKHHio /jaHHbix, 3anpoc, 6y(|)epH'iauHK) h OBepjien. Teorpa(()HHCCKOC nojio>KeHHe - Ba>KHCHuiaa xapaKTepncTHica npn coßviemeHHH noKa'iaTejicH 3KOJiorHHecKoro coctoshhh h xapaKTepHCTHK JiecHbix jiaHflmacJ)- tob (Greer 1993). KaK npaßHJio b HCCJieaoßaHHax Jiecoß MecTonojioaceHHH 06- ji ac re ii cöopa (jjHKGHpyioTca oömhhmmh «Ha3eMHbiMH» Mcro/raMM, ho ohh Bee name flonojiHHioTca aaHHbiMH FnoöanbHbix IIo3HUHOHHbix CncTeM (rnC). TexHonorna TIIC Hcnonb3yeT Ha3eMHbie npneMHHKH fljia npHCMa CHrHajiOß, nocTynaiomHX co cnyiHHKOB h Hcnojib3yioT hx ana onpeaeJieHHa MecTonojio>KeHHH tomck Ha 3eMjie b pa3JiHHHbix cHCTeMax (Johns ton 1998). Xoth H3MeHeHHH b nojiore Jieca, pa3Mepe aepeßbeß h TonorpaKHoro pe3yjibTaTa BHeapeHHa TexHOJiorHH THC. Ho 3th Hy>KflaioTca b co6jiio,aeHHH npaß coocxßemiHKOß /raiinbix, n3AarejibCKHx npaß, npoTOKOUHpoBaHHa HblX, a/IMHHHCTpaTHBHbIX paCXOfIOB H paCXOfIOB Ha OÖyMCHHC. /Jajree, HHTer pnpoßaHHaH npocTpaHCTßeHHaa HH<|)opMaHHa h nojiyneHHbie 3HaHHMbie pe 3yjibTaTbi 3aBHC»T ot Harnero noHHMaHHa iiorpeinnocTCH, Bo3HHKaiomHx Ha Ka>K;ioM 3Tane npouecca HHTei pannn. Orao/ia y iier KanecTßeHHbix h kojihhc- CTBeHHbix norpeiuHOCTefi h TOHHOCTb H3MepeHHH aaeT BO3MO>KHOCTb onpeje mTb TOHHOCTb KapT, CpaBHHBaTb pe3yjlbTaTbl H MHHHM3JIH3HpOBaTb pHCKH npn pacnpeaejieHHH pecypcoß h npHHaran pemeHHH Ha ocHOBe HH<})opMaHHH fHC (Congalton n Green 1999). 3.2 Оценка и Мониторинг THC H fIHCTaHHHOHHOe 30HflHp0BaHHe HMeiOT Ba>KHOe 3HaneHHe B BbiaßJieHHH xapaKTepa h CTpyKTypbi jiecHbix skochctcm. OnHcaHHe TexHOJiorHH iieuun(|j pHpOßaHHS CHHMKOB fljia KJT3CCH(J)HKaHHH JieCOB, pa3paÖOTKH HH/ieKCOB paC THTejIbHOCTH, BpeMeHHOrO H npOCTpaHCTBeHHOTO aHajlH3a fIHHaMHKH paCTH- TenbHOCTH (Senay h Elliott 2000) h bhaoboto aHajiH3a (Aspinall h Veitch 1993), niHpoKO ocßHmeHbi b jiHTepaType. B uejiax nojiyneHHa tohhmx noKa 3aTejien fljia BbiaßJieHHH npocTpaHCTßeHHbix CTpyKTyp skochctcm (Frohn 1998), b CHCTeMax THC HcnoJib3yeTca npocTpaHCTßeHHaa pa3nopo;iHoci b ec- TeCTBeHHbIX CBOHCTB JiecHbix 3KOCHCTCM H MaTpHHa JTaH;iIIia(j)T()B, OCHOBaimaM 195 Ha BbmejieHHH 3KOTOHOB, 3KOTOIIOB, KOpHfIOpOB. H HCKyCCTBeH- Htie HapymeHHfl b jiecHbix 3KocHCTeMax TaioKe HccjieayiOTca b paMKax THC nyTeM BKjuoLiennsi TaKHx bcjihhhh, KaK CTpyKTypa JiecHoro noKpbiraa, no OTHOCHTejibHbiH He/iocxaTOK öecnpepbißHoro MaccHßa cnyraHKOBOH HH(J)op- MaiiHH c BbicoKHM npocTpaHCTBeHHbiM pa3peuieHHeM npnroflHon fljia ynpaß jieHHH JiecaMH aßJiaeTca BaacHon npooJieMOH fljis HCCJieflOßaTejieM Jieca. Bo MHornx HCCJieflOßaHHax HH(()opMauHH. nojiyneHHaa c bbicokhm npocTpaHCT- BeHHbiM pa3pemeHHeM (1.1 km LAC h 8 km GAC ) h bhcokhm BpeMeHHbiM pa3pemeHHeM QjHeBHHM) c AVHRR ;uvthhkob hhtchchbho Hcnojib jycTca ana rjio6ajibHOH oneHKH Jiecoß. jjaHHbie c bhcokhm BpeMeHHbiM pa3pemeHHeM nrpaiOT öojibinyio pojib b MOHHTopnHre jiOKajibHbix h nioöajib- Hbix H3MeHeHHH b jiecHOM noKpoße (Eastman h Toledano 1996). TeM He Me- Hee, 3th HCCJiefIOBaHHa Hy>KflaioTca b npocTpaHCTßeHHbix yroLmennax, e yne tom Tonorpa<})HHecKHX tchcm, b MHHHMajiH jauHH 3aBHCHMOCTH OT arMoctjjep- Horo BUHSHHa M OÖJiaHHOCTH. B TpOnHHeCKHX UIHpOTaX BJIHaHHe OÖjiaHHOCTH Ha cnyTHHKOByio HHcjjopMaunio b bh/jhmom sjieKTpoMarHHTHOM cneKTpe oöbiHHO öojiee pe3KO Bbipa>KeHO. B sthx panoHax TaKHe MeTOflbi KaK Hcnojib 30BaHHe H MCTOfI HaJIO)KeHHa CHHMKOB flaiOT BO3MO)KHOCTb MHHHMH 33HHH BJIHaHHa OÖJiaHHOCTH. CoßpeMeHHOe HCnOJlb3OBaHHe CnyTHHKOB C Bbl cokoh pa3peujaK)mefi cnocoÖHOCTbio Hpe3BbmaHHO nepcneKTHBHO fljia öyay mero ynpaßjieHHa JiecaMH. Ho, TeM He MeHee, fla>Ke npn h&nhmhh cnyTHHKO boh annapaTypbi c bhcokhm pa3pemeHHeM, aspocjiOTOCteMKa ocTaHeTca oc- HOBHbiM cnocoöoM HCCJiefIOBaHHH, Hcnojib3yeMbix npn ynpaßJieHHH jicchhmh SKOCHCTeMaMH. 3.3 Пространственный Анализ, Моделирование и Визуализация OueHKa (J)yHKUHO 3KOCHCTCM 6a3HpyeTca Ha .aamibix tohck h apeanoß, or/ia neHHbix apyr ot apyra b npocTpaHCTße. 3th aaHHbie npe;iCTaßjiem>i b pa3- jiHHHbix npocTpaHCTßeHHbix h BpeMeHHbix iuKanax. O/uiopo/uibie noHßeHHbie apeajibi, rpa/iHUHOHHO Bbi/iejiennbie no flaHHbiM aapoctioxocbCMKH w pe3yjibTa- TaM nojießbix HCCJiefIOBaHHH oöbihho Hcnonb3yioTca b KanecTße ochobh .zyia BbIMBJICHHa B3aHMOCBa3eH H npOUCCCOB B 3KOCHCTeMaX. JIeCHOH nOKpOB B 3HaHHTejibHofi Mepe oiipe/iejmci cocTaß noHßeHHoro noKpoßa, n npo- CTpaHCTBeHHoro pa3pemeHHa peuiaiOTca b paMKax pa3JiHHHbix k KaprapoßaHHK» noHßeHHbix ,zyia Hcnonb3oßaHHa b npocTpaHCTßeH hom aHajiH3e. npn o/uiom noflxofle Hcnonb3yeTca npone/iypa npocTpaHCTßeH hoh reHepajiH3auHH .zyia BbiaßJieHna SKOJiornHecKoro npouecca b öojiee Kpyn hom MacuiTaöe, hcm no nepßOHanajibHOH HHtJjopMaunn. flpyroH noflxofl nc nojib3yeT MeTOAbi reoeraTHCTHHecKOH HHTepnojiannn AJia onncaHHa npo- CTpaHCTBeHHon CBa3H \ie>K/iy oxaejibHbiMH noKa3aTenaMH JiecHbix 3kochctcm (Payn h ;ip. 1999). THC /laer BO3MO>KHOCTb jierao nepecTaßjiaTb h MeHaTb MacuiTaöbi, nosTOMy fljia Ha/iJie>Kamero npocTpaHCTßeHHoro aHanH3a 6oJib moe 3na iieime aoji>kho npH/uißaibca npocTpaHCTBeHHOMy pa3pemeHHio n ;ie- TaJIbHOCTH /IaHHbIX HCTOHHHKa. 196 PacuiHpeHHe anajiHTH'iecKHX BO3MO>KHOCTeH coßpeMeHHbix FHC b 3HaHH- TejibHOH Mepe flocTHTHyra nepe3 MexaHH3M cbh3h c m are marhme c k h m h h hm- MHTauHOHHbiMH MOflejiHMH. Ony6jiHKOßaiinbic flaHHbie o nocTpoeHHH npo- CTpaHCTBeHHbix HHTerpajibHbix Moaejien n IHC npn ynpaß.ieHHH necHbiMH 3KOCHCTeMaMH CTaiiOBJiiCM Bce 6ojiee ziocrymibiMH. I lanpHMcp, oönacTb pac [ipocipaFiciiHH. cpe/ia oÖHxaHHa n pacnpe/iejienHe bhaob abjihiotoi Kinone- BbIMH KOMIIOHeHTaMH flJlfl aHaJIH3a JieCHblX 3KOCHCTCM. riO3TOMy BaaCHO HC nojib3oßaTb onHCbißaiomHe sth KOMnoHeHTbi Moaejra THC. CnncoK ochobhmx BKjnonaeT TexHHnecKHx perpeccnn ajih bhaoboto pacnpe/ie neHHa, npocTpaHCTßeHHbie MHoroKOMnoHeHTHbie MO/iejiH h MOflejrn npo- CTpaHCTBeHHOÖ onTHMH3auHn (Guerra h Lewis 2002) /yia npncnocoÖJieHHa k oÖHTaHHH, HaHMeHbuiHX KBa/ipaTOB ana MOHHTopHHra oÖHTaHHH h \io;iejin BayecHaHa fljia KapTHpoßaHna ooMraHHH. npn cpaBHeHHH Tpex Moaejieö FHC no 3bojiioli,hh ooHTaHH» öhjio 3aKJnoHeHne, hto npH bosmo>khocth c.ie;iyer HcnoJib3oßaTb pa3Hbie mozicjih, a nojiyHCHiibie pe3yjibTaTbi cpaßHMßaib (Skidmore h AP- 1996). rioAxo/jbi mo aejiHpoßaHHH raK>KC ncnoJib3yeTCH /yia ncuyienHM /laimbix ;ijih ynpaßJieHHK JieCHbIMH 3KOCHCTeMaMH. HajIHHHe 6a3080H HHtj)OpMaUHH CHJIbHO BUHHeT Ha Hauiy BO3MOMCHOCTb pa3o6paTbCJl B TO H HJIH HHOH lipOÖ/ICMC H rHIIOTe3e. IlpH OTCyTCTBHH fIOCTaTOHHO OÖUIHpHOH HH(j)OpMaHHH, HHCTpyMeHTbI MOflejlHpO- BaHHa MoryT cbirpaTb Ba>KHyio ponb b npouecce ripnnHTna pemeHHH. OxpaHa npHpoflbi h coxpaHeHHe 6nopa3Hoo6pa3HH crajiH Ba»CHbiMH Hanpaß neHHHMH b CBH3H c HaojifojaioiHHMHCH b nocjie/iHee BpeMH npoueccaMH oöe3- jiecHBaHHH. 06e3JiecHBaHHe bjtmhct Ha ymepo/inbiH uhkji h KjiHMar nepei iioc ryn.ieHHH b aTMOcepy, b to BpeMa KaK önopa rino oöpa3He KpaeßblX H ÖapbepHblX 3(j)cj)eKTOß H HCHe3HOBeHHH BHfIOB. HfIeHTHCjMKa- HHH H paH>KHpOBaHHH ÖHOJIOTHHeCKH pa3HOpOfIHbIX JiaHflllia(J)TOß npHMeHjreT ca npocTpaHCTßeHHoe MOflejinpoßaHne Hcnojib3yiomee KOMnjieKCHbie xapaK- TepHCTHKH jiaHfluia(f)TOß, nojiyneHHbie H 3 xapaK"TepncrnK pacTHTejibHbix co oömecTß, HanpHMep, öoraTCTBO, rycTOTa h coctohhhc, cmokhhx th noß pacTHTejibHbix cooömecTß h (})H3HKO-reorpa(j)HHecKHe noKa3aTejiH. Bce 3TH MeTOflbl OMeHb 3aBHCHT OT THC H flaHHblX fIHCTaHUHOHHOrO 30HflHp0Ba hhm. HH(|)opManHJi o cocTaße h muieKcax ymepoa cpeac oömaiiHH, nojiyneHHaa c noMombio rexuHKH aHajiH3a TAP (GAR), KOTopaa MO>Ker Obri b Hcnojib3oßaHa b THC, raßjiaer bosmoähoctb jih oueHKH ypoßneii ox paHbl JieCHblX 3KOCHCTCM H pa3BHIHM IipHpO,TOOXpaiIHbIX TeppHTOpHH. TaKHe noKa3aTejiH KaK pa3Hooöpa3He, TeKCTypa h pacnojro>KeHHe, npHBH3a- Hbi k MecTHOCTH h MoryT öbiTb nojiy Lieiibi b pe3ynbTaTe aHajiH3a I HC. MHorae nponeccbi, npoxoaamne b jiecHbix SKOCHCTeMax, 3aßHcaT ot TaKHX nepeMeHHbix KaK ioiioi pa(|)HH, KpyTH3Ha ckjiohob, BbicoTa h 3kciio3humm. To norpacjjHHecKHC aHajiH3bi MoryT öbi i b b I HC nepes rcHcpauHK) 3-x MepHbix MOfleneö noßepxHOCTen c Hcnojib3oßaHHeM KapT pe;ibec|)a. AHa- JIH3 KpyTH3HbI H 3KCnO3HI[HH CKJIOHOB HCnOJlb3yeTCfl B TeXHOJIOTHH THC flJlfl Bo,Topa3;iejiOß h MOflejiHpoßaHHH meeroiiojio>Ke[ihsi, naiipaßjiennsi H BejlHHHHbl nOBepXHOCTHbIX BOfIOTOKOB (Johnston 1998). OTKJIOHeHHH MoryT iaKA'c MOflejiHpoßaTbca c Hcnonb3oßaHHeM jiamibix no BbieoTaM, Haxo/yi- 197 ikhmcm b CHCTeMe THC. rrpoi nosHpoBaHHH pacnpocTpaHCHHH pacTHTejib- HOCTH H ee BHfIOB ÖbIJIH pa3paÖOTaHbl KapTbl lIJIOTHOCTH BHfIOB H HX pa3HOOÖ pa3HH. CTaTHCTHHeCKOe MOfIeJIHpOBaHHe 3aBHCHMOCTH paCTHTejIbHOCTH OT TO norpakho hc nonb3oßaHHe «ApannpoßaHHoro» H3o6pa>KenHH. BnpTyajibHbie TexHOJiorHH pacuiHpaioT BH3yanH3auHK) THC BHeapeHHeM coßpeMeHHoro 3-x MepHoro nepcneKTHßHoro H3o6pa>KeHHfl jiaH/nua(j)TOß. B nocne/iHee BpeMH öojibinofi HHTepec Bbi3Bajia ocHOßaimaM Ha MHTepHeTe CTpyKTypa THC, npea- Ha3HaneHHaa ajih BH3yajiH3aunn H ynacTHa oömecTBeHHOCTH B npHHaraH peuieHHH h iiiHpoKoro AOCTyna k bo3momchocthm THC. 3.4 Выявление Изменений HH(j)opMauHa 06 H3MeHeHHHx jiecHbix pecypcoß HeoöxoAHMa jxnn atJjcjjeKTHß- Horo ynpaßJieHHa h ruiaHHpoBaHHH Ha MecTHOM, HauHOHanbHOM h nnoöajib- HOM ypOBHHX. BbIHBJieHHe H3MeHeHHH - npouecc HCnOJIb3OBaHHSI npOCTpaHCT- BeHHbix aHajiHTHnecKHX MeTOfIOB nnn oötacHeHHH npHpoflbi h Macimaöa npo- HCxoaaiHHx b oöieKTe H3MeHeHHH 3a flßa hjih öojiee cpoKa. FIpH MOHHTopHHre JiecHbix pecypcoß nna xapaKTepncTHKH H3MeHeHHH bKe npoßecTH npocTpaHCTßeHHyio onemKCHHa, CKOpOCTH HiOOpa/KCHHH, perpeCCHOHHbie MeTOflbl, MeTOfl H3MeHeHHH BeKTOpOB (CVA), MeTOfl fIH(j)(j)epeHHHaHHH Ha KJiaccbi h MeTOfl aHajiH3a rnaßHbix komhohchtob (PCA). oueHKH m- MeHeHHH OCHOB3HbI Ha TOM, HTO eCJTH nOrpeUIHOCTH, CBH3aHHbie C fIaTHHKaMH, TOnOrpa(|)HeH H OKpy>KaromeH npHpOfIHOH epeflOH MHHHMH3HpOBaHbI H MHO roßpeMeHHbie M3Oopa>KCHMH coßMcmaiorcM h no/ißepraioiCH n,nenrnHHOMy npeflßapHTejibHOMy aHajiH3y, a raioKe H3oopa>KeHHsi nojiyneHHbie ot oo.ia/iaioT hzjchtmhhmmh xapaKiepHCTHKaMH, xor;ia ouH(J)poßaHHbie H3MeHe- HHH B H3o6pa>KeHH5IX ÖyflyT COOTBeTCTBOBaTb H3MeHeHHKM 3HaHeHHH HpKOCTH TOH >Ke 3eMHOH nOBepXHOCTH 3a pa3HHHHbie OTpe3KH BpeMeHH. 198 H3MeHeHHH Ha JioKajibHOM ypoßHe aHajiH3a MoryT bjihhtb Ha 3po3Hio, njio,ao pOflHe nOHB, BOflOpa3fleJlbHblH CTOK h H3MeHeHHe COHHaJIbHO-3KOHOMHHeCKHX nepeMeHHbix. B raoöajibHOM Macinraöe MHorne HCCJieAOBaHHH THC (|)hkch pyiOT BJIHHHHe H3MeHeHHH JieCHblX 3KOCHCTeM Ha KUHMaT. KpynHOMaCUITa6- Hbie aemeßbi h oneHb nojie3Hbi npn BbiaßjieHHH Kjnoießbix yiacTKOB fljia öojiee acra.ni.Hoi o HsyneHHH. CpaßHHTejibHbie myienne MeTO aoß BbiaßJieHHH H3MeHeHHH noKa3bißaeT npcHMymccißO oflHoro Mcro/ia Haa ApyrHM b cneuH(J)HHecKHX cnryaHHax. npH hc- OnpCfIejICHHOH TeppHTOpHH HH 0/IMH MeTOfl BbiaßJieHHH H3MCHC HHH He MO>KeT CHHTaTbCH JiyHHIHM KOHKpeTHOH CHTyaUHH, H HTO npH HC nojib3oßaHHH MeTOAOB flOJiaceH iipmmchm i i.cm BsaHMoaonojniHioinHH no;ixo;i. MeTOflbl BbIHBJieHHH H3MeHeHHH HC[IOJIb3yiOTCH JXJIH (j)HKCaHHH H3MeHeHHH ÖHOMaccbi Ha rpaHHue Jieca h BbipyÖKH. H3 hhx npeflCTaßJiaeT coöoh MoacMHpoßaHnc MapKOßa, Hcriojibsyiomee jmiihphhcckh onpeaejieHHbie MaT pHHH nepexojjHOH bcpohthocth ajih BbiHBJieHHH BpeMeHHbix H3MeneHHH b KJiaccax pacTHTenbHOCTH (Wood h ;ip. 1999). flpn pa3pa6oTKe sthx nepcxoj- HblX MaTpHH BbiaCHfleTCH, HTO /UIHHMe fIHCTaHHHOHHOrO iiaiOl MeHee CMemeHHoe pacnpe;ie.ieHHC BepoaTHOCTefi no cpaßHeHHio c xpa/iHUH OHHbIMH nOJieBbIMH H3MepeHH3MH, TaK KaK npH 3TOM OÖCJiefIyeTCH HejIHKOM Bca TeppHTopna. KpoMe Toro, ce3oHHbie n3MeneHHH b jiecax hb- JISHOTCH HaCTblO HCCJie/lOBaiIHH fIHHaMHKH npHpOflHblX npOUeCCOB B TJlOÖaJlb hom Macnrraöe, ohh peryjinpyiOT MHorne npoqeccbi, CBfl3aHHbie c nepBHHHOH npofIyKTHBHOCTbio, a TaiQKe c boao- h ra3OOÖMeHOM b Jiecax. B HccjieflOßaHH HX OnHCaHbl CBH3H MOKfly KJIHMaTHHeCKHMH yCJIOBHHMH, THÖOM paCTHTeJIbHO CTH (b TOM HHCJie JieCHOH) H H3MeHeHHHMH, BblflßJieHHblMH B pe3yjlbTaTe fIJIH- TeJlbHblX H3MeHeHHH ApeBeCHOrO nOKpbITHH. 3.5 Социально-экономические Процессы и Участие Общественно сти MHoroo6pa3HO bjihhhhc OKa3bißaeMoe Ha Jieca connajibHO-SKOHOMHHecKHMH 4>aKTopaMH h HaHHOHajibHbiMH iiojiHiHHecKHMH cipaici HMMH. Tenepb oöme npH3HaHHo, hto pacuiHpeHHe cejibCKOXO3aiiCTBeHHOH aeaTenbHOCTH h Jieeo3a roTOßOK oKa3bißaK)T HaHÖojibinee aaßjieHHe Ha jiecHbie JiaHflmacjma. Ot pe uieHHH b oÖJiacTH jiecHOH nojiHTHKH h ynpaßjieHHa JiecHoro xosaKci Ba jaßH cht counajibHbie npoHeccbi npoxojynnHe b jiecHbix pernoHax. IloaTOMy 3ann- TepecoßaHHbie Jinna h rpynnbi HaceneHHa CTajiH ripHSiiaßaTbca b KanccißC Ba>KHoro KOMnoHeHTa b iiponeccc iipuHaiHM peuieHHH OTHOCHTejibHO Bcex bo npocoß KacaiomHxca jiecoß h hx ynpaßJieHHa. npH peuieHHH Tex hjih hhhx npoöneM JiecHoro xcraiicTßa nacTo craxiKHßaioTca HHTepccbi pa3JiHL mi>ix rpynn, hto 3aTpyflHaeT Bbipa6oTKy onraManbHbix peuieHHH. YneT Bcex cohh aJlbHblX, 3KOHOMHHeCKHX, (J)H3HHeCKHX (JjaKTOpOB H HCHHOCTHbIX OpHeHTHpOB, CB33aHHbix c Hcnojib3oßaHHeM h pa3MeiHeHHeM Jiecoß noflpa3yMeßaeT ncnojib 30BaHHe 3BpHCTHHCCKHX MCIO/108 AOCTH/KeHHST COrJiaCHH. OflHaKO laKaM HHTerpaUHH MO>KeT npHBOAHTb K KOH(J)JIHKTaM H 3aflep>KKaM C npHHHTHeM pe uieHHH. U,eHHyio noMouib b fIOCTH>KeHHH KOMnpoMHCca, yHHTbißaiomero hh- Tepecbi pasjiHHHbix couHajibiibix rpynn, oKa3breaeT ocHOßaHnax Ha THC npo- CTpaHCTBeHHaa CHCTeMa BbipaöoTKH peuieHHH (SDSS). Hcnojib3oßaHHe TliC 199 Ha 6a3e MHTepHeTa Taioice JiaeT BO3MO>KHOCTb yHHTbiBaTb MHeHne 3aHHTepe coßaHHbix jihu h rpynn HaceneHHH, flOßecra ;io jnoflen pe3yjibTaTbi MOflejiHpoßaHHH h flaHHbie JiecHbix Hccjie/ioBaHHH (Dragicevic h ap. 2000). YcTOHHHBoe Hen on b3O Ban ne jiecoß 3aBHCHT ot rmarejibiioro co6ji kuchma 6a naHca Meac/iy counaJibHbiMH h 3kohomhhcckhmh Tpc6oßaiin>[Mn k jiecHMM pe cypcaM. McnojTb3()BaHHC hobux aHajiHTHnecKHX bosmo/Khoctch .iHcrannHOH- Horo 30HflHp0BaHHH H F MC, BMeCTe C MeTOflaMH npHHHTHH OOOCIIOBaHHbIX pemeHHH, npe/iocTaßJiaiOT BOiMO>Kiiocrb ynpaßjiaTb JiecHbiMH pecypcaMH yc- TOHHHBbIM CIIOCOO. Pa3BHTHe CHCTeMbI npHHHTHfI npOCTpaHCTBCHHbIX peUie- HHH l[o3BojlSie'[ O;UIOBpeMeHHO y'lHTblßaib HCHHOCTH 33HHTepeC0BaHHbIX JIHU h ;iannbie öbicTpoii cejibCKOxo3HHCTBeHHOH oueHKH b npHHHTHH pemeHHH. SDSS - 3to HHTepaKTHßiiax, ociiOßaimaM Ha THC CHCTeMa, b KOTopyio bxo ;uit MeHe;pKep komo bKticpiibix .uamibix, cnenHajiHCx no Monena m h mchcxi'/Kcp no nonb3OBaHHK) HHTeptjjeiicoM. C hx noMombio mo>kho pa3paöaTbißaTb pa3- jiHHHbie (ajibTepHaTHßHbie) pemeHHH c nejibio no/mep)KKH nojib3oßaTejieH hjih rpynn nojib3oßaTejieH ana Toro, htoöm noBbiCHTb 3(J)(})eKTHBHOCTb npouecca npHHsiTHa pemeHHH npn paccMOTpeHHH HecTpyKTypHpoßaHHbix h nojiy- CTpyKTypnpoßaHHbix npocxpaHCTßeHHbix npoöJieM. K c(|)opMyjTHpoßaHHbiM penieHHHM HecTpyKTypnpoßaHHoro THna othocht Te, KOTopbie He MoryT öbiTb npHHJiTbi CTaH/iapm mm h Me h r/ie yneT HHflHßHflyanbHbix MHeHHH fljia noHCKa pemeHHH. B HeKOTopbix paöoTax npHßOflaTca CBeaeHHH 06 onTHMH3anHH nponecca npHHHTHa pemeHHH no yc- TOHHHBOMy BefleHHio JiecHoro xo3fIHCTBa ÖJiaroflapa jiHHeimoro nporpaMMHpoßaHHK h oneHKe MHO>KecTßeHHbix KpHTepneß (Naesset 1997), a TaKJKe 3KOHOMH4ecKHM MOflejiHM Jieco3aroTOßOK (Naesset n ap. 1997). B Jiaae (Kangas h ap. 2000) cooömaercH 06 sbphcthhcckoh CBepxon- THMH3auHH, HHTerpHpoBaHHOH b THC. 3(|)(j)eKTHßHafl HHTei paiiHM connajibHo 3KOHOMHHeCKHX, nOJIHTHKO-KyjlbTypHblX H ÖHO(J)H3H4eCKHX acneKTOB HOTOJIb -30BaHHa jiecHbix pecypcoß - sto nyTb k ;ioc'in>KenHio nejiefi ycTOHHHBoro ynpaßjieHHH necaMH (Vertinsky h ap. 1994). Akabua n ap. (2000) pa3pa6oTa jih cHCTeMy SDSS jxsin MOflejmpoßaHHH ne/ipeßecnMx pecypcoß Jieca, hto nOiBO.THCT BblflCHHTb lipOTHBOpC-IHH MOhViy 3ar OTO R HTejTfl M H jpCBCCHIIbI H nojib3oßaTejiHMH /ipyrnx jiecHbix pecypcoß. reorpacjiHHCCKne HFicjjopManHon- Hbie CHCTeMbI, aHCTaHHHOHHOe 30HflHpOBaHHe H CHCTeMbI nO/mep>KKH npHHH THH peuieHHH - MeTOflbl, C riOMOIIIbIO KOTOpbIX MOSKHO fIOCTHHb Ue.lH yCTOHHH- Boro ynpaßjieHHH JiecHbiMH SKOCHCTeMaMH. 4 Заключение J\aHHaa paöoTa ocßemaeT bo3mo>khocth Hcnojib3oßaHHH /mcTaHnnoHHoro 30HflHpoBaHHfl h TexHOJiorHH FHC b pemeHHH pa3HOOÖpa3Hbix ynpa ßjieHHH JiecHbiMH 3KOCHCTeMaMH. Pa3pa6oTaHa cxeMa KjiaccniJ)HKauHH ochob- HblX TeXHOJIOFHH THC H JIHCTaHUMOIIHOIO 30H;iHpOBaHHH, HCnOJlb3yeMblX B HacToamee BpeMH b ynpaßjieHHH jiecaMH. 3th TexHOJiorHH KJiaccHcjDHnHpoßa- Hbl c TOHKH 3peHHH HO;Uiep>KKH HHTerpHpOBaHHH flaHHblX h yIipaBJICHHji; npo- BeaeHHJi HHBCHTapHiäUHH n okchkh; npocTpaHCTßeHHoro aHajiH3a; MO/iejiH- 200 pOBaHHfI H BH3yaj]H33UHH; BblHBJieHHa H3MeHeHHH; H COUHanbHO 3KOHOMHHeCKHX npOUeCCOB H yHaCTH» OÖmeCTBeHHOCTH. Благодарность за поддержку MeacayHapoflHbiH CoBeT Mcoie/joBaHHH (ICCS-CIEC), Kamma noflflepacan HeKOTopbie acneKTbi 3thx HCCJiejOßanMii, nepßbiM aBTopoM. Btopoh aBTop Bbipa>KaeT orpoMHyio ÖJiaroaapnocTb EBponeMcKyio EflHHyio Komhcchk) no MccjieflOßaHHSM (cm. HIBECO 2000-2003) 3a oica3aH- Hyro noMomb. Литература Akabua, K. M., Adamowicz, W. L. & Boxall, P. C. 2000. Spatial non-timber valuation decision support systems. Forestry Chronicle 76(2): 319-327. Al-Garni, A. M. 1996. A system with predictive least-squares mathematical models for monitoring wildlife conservation sites using GIS and re motely-sensed data. International Journal of Remote Sensing 17(13): 2479-2503. Allen, J. S. 1998. GPS. In: Savitsky, B. G. & Lacher Jr., T. E. (eds.). GIS methodologies for developing conservation strategies - tropical forest recovery and wildlife management in Cost Rica. Columbia University Press, New York, p. 61-79. Aspinall, R. & Veitch N. 1993. Habitat mapping from satellite imagery and wildlife survey data using a bayesian modelling procedure in a GIS. Photogrammetric Engineering and Remote Sensing LIX: 537-543. Atkinson, P. M. 1996. Optimal sampling strategies for raster-based geographi cal information systems. Global Ecology and Biogeography Letters 5: 271-280. Bettinger, P. 1999. Distributing GIS capabilities to forestry field offices. Jour nal of Forestry, June 1999: 22-26. Church, R. L., Murray, A. T., Figueroa, M. A. & Barber, K. H. 2000. Support system development for forest ecosystem management. European Jour nal of Operational Research 121: 247-258. Congalton, R. G. & Green, K. 1999. Assessing the accuracy of remotely sensed data: Principles and practices. CRC, Florida. Davis, F. W. & Simonett, D. S. 1991. GIS and remote sensing. In: Maguire, D. J., Goodchild, M. F. & Rhind, D. W. (eds.). Geographical Information Systems: Principles and Applications. Longman, Essex, UK. p. 191— 213. Dragicevic, S., Balram, S. & Lewis, J. 2000. The role of Web GIS tools in en vironmental modeling and decision-making process. In: Proceedings of 4th International Conference on Integrating GIS and Environmental Modeling, Banff, Canada, 2-8. September. Eastman, R. J. & Falk, M. 1993. Long sequence time series evaluation using standardized principal components. Photogrammetric Engineering and Remote Sensing 59(6): 991-996. 201 Eastman, R. J. &.Toledano, J. 1996. Forest monitoring in Malawi. EOM Sept. 1996:28-31. Echavarria, F. 1996. Remote sensing of forest fragmentation in the tropics. lEEE Geoscience and Remote Sensing Society Newsletter 6: 6-15. Enright, N. & Lewis, J. 1985. Aspect-related vegetation patterns and climate at Mont St Hilaire, Quebec. Canadian Geographer 29(3): 249-256. Franklin, S. E. 2001. Remote Sensing for Sustainable Forest Management. Lewis Publishers, Boca Raton, FL. Frohn, R. C. 1998. Remote sensing and landscape ecology - New metric indi cators for monitoring, modelling, and assessment of ecosystems. CRC, Florida. Greer, J. D. 1993. The view from above: an overview of GPS and remote sens ing options. Journal of Forestry 91: 10-14. Griffiths, G. H., Smith, J. M., Veitch, N. & Aspinall, R. 1993. The ecological interpretation of satellite imagery with special reference to bird habitats. In: Flaines-Young, R., Green, D. R. & Cousins, S. H. (eds.). Landscape ecology and GIS. Taylor & Francis. Guerra, G. & Lewis, J. 2002. Spatial Optimization and GIS: Locating an opti mal habitat for wildlife reintroduction. Arc User 5(2): 32-34. Holmgren P. & Thuresson, T. 1998. Satellite remote sensing for forestry plan ning: A review. Scandinavian Journal of Forest Research 13(1): 90- 110. Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S. & Yi-Hong, Z. 2000. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management 128: 109-120. Jaakkola, S., Poso, S., & Skrämo, G. 1988. Satellite remote sensing for forest inventory-experiences in the Nordic countries. Scandinavian Journal of Forest Research 3(4): 545-567. Johnston, C. A., 1998. Geographic information systems in Ecology. Blackwell, London. Kangas, J., Store, R., Leskinen, P. & Mehtätalo, L. 2000. Improving the quality of landscape ecological forest planning by utilising advanced decision support tools. Forest Ecology and Management 132: 157-171. Klopatek, J. M. & Francis, J. M. 1999. Spatial pattern analysis. In: Morian, S. (ed.). GIS solutions in natural resource management - balancing the technical-political equation. OnWord Press, New Mexico, p. 17-40. Lachowski, H., Maus, P. & Piatt, B. 1992. Integrating remote sensing with GIS. Procedures and examples from the Forest Service. Journal of For estry 90: 16-21. Lambin, E. F. 1996. Change detection at multiple temporal scales: seasonal and annual variations in landscape variables. Photogrammetric Engineering & Remote Sensing 62(8): 931-938. Lillesand, T. M. & Kiefer, R. W. 1994. Remote sensing and image interpreta tion. 3 rd Edition. Wiley, New York. Lund, G. H. & Iremonger, S., 2000. Omissions, commissions, and decisions: the need for integrated resource assessments. Forest Ecology and Man agement 128: 3-10. 202 Maguire, D. J. 1991. Overview and definition of GIS. In: Maguire, D. J., Goodchild, M. F. & Rhind, D. W. (eds.). Geographical information sys tems: principles and applications. Longman, London, p. 9-20. McGhie, R. G., Scepan, J. & Estes, J. E. 1996. Comprehensive managed areas spatial database for the conterminous United States. Photogrammetric Engineering and Remote Sensing 62(11): 1303-1306. Naesset, E. 1997. A spatial decision support system for long-term forest man agement planning by means of linear programming and a geographical information system. Scandinavian Journal of Forest Research 12: 77- 88. Naesset, E., Gobakken, T. & Hoen, H. F. 1997. Economic analysis of timber management practices promoting preservation of biological diversity. Scandinavian Journal of Forest Research 12: 264-272. Payn, T. W„ Hill, R. B„ Höck, B. K„ Skinner, M. F„ Thorn, A. J. & Rijkse, W. C. 1999. Potential for the use of GIS and spatial analysis techniques as tools for monitoring changes in forest productivity and nutrition, a New Zealand example. Forest Ecology and Management 122: 187-196. Pitt, D. G., Wagner, R. G., Hall, R. J., King, D. J., Leckie, D. G. & Runes son, U. 1997. Use of remote sensing for forest vegetation management: a problem analysis. Forestry Chronicle, 73(4): 459—477. Senay, G. B. & Elliott, R. L. 2000. Combining AVHRR-NDVI and landuse data to describe temporal and spatial dynamics of vegetation. Forest Ecology and Management 128: 83-91. Skidmore, A. K., Gauld, A. & Walker, P. 1996. Classification of kangaroo habitat distribution using three GIS models. International Journal of Geographical Information Systems 10(4): 441-454. Townshend, J. R. G. 1991. Environmental databases and GIS. In: Maguire, D. J., Goodchild, M. F., & Rhind, D. W. (eds.). Geographical Information Systems: Principles and Applications. Longman, Essex, UK. p. 201— 216. Vertinsky, 1., Brown, S., Schreier, H., Thompson, W. A. & Kooten, G. C. van 1994. A hierarchical-GIS-based decision model for forest management: The systems approach. Interfaces 24(4): 38-53. Wood, E., Lewis, J. & Tappan, G. 1999. Land Use Change Modeling for Southern Senegal. Proceedings of PECORA 14 Symposium, Denver, CO. p. 85-95. 203 Мировое оленеводство - современная ситуация, трудности и перспективы Йохан Матис Тури 1 Введение Циркумполярная модель управления отдаленными регионами Арк тики OnpeAejiHH 3Ha4eHne oneHeßOflCTßa b3>kho noHHMaTb, MTO oho npeflCTaßJiaeT coöoh oömyio UHpKyMnojiapHyK) ynpaßneHHa MajiOHacejieHHbiMH ynajieHHbiMH icppMiopnMMH b ceßepHbix peraoHax. 3Ta vuuiejib pa3pa6aTbi- Bajiacb b TeieHMe AJiHTenbHoro nepnoaa BpeMeHH, npHcnocaönHßaacb k cne hh<])hkc apK"iH iiccKnx perHOHOB. B paMKax »roH mo;ic;ih ciajio bo3moskhmm Mcnojib3oßaHHe MajiopeHTaöejibHbix npHpo/jHbix pecypcoß Apkthkh npo- H3BOfICTBa LteHHOH nHmeBOH npO/iyKHHH - pecypcoß, KOTOpbie B lipOTHBHOM cjiynae He MorjiH ncno.nbiOßaibCH. Moac.il> ;_iOKa3a:ia, hto ycTOHHHBocTb cno- Co6cTßyeT CTaÖHJIbHOCTH npOMbHHJieHHOCTH. HaKOHeU, C OJieHeBOfICTBOM B nepBHHHOrO HCTOMHHKa AOXOfla CTajTO BO3MO)KHbIM HCnOJlb3OBaHHe TOBapOB, KOTOpbie B npOTHBHOM CJiyHae ÖbIJIH CJIHIHKOM HefIOCTynHbIMH. no 3TOMy ojieHeBOfICTBO b Tex peraoHax, r/je oho cymecTßyeT, HMejio orpoMHoe 3HaneHHe /yia ocßoeHHa TeppHTopHH. Ba>KHO TaK>Ke OTMeTHTb, hto b pa3JiHHHbix peraoHax nonra HfIeHTHHHO no CBOefi OpraHH3aHHH. KjHOHeBbIMH 3JieMeHTaMH Opi aHH3aUHH, c oahoh CTopoHbi, öbinH paöome cooömecTßa, cocToaiuHe H 3 OfIHOH h öojiee ceMeM, c .npyron CTopoHbi - JiHija, HBjiaromHeca 3aKOHHbiMH BjiaaejibiiaMH )KHBOTHbix. 3Ta opraHH3aHH» Ha caaMCKOM a3biKe onncbißaeTca cjtobom cuu da. /],pyroH Ba>KHbIH MOMeHT, KOTOpbIH HeOÖXOAHMO OTMeTHTb, 3TO to, hto OJieHeBO/iCTBo noßceMecTHo hbjihctch b toh hjih hhoh CTeneHH KOießbiM. 3Ta KOTopaa pa3BHßajiacb He3aBHCHMo b pa3Hbix perHOHax, oica3anacb 3(|)(J)eKTHBHOH H fIOCTaTOHHO yCTOHHHBOH, HTOÖbI COXpaHHTb KyjibTypbi noHTH He3aTpoHyTbiMH c HCsanaMMnibix BpeMeH ;_to nacroMmero BpeMeHH. lIo3TOMy 3acjiy>KeHHO npe,o,no.no)KHTb, hto ojieHeßO/jCTBO sto «Bblöop lipHpo, (bI» flJI» apKTHHeCKHX perHOHOB. 204 Созданное коренными народами HacTO oneHeBOfICTBO onHCbißaeTca KaK KpacoHHoe h 3K3OTHHecKoe 3aH«Tne. Bo3MO»CHO, 3TO CJieflCTBHe Toro, HTO ÖOJTbUJHHCTBO OJieHeBOfIHeCKHX HapOflOß HBJTHJOTCfI 3THHHeCKHMH MeHbLUHHCTBaMH. CyiyeCTßyeT He MeHee 20 MajTO HHCJieHHbix HapoflOß no BceMy unpKyMnojiapHOMy peraoHy, 3aHHMaK>mHxca oneHeBOfICTBOM. ITo KpaHHCH Mepe, 17 H3 hhx 3aHHMajincb OJieneBO;iCTBOM c He3anaMaTHbix BpeMeH. Tex, Koro Ha3bIBaJOT HOBH'IKaMH B OJieHeBOfICTBe - TpH KOpeHHWX rpynnbi Ha ceBepoaMepHKaHCKOM KOHTHHeHTe h b rpeHJiaH/jHH. Tyzja caaMbi npHßHecjiH oneHeBOfICTBO b TeneHHe 1894-1057 r.r. KpoMe Toro, ecTb TaiGKe apyrwe HeKopeHHbie rpynnbi, saHHMatomneca ojieHeBOfICTBOM. 3to HOpBOKUbI, (J)HHHbI, KOMH, HKyTbl H pyCCKMe. OflHaKO, OHH COCTaBJIHIOT MeHbUIHHCTBO CpeflH OJieHCBOfIHeCKHX HapOflOß. 2 Широко распространенное производство на основе мало рентабельных ресурсов Быть или не быть YHHKajibHaa ycTOHHHBOCTb cuieneßo/iCTBa caejiajia ero rnraHTCKHM no reo rpaijDHHecKOMy pacnpocTpaHeHHK). 3to npoH3BOACTBO pacnpocTpaHeHo no BceMy ceßepHOMy nojiyniapHFo. OjieHbH nacTÖHma 3aHHMaioT okojio 40 % OeHHOCKaHfIHH (okojio 430 000 km 2 ) h orpoMHbie TeppmopHH b Pocchh (oko jio 3 308 388 km 2 ). Ohh TaK>Ke ecTb b Mohtojihh, KnTae, Ha AjiacKe, b Kara te, TpeHJiaHflHH h LLIoTJian^HH. TcppmopnH, onpejiejifliomHe xapaKTep OJiencßO/iCTBa, noApasyMCßaior 3Ha- HHTenbHbie jxJia ero (|)yHKHHOiiHpoBaHHM. CymccißyioT, no KpaM- Heft Mepe, zißa Hpe3BbmaiiHO Ba>KHbix MOMeHTa b stom KOHTeKCTe: 1. OpzauifsaifUH npou3eodcmea: TpaAHHHOHHbin nyTb opraHH3an,HH npoH3BOfICTBa Ka>KeTca npocTbiM, ho oh (JjyHKHHOHajieH n 3tot nyTb opraHH3aHHH HBjiaeTca KjnoneßbiM fljia BbDKHBaHHH ojieHeßOflCTßa. Hhhto He cnocoÖHO BHecTH öojibiiie Hapyuie hhh h flHcnponopuHH b npoMbiuijieHHOCTb, HeM BTop>KeHHe bee opraHH3a hhio, o neM cßHfleTejibCTßyeT mhoto hctophhcckhx npHMepoß. ,3,jia ojieHe- BOfICTBa >KH3HeHHO Ba>KHO nOHHMaHHe iliaHeilHH OpraHM'iaHH ohhoh CTpyKTypbi. Bo3pacTaioiii,ee CTpeMjieHHe k oöieflHHeHHOMy ynpaßJie hhk) b fIencTBHTejibHOCTH npeflCTaßjiaeT yrpo3y ;uih ojieHeßO^CTßa. 2. 3hcihuh: BbicoKHH ypoßeHb 3H3HHH 06 OKpy>KaK)meH h hx hx ycoBepiueH CTBOBaHH» h nepeflann nocjieayioiJUHM noKOJieHHHM HBjiaeTca ochoboh ojieHe- BOfICTBa. Ilpo(J)eccHOHajibHbie 3HaHna 06 OKpyacaiomeH h KjiHMaTe, Ha- KonjieHHbie noKOJieHHHMH, oxßaTbrnaiOT öojibiuyio nacTb TeppmopHH ceßepa. 3to, h cocTaßJiaeT CHJiy ojieHeBOACTBa. 205 Малое производство с большими возможностями - sto Majiaa OTpacjib no 3KOHOMHMecKOMy 3HaHeHHio h 3aHa- TOCTH HaCejreHHH. B 3TOH OTpaCJIH 33H51T0 MeHee 100 000 HejlOßeK, BKJHOHafI CTapHKOB h fleTen. /IpyrHMH cjiOBaMH, ojieHeßOAbi cocTaßJiaioT MeHee 1 % Ha- CejieHHH ApKIHKH. C flpyrOH CTOpOHbI, B TO HpeVIH KaK HaCCJICHHC ApKTHKH B uejiOM coKpamaeTca, HHCJieHHOCTb ojieHeßoaoß yßejiHHHßaeTca. B uenoM y OTpacjiH HeT npoöJieM c paöoneS chjioh, HCKjnonaa HeKOTopbie TeppnTopnM, TaKtie KaK TaoKHbie perHOHbi Pocchh. OTpacjib T3K>Ke cpaßHHTejibHO Majia no hhcjichhocth acnßorabix n o6i>eMy npoAyKUHH. Oömasi HHCJieHHOCTb ojieHen CHH>Kajiacb b TeneHne fljinTenbHoro nepnoaa BpeMeHH h cenwac Aocrarjia 1,8 MHJUinoHa tojiob. 3to cmraceHHe noHTH Ha 50 % c 1990 ro.ua, Korga nncjieHHOCTb ojieHen öbuia MaKCHManbHa. YMeHbUJeHHe HHCJieHHOCTH HaÖJHOfIaJIOCb OfIHOBpeMeHHO B ÖOJIbHIHHCTBe pe thohob h npoflUHjiocb flo 2000 ro/ia. Cennac, no-BHjjHMOMy, cnafl 3aKOHHHJi ca, h b HeKOTopbix pernoHax HMeeT MecTO Bo3pacTaHne norojiOßba ojieHen. Cnafl 1990-x 6biJi bh3obom jx Jia SojibniHHCTßa pernoHOß h cypoßbiM ncnbiTa- HHeM ahm HeKOTopbix H3 hhx. Hanöojiee nocTpaAajin Majibie Tae>KHbie perno- Hbi Ha /JanbHeM BocTOKe Pocchh, a TaK>Ke b Mohtojihh h Ha AjiacKe. Flony ocTpoß #Maji Ha EBponencKOM ceßepe - efIHHCTBeHHbin pernoH, rae HaÖJiio aajiocb cTaÖHJibHoe Bo3pacTaHHe norojioßwi b TeneHHe nocjie/iHero Aecarajie- THH. B CTpaHax Bee cine iiao.iFO/iaercH caviar öojibmaa njiOTHOCTb ceßepHbix ojieHen. Okojio 31 % oömero KOJinnecTßa ojieHen HaxoflHTca 3,necb. njiOTHOCTb cocraßJiae r npn6jiH3HTejibHO 1,3 ojiciim Ha km 2 (b Hopße rnn -1,2; b IIIBeHHH 1,4; b - 1,5 oneHH Ha km 2 ). Poccna aßJiaeTca KpynHeHmen cTpaHOH b mh pe, BJiafleiomen % norojioßba ojieHen. 80 % H3 hhx, hjth 1 mhjijthoh tojiob, HaxoflHTca b 3anaflHoii Cnönpn h eßponencKon nacra Pocchh. njiOTHOCTb cocTaßJiaeT npnMepHO 0,4 oneHa Ha km 2 . /JpyrHMH cjiOBaMH, ecTb BO3MO>KHOCTb 3HaHHTeJIbHO yBeJIHHHTb pa3Mep OJieHeBOfIHeCKOrO npOH3BOfICT- Ba B 3TOH CTpaHe. MoHrojina h KnTan - efIHHCTBeHHbie ojieHeßOflnecKHe HeapKranecKne CTpa- Hbi. Ohh TaK>Ke caMbie Majibie ojieHeßOflHecKne CTpaHbi b Mnpe. CeroflHa sth /jße CTpaHbi BJiaaeiOT okojio 2200 tojiob ojieHen, hto cocTaßJiaeT MeHbme 0,1 % oöinero ojieHenorojiOßbH. B «hobom MHpe», HHCJieHHOCTb flOManiHHx ojieHen Ha cero/jHfl cocTaßjiaeT okojio 14 000 tojiob (MeHee 1 % o6in,ero ojieHenorojiOßba). 3to 03HanaeT orpoMHbin cnaji c 1930- x roflOß, TOJibKO Ha AjTHCKe 6bijio npnMepHO 600 000 ojieHen. 3th pe rnoHbi, no-BHAHMOMy, hmciot caMbin öojibuioii noTeHnnaji pocTa b HaniH 206 CaMblH Ba>KHbIH HCTOHHHK /JOXOfIOB - 3TO npOH3BOfICTBO MHCa. OÖmee npOH3- BOfICTBO MHca b oTpacjTH, BKJiioqafl noTpeöneHHe ana coöct- BeHHbix CJIOBaMH, MbT rOBOpHM O npOH3BOACTBe MOIUHOCTbK) B 3-4 pbi6o3aßOAa cpefl- Hero pa3Mepa BMecTe. FIosTOMy ojichcboactbo fIOBOJibHO He3HaHHTejibHO no CpaBHeHHK) C KOHKypHpyiOIHMMH OipaCJIHMH. ToHHyio CTOHMOCTb oömero npoH3BOfICTBa Maca TpyziHO oneHHTb. TTpn MaK CMMajIbHOM ypOBHe H UeHaX, /lOCTH}KHMbIX B pa3HbIX CTpaHaX, oöinaa ctohmoctb oneHHßaeTca b 50-52 MHJuinoHa /jojurapoß CLIJA b KBOTa cTpaH cocTaßJiaeT öojiee 50 % now rcvihhkhbi. TaKHM o6pa3oM, 3KOHOMHHecKaa 3HannMOCTb oJieHeßOflMecKoro npoH3BOfICTBa cero- AHa Mana. OflHaKO cymecTßyeT noTeHHHaji pocia n npoH3BOfICTBa, h cJ)HHaH coßbix nocTynjieHHH. KpoMe MacHoro npoH3BOfICTBa ecTb HeKOTopbie nocTynneHna ot no öoHHbix iipo;iyK"iOß, TaKMx KaK uiKypbi n naHTbi, a TaK ace npo/ia/KH HapoflHbix npoMbicjiOß. Taxace HMeiOTca aoxoflbi ot conyrcTßyromen 3koho- MHHeCKOH TaKOH KaK TypH3M. Hx BejTHHHHy TpyflHO OUeHHTb. OflHaKO, HecoMHeHHO, cymecTßyeT noTeHHHaji pocTa TaK>Ke n b sihx oo.iac- THX. IIoCKOJTbKy SKOHOMHHeCKOe 3HaHeHHe MHHHMajTbHO, OJieHeBOfICTBO He MO>KeT ÖblTb lipHB.ICKaXCJIhHO /UIH JltO/ICM. Cwjia 3TOH OTpaCJIH B TOM, HTO OHa lipC/l -ciaiiJiMei oöpa3 >kh3hh, KOTopbiH h opocaer Bbi3oß, h npMiiocHi y,;iOßjicriiopc- HHe b npoc])eccMOHajibHOM CMbicjie, h no3TOMy oneHb 3H3hhm fljia juoden. 3to caMO no ceöe HMeeT HeoneHHMoe 3HaneHne. B oTjinnne ot flpyrnx KopeHHbix HapoflOß Mnpa, ojieHeßOflHecKne HapoAbi flo cmx nop hmciot bosmojkhoctb CTpoHTb CBoe öyaymee Ha ochobc coöcTßeHHbix TpeöoßaHHH n ycnjiHH. 3 Угрозы оленеводству Воздействие человека на окружающую среду CaMaa öojibuiaa yrpo3a, c KOTopon ccro.ina crajiKHßacica ojiciicbo;icibo - 3to Bo3flencTßne nejioßeKa Ha ojieHbn nacTÖnma. TaKoe Bo3AencTßne tccho CBa3aHo c npoABH>KeHHeM k «HHBHJiH3OBaHHOMy» Mnpy. Pa3pyiueHHe nacT öhiii h HapymeHna, CBa3aHHbie c BjinaHneM nenoßeKa - 3to HapacTaiomne npoöJieMbi. C npoO-'icMaMM TaKoro yace cTOJiKHyjiocb 75 % ojiCHCßo;ic i Ba b MHpe, BKjnonaa ojieHeBOfICTBO CKaHflHHaßnn, eßponencKOH nacra Poccmh h 3anaflHon CnönpH. B CKaH/iHHaBCKHx CTpaHax 3eMJiH, C4HiaK)inHecsi «HeTpoHyTMMH» coKpara nncb cBO% ot oömen b Hanajie 1900-x r.r. 20 % flpy thmh CJIOBaMH, npoH3oiujio „ : i pa m aiH hcck < > e coKpameiiHC HeTpoHyTbix Teppn- TopHH, b ochobhom oneHbHX nacTÖHm, 3a nepHOfl Menbme 100 JieT. TaKoe pa3BHTHe yrpoacaeT SyaymeMy cymecTßOßaHHio caaMCKoro ojieHeBOACTBa. 207 B Pocchh mo>kho noxoacyio TeHfleHUHio b TeneHHe nocjieflHHx 30- 50 jieT. CnnbHoe npoMbimneHHoe Bo3fleöcTßne Ha oneHbH nacTÖHma HMejro MecTO b MypMaHCKOH oöjracTH, HeHeuKOM AO, PecnyöJiHice Komh, XaHTbi- MaHCHHCKOM OA, .flMajio-HeHeuKOM AO h TaHMbipcKOM AO. no noflcneTaM CoK)3a ojieHeßOflOß Pocchh (COP) 3a nocjre/iHHe 30 JieT 1/5 ojieHbnx nacTÖHm b CTpaHe pa3pymeHbi huh yTpaneHbi b pe3yjibTaTe nocaraTejibCTß, Jiecrabix nO>KapOB H KOHKypHpyK)LU,eH XO3JIHCTBeHHOH fIeaTeJIbHOCTH. KpoMe noTepn nacTÖHm, h nocTeneHHbie nocaraTejibCTßa, h npoMbiuuieHHoe ocßoeHHe Be/iyT k HeraTHßHon oneHKe ojieHeßOflCTßa. B pe3yjibTaTe npoöjieivia cboahtoi k nepeßbinacy, hto yBOfIHT ot peajibHOH npoöneMbi pa - pymeHHa OKpyjKaiomeH cpe/ibi. 3to cnynnjiocb b HopßerHH, lUbcuhh h Ohh jiaHflHH. Ta >Ke CHTyau™, no-BHAHMOMy, HaöiuoAaeTca Taicace Ha ceßepo -3anaae Pocchh. Проблемы таежного оленеводства Bropaa cep[>e3iia;i yrpo3a, c KOTopoM crajiKHßacTca o.ichcbojctbo - sto hc- He3HOßeHne npoH3BOACTBa BCJie/jcTBHe yMeHbuieHHH HHCJieHHocra ojieHen, KaK 3to cjiyHHjiocb Ha /],ajibHeM Boctokc Pocchh. 3Ta npoöneMa b ochobhom CBH3aHa c pa3BajioM Pocchhckoh 3kohomhkh b 1990-x r.r. OHa noßnnana Ha ojieHeßo/icTBO b 3bchkhh, TaeacHbix pernoHax PecnyöJiHKH Caxa (.flKyraa), HpKyTCKOH oöJiacTH, Pecny6jiHKH EypaTHa, Hhthhckoh oönacra, AMypcKOH oÖJiacTH, XaöapoßCKoro Kpaa, PecnyönHKH Tbma h CaxajiHHCKOH oönac™. Tatcah >Ke CHTyanna HMeeT mccto h b Mohtojihh 3Ta npoöneMa TpeöyeT He3a- MefljiHTejibHoro pemeHHH. OnnaKO, öyAymee oneHeBOACTBa b sthx pernoHax 33BHCHT OT BOJIH MOKflyHapOflHOrO COOÖIHeCTBa H ero COfIeHCTBHH. Проблемы дикого северного оленя/карибу /Ipyraa npoöneMa, e KOTopon CTajiKHßaeTca oneHeßoncTßO, ocoöeHHO b TaM- MbipcKOM AO, HeKOTopbix HacTJix PecnyönHKH Caxa (.flKynifl), HyKOTCKOM AO h Ha AjiacKe - sto HeKOHTponnpyeMbiH pocT CTan ahkoto ceßepHoro one- HH/KapHÖy. OhH 3aXBaTbIBaK)T OneiieBO.IHCCKMC TeppHTOpHH H npH Ll HIISI [OI öojibuine noTepn noManiHeMy oneHeßoncTßy. 3Ta npoöneMa Hanöonee ocTpo ctoht Ha nojiyocTpoße Cbioapn Ha AnacKe, r/je OTpacjrb önH3Ka k Kpaxy bcjicactbhc BTop'/KCHHJi cTan, Kapnöy c 3aiia,uiOM Ajihckh. 3Ta npoöneMa TaK >Ke xpeöyeT cpoHHoro pemeHHH, htoöh H3Öe>KaTb yracaHHH MecTHoro oneHe- BOfICTBa. Рост численности хищников Eine oflHa cepbe3Haa yrpo3a - 3to pocT hhcjichhocth KpynHbix xhihhhkob. 3to oöinaa npoöneMa, KOTopaa bjihhct Ha bcio OTpacjib. noKa He AOKa3aHO npOTHBHOe, OJieHeßOflbl HaCTaHBaiOT, HTO B3pbIBHOH pOCT HHCJieHHOCTH Kpyn- Hbix XHIHHHKOB B TOflbl CBH3äH C BO3AeHCTBHe HeJlOßeKa Ha JiaHfl ma({)Tbi. Bo3pacTaHHe qejiOßeMecKofi 3kthbhocth Ha TeppHTopnax Tpa/innn- OHHO HaceneHHbix ahkhmh whbothmmh c MepaMH, npeanpHHHMae- MbiMH ajia KOHcepBaHHH nonyjiauHH xhuihhkob, omcbhaho, npHßejin k aöco 208 jhotho HOBOMy xapaKTepy 3thx jkhbothmx: hx npnpoaHa» octo po)KHOCTb HCHe3na. B to >Ke BpeMa, y sthx bhjiob Ha6ino,aaeTca Bo3pacTaio mHH ycnex pa3MHO>KeHHa. B Taxnx yenoßHax OTpacjib CTajiKHßaeTca c a6co jik>tho hoboh CHTyauneH no OTHomeHHK) k xnu(HHKaM. OjieHeBOfICTBO, npe>K fle Bcero, HeceT yöbiTKH ot yßejiHHeHHa iHCJieHHOcra xhluhhkob. HeecTecT- BeHHoe yßejiHHeHHe hhcjichhocth, o/jHaKO, aojdkho TaioKe HHTepecoßaTb Tex, KTO ÖeCnOKOMTCfI O COCTOHHHH OKpy>KaK)meH CpeAbl- 4 Проблемы Внутренняя: повышение экономической значимости CaMaa öojibiuaa npoÖJieMa BHyTpH ojieHeBOACTBa - 3to noßwmeHHe 3koho- MHHecKoii 3HaHHMOCTH. CTeneHb ycneiiiHOCTM npeoAOJieHHH stoh npoÖJieMbi peiuaiomefi Ana cnocoÖHOcra OTpacjiH peniaTb BHeiHHHe npoSneMbi. KaK roßopHjiocb paHee, ojieHeßo/icTBO HMeeT Majioe 3KOHOMH"iecKoe h nojin- THHecKoe 3HaqeHHe. BfloöaßOK, Sojibiuaa nacTb OTpacjm, HanpHMep, Pocchh- CKoe ojieHeßOflCTßo, HaxoflHTca eeroflHa b rayöoKOM skohomhhcckom KpH3H ce. yKpenHTb 3KOHOMH4ecKOe nojiO)KeHne b oömeM n npeofloneTb BpeMeHHblH KPH3HC flJia yjiyHHieHHa CnOCOÖHOCTH OTpaCJIH K OTCTaHBaHHJO CBOHX HHTepeCOB. Mo>KHO CymeCTBeHHO nOBbICHTb 3KOHOMHHeCKyfO 3HaHHMOCTb OJieHeBOfICTBa bo Bcex perHOHax, Bcero 3a cneT ynyHuieHHa MHcjjpacTpyiaypbi, T.e. 3a6oHHbix nyHKTOB h nepepaöaTbißaioinHx 3aBOfIOB, pa3paÖOTKH hobmx npo- AyKTOB, HX HMHfl>Ka H MapKCTHHTa. 3to MOrjlO 6bl npHBeCTH K 3HaHHTejIbHOMy pOCTy fIOXOfIOB B perHOHax C pa3BHTbIM OJieHeBOACTBOM, a OCOÖeHHO B THnHH- HblX HH3KOfIOXOfIHbIX perHOHax. PerHOHbl C MajlblM npOH3BOfICTBOM TaK>Ke MorjiH 6bi noßbicHTb cboh zioxoAbi, nocKOUbKy noTeHunaji pocTa CBa3aH He TOJibKO c npoH3BOfICTBOM Maea. H xoTH y OTpacjiH HeT nepcneKTHß nojiyneHHa öojibuiHx aeHer, HeT ochob3hhh .qua neccHMH3Ma b OTHomeHHH ojieHeßoacT- Ba. B 3tom KOHTeKCTe xoneTca floöaßHTb, hto BbicoKaa npnöbiJii. He to>k,iccißCiiiia ,icciBCiiiia cnacTJiHBOH >kh3hh. Ojieiießo/icTRO 6bijio 6bi coßepmeHHO e tohkh 3peHHH ojieHeßOflOß, ecjiH 6bi OTpacjib 6biJia Bee BpeMa oneHb Bbiroa hoh. HeM Bbirne npnöbuiH, TeM öojiee npHßJieicaTejibHOH CTaHOBHTca OTpacjib ayicaH/icpoß. IlosTOMy omcbh/iho cymecTßyeT hcooxojhmoctl yKpenjie hhh npaß ojieHeßOflOß Ha hx xo3aficTßeHHyio /leaTejibHocTb h pecypcbi. OflHa ko, 3TO Bonpoc ztpyroH /jHCKyecHH. Внешняя: знания и наращивание потенциала ,Zl,pyraH aojiroßpeMeHHaa npoSneivia - 3to Hcnojib3oßaHHe 3HaHHH h Hapaiyn- BaHHe noTeHHHana. 3to hcoöxoahmo h caMoii OTpacjiH bee ycHjinax no no- BbILUeHHK) SKOHOMHHeCKOH 3HaHHMOCTH, H yHeHbIM J\JIH Co3flaHH3 HOBOrO BH fla HayKH. TpaflHHHOHHbie 3HaHH» HHTerpnpoßaHbi b ynpaßjieHHe npnpoflHOH cpeflofi Apkthkh. HecoMHeHHO, HaKomreH öojibuioii oöteM 3HaHHH 06 oxpy 209 waromen h KJiHMaxe Apkthkh b mmpobom 3th 3HaHH*i MoryT öbiTb Hcnojib3oßaHbi fljia Jiyqmero noHHMaHHH Apkthkh, KOTopoe 6hjio 6bi BbiroflHO He TOJibKO ojieHeßOflCTßy, ho h BceMy apKTHMecKOMy cooömecT- By. 210 Северные Горные Березовые Леса Франс-Емил Виелголаски Резюме CeßepHbie ropHbie 6epe3oßbie Jieca nojiynHjm pacnpocTpaHeHHe ot boctoh hoh nacra KojibCKoro nojiyocTpoßa Ha ceßepo-BocTOKe ao Ha loro 3anaae. Ohh Ha ceßepe eHHOCKaH£HH h oöpa3yioT KJiHMara- HecKyro rpaHHHy Jiecoß npoTarHßaiomyiocH ajIbnHHCKOH JIHHieHHOH JieCHOH paCTHTejTbHOCTH 30H0H B TOpaX OeHHOCK3H jxmi- BjiH3KHe BHAbi, raöpHflbi ceBepHOH 6epe3bi, o6Hapy>KHßaiOTCsi T3K>Ke k BOCTOKy ot KojibCKoro nojiyocTpoßa, Ha ceßepe, Ha 3ana/iHOM noöepe>Kbe KDKHOH TpeHJiaHAHH, B UIOTJiaHfIHH H Ha paBHHH3X OeHHOCKaHAHH. TeMne paTypa h - flßa rjiaßHbix (})aKTopa, onpeaejifliomHx apeajibi pacnpo- CTpaHeHHH 3thx ropHbix 6epe3oßbix Jiecoß. CKopocTb pocTa flepeßbeß BapbH pyeT B 33BHCHMOCTH OT MeCTa npOHCXO>KfIeHHH, KJIHMaTHHeCKHX H nOHBeHHbIX yCJIOBHH. n p(),' IV KTM BH OCIb HaSCVHIOH OHOViaCCbI 6epe3bl KOJieO.ICTCH OT 2400 T/m 2 B onTHMajibHbix ycjiOßHax cyöaubnHHCKOH 3ana,nHOH HopßerHH ao 100:7m2 Ha hh3ko njio,nopo,ziHbix BepemaraHKax b6jim3h ot rpaHHHbi eeßepHbix Jiecoß b öojiee KOHTHHeHTajibHbix pafiOHax ceBepHOH YcTaHOB neHO, hto coAep>KaHHe 3JieMeHTOB nHTaHna (HanpHMep K, N h P) yßejiHHHßa eTca c BbieoTOH h uiHpoTOH, to ecTb c noHH>KeHHeM TeMnepaTypbi. Ha skoch- CTeMbi eeßepHbix ropHbix 6epe3oßbix Jiecoß b 3HawHTejibHOH cTeneHH BO3AeH CTByioT nepHO/iHHecKHe (c HHTepßajioM okojio 10 jieT) HainecTßHH BpeflHTe jiefi. MecTHbie >KHTejiH Hcnojib3yeT b KanecTße TonjiHßa, KaK 3aeoxuiHe nocjie HauiecTßHH BpeAHTejiefi ctbojtm, TaK h oöbmHbie cpyÖJieHHbie 3th 6epe3oßbie Jieca Hcnojib3yiOTCfl TaK>Ke b cepe TypH3Ma, b npoMbimjieHHocTH, B KyCTapHOM npOH3BOACTBe H T.A- B CBOK) OHepeflb, fIOMaUIHHe H AHKHe >KH BOTHbie aKTHBHO nacyrca b 6epe3oßbix jiecax, hto cnyacHT ochobhoh npHHH hoh CHH>KeHHa rpaHHUbi 6epe3oßbix jiecoß, ctbbh BO3fIeMCTBHe (J)aKTopa H3Me- HeHHfl KJiHMaTa Ha BTopocTeneHHoe MecTo. FopHaa 6epe3a mo>kct TaK>Ke pae npocTpaHHTbca nojiHKopMHMecKH, npoAyunpya pocT hobhx Aepeßbeß, oco öeHHO Ha cyxHx oj™roTpo(})Hbix BepemaTHHKax. Ilepeßbinac ecTecTßeHHbix nacTÖnm ojieHAMH, a T3K>Ke yßenHHUßarouiHHCfl cHe>KHbiH noicpoß BCJiefICTBHe H3MeHeHHa KJiHMaTa HeÖJiaronpHaTHO Ha coctoahhc JiHHiaÖHHKOB b nofloÖHbix jiaii;imac))Tax. 3to, BMecTe c noßbiiueHHeM TeMnepaTypbi, CBMian hoh c H3MeHeHHeM KJiHMaTa, MO>KeT npHßecra k jiynmeMy npopacTaHHio 6e 211 pe3oßbix caaceHueß Ha öojiee otkpmthx noHßax, oco6chho ecjiH Harpy3Ka ojieHen h Apyrnx >KHBOTHbix chh3htch. Распространение 3oHa pacnpocTpaHeHHH ceBepHOH ropHOH 6epe3bi 3aHHMaeT rjiaßHbiM o6pa3oM 3KOTOH Meamy xbohhmmh necaMH h TeppHTopneii 6e3 Jiecoß. Ha Ceßepe OHa name Ha3bmaeTca cyöajibnHHCKofi. 3oHa hbjihctcs TaioKe cymecTBeHHOH na- CTbio 6opeajibHoro noaca (Moen 1999). Bnepßbie OHa öbijia BbiAejieHa Wah lenberg (1812), h BKjnonajia 6epe3oßbie jreca npoTarHßafomyjoca k ceßepy, k apKTHHecKofi rpaHHUbi Jiecoß, TaK h k k Mopio, a TaioKe k ajibnnHCKOH 30He Bcex ceßepHbix CTpaH. CoßpeMeHHbie rpaHHUbi pacnpocTpaHeHna ceßep- HOH ropHoö 6epe3bi 6jih3kh k rpaHHuaM, BbmejieHHbiM Wahlenberg. Apean pacnpocTpaHeHHa ceßepHoii ropHOH 6epe3bi b Hame BpeMa npoTSHyjica ot boctohhoh H3CTH KojibCKoro nonyocTpoßa Ha CeßepO-BOCTOK, Ha ceßep OeHHOCKaHfIHH, h BAOJib ropHbix uenen Hopßernn h lIIBeuHH. 3tot bha 6e pe3bi HBJiaeTca KopeHHbiM b HcjiaHAHH, xora TaM 6epe3a OTJiHnaeTca MeHb uihm pa3MepoM jiHCTbeB (Nilsen h Wielgolaski 2001). Ha boctokc Kojibcicoro nojiyocTpoßa ceßepHaa ropHaa 6epe3a, bhahmo, oöpa3yeT rnöpHAbi c ApyrHMH BHfIaMH 6epe3bi. 3to TaioKe npnHHHa comhchhh no noBOAy oraeceHHa 6epe3 lora KpaiiHero 3anaaa TpeHjiaHflHH k TaiccoHy CeßepHbix ropHbix 6epe3oßbix Jiecoß (Odum 2001). OcoöeHHO Ha iore paBHHH eHHOCKaHAHH h b liloTJiaH- Ahh fIOJiH Aepeßbeß HacToameH ceßepHoii ropHOH 6epe3bi Betula pubescens ssp. czerepcinovii HH3Ka no cpaßHennio c bh;iom B. p. Ssp. pubescens, a Taiotce c bhaom B. pendula. TeM He MeHee, t3kcohomhsi tohho ao chx nop He onpefleneHa, h 3tot Bonpoc Hy>K,a.aeTCfl b yTOHHeHHH. nonyjiHHHH c bmcokhm nponeHTOM B.nana, OTJiHnaiomaaca oceHbio oneHb HacbiiyeHHbiM KpacHbiM HBeTOM JiHCTbeB (Nilsen and Wielgolaski 2001), MO>KeT CHHTaTbca 3TajioHHbiM T3KCOHOM ceßepHbix ropHbix 6epe3oßbix Jiecoß. BepxHHH npHpoflHO-KJiHMaTHHecKaa rpaHHna ceßepHbix ropHbix 6epe3oßbix Jiecoß b HacTOflmee BpeMa HaxoAHTCH (Pnc.l) Ha ypoßHe 1300 MeTpoß Haa ypoBHeM Mopa b ioto-boctohhoh HacTH HopBe>KCKHX rop (Jotunheimen), chh >Kaacb bo Bcex HanpaßJieHHax, ocoöeHHO k noöepe>KbK), a TaK>Ke Ha boctok h Ha ceßep eHHOCKaHAHH, HaxoAflCb npaKTHiecKH Ha ypoßHe Mopa Ha caMOM ceßepe noöepeacbji HopßerHH okojio 71 rpaflycoß ceBepHOH uinpoTbi (Aas h Faarlund, 2001). TeM He MeHee, Hanöojiee BbicoKoe nojio>KeHHe rpaHHUbi Jieca b ropax OeHHOCKaHfIHH öbuio Ha 500 MeTpoß Bbiuie TenepeniHero h AaTHpo- Bajiocb npnMepHO 10000 JieT ao h.3. Bo3pacT ycTaHOBJieH c noMombio paAHO yrnepoAHoro MeToaa h HCCJie/iOBaHHH oKaMeHejiocTeii (Kullman h Kjällgren 2000). 3to npoH3oHuio Bcero Ha 2000 JieT paHbine toto BpeMeHH, Koraa ce- BepHaa ropHaa 6epe3a pacnpocTpaHHJiacb ao iomchoh OeHHOCKaHAHH nocne nocjieAHero ojieAeHeHHa, h Ha 1000 JieT no3AHee Toro, KorAa OHa AOCTHrna KpaiiHero ceßepa eHHOCKaHAHH. 212 Рисунок 1. Верхняя климатическая граница северных березовых лесов в пределах Фенноскандии (Aas and Faarlund 2001). B öojibiiiHHCTße apyrax perHOHOB, h ceßepHaa npnpo/iHO KJiHMaTHHecKaH rpaHHti,a .neca npeacraßJicHa xbohhmmh riopoaaMM. 3to ot jiHHHe ot Cicaii;innaßCKHx CTpaH nacTO oötacHHeTca MaKpo- n hhcthmho mhk pOKJIHMaTHHeCKHMH OKeaHHHeCKHMH OCOÖeHHOCTHMH CDeHHOCKaHfIHH (Wielgolaski 2001 a). 3th i Hiioicia TeM, hto xBOHHbie nopo flbl HHOrfla BCTpeHaiOTCfl B aJIbnHHCKOM 3KOTOHe CaMblX KOHTHHeHTajIbHbIX lOrO-BOCTOHHbIX paHOHOB CICäHJHHaBHH. a TaiC/Ke B liaHÖOJiee KOHTHHeHTaJIb- Hbix BOCTOMHbix paiioHax KojibCKoro nojiyocTpoßa (HanpHMep, Kihlman 1890). 110 pe3ynbTaTaM perpeccnoHHoro anajiM ja aBTop raioKe caejiaji 3aKjno neHHe o tom, hto npw BbicoKOH BJiaxHocTH Bo3flyxa 6epe3oßbie noHKH pac nycKaiorcM SbicTpee, mcm y apyrnx jihctbchhmx jicpcßbci! ceßepHbix CTpaH. TeM He MeHee, mmchho TeMnepaTypa- rjiaßeHCTßyiomnH 3KOJiorHHecKHÖ (j)aK- Top AJia pocTa ceBepHOH ropHoii 6epe3bi b jiioolix pei Honax, 6y;u> to b yMe peHHbix, huh xonoflHbix o6jiacTHX. PaHee ömjio ycTanoßjieno, hto b Oeimo 213 mh TeMnepaTypaMH, neM ejib n cocHa. He/iaBHO 6buio ycTaHOBJieHO c bmco- KOH CTeneHbK) CTaTHCTHHeCKOH fIOCTOBepHOCTH, MTO CpeAHeMHOrOJieTHHH MaKCHMajibHaa TeMnepaTypa HeTbipex caMbix Tenjibix Mecaneß b 13,2° C coot- BeTCTByeT rpaHnne pacnpocTpaHeHHH ceßepHon ropHoii 6epe3bi (Odland 1996). 3to 03HaHaeT, hto bo mhothx panoHax OeHHOCKaHAHH BepxHaa rpa- HMua pacnpocTpaHeHHa 6epe3bi AOJDKHa öbiTb Ha 150- 200 MeTpoß Bbime rpa- HMUbi pacnpocTpaHeHHa xbohhmx nopoa, a TaK)Ke to, hto 6epe3a pacTeT aajibine k ceßepy, neM xBOHHbie, nocKOJibKy am ycneuiHoro npoH3pacTaHna xbohhbix rpeöyiorcH 6onee BbicoKHe icviiicpaiypbi. BjiHAHHe BJiaacHOCTH n oca/iKOB Ha nofljiecoK b ropHbix 6epe3oßbix Jiecax, TaioKe KaK h b xBOHHbix, 33BHCHT OT TeMnepaTypHoro h nHTaTenbHoro pe>KH mob (Sonesson h Lundberg 1974). B He CTOJib KOHTHHeHTanbHOM ceKTope ce- Bepo-BOCTOKa (t>eHHOCKaHfIHH, jiHuiaHHHKH h cooöiyecTßa Vaccininum vitis idaca hbjijhotcs Hanöojiee pacnpocTpaHeHHbiMH pacTeHHHMH no/uiecKa Ha öe/uibix noHßax, bto BpcxiH KaK mxh h Vaccinium myrtillus. nacTO c Em petrum (h rpaBHHHCioe pacTeHHe Molinia , xoth pcviKoe Ha ceßepe), BCTpe naiOTCH npeHMymecTßeHHO b oKeaHnnecKHx ceKTopax (Wielgolaski 2001 a). EfIHHCTBeHHbiH 3nH(})HT, xapaKTepHbin AJia ceßepHbix ropHbix 6epe3oßbix jie cob - JiHmaHHHK Parmelia olivacea. Oh npHAaeT BepxymKaM ctbojiob h Bepx- HHM BeTBHM TeMHO-KOpHHHeBbIH OTTCHOK, B TO BpeMH KaK HH>Ke, Tfle HeT jiMiuaiiHHKa, CTBOJibi ocTaiOTca öejrecbiMH. BbicoTa, Ha KOTopoö ctbojim öejie- Cbie, cooTBeTCTByeT BbicoTe MaKCHMajibHoro CHe>KHoro noKpoßa (Sonesson 2001). 3tot (JiaKT mo>kct öbiTb Hcnojib3oßaH b npaKranecKHx nejmx, Hanpn- Mep fljia npoeKTHpoßaHMfl h CTpoHTejibCTßa Aopor. Вегетация Березы B ceßepHbix ropHbix 6epe3oßbix Jiecax, TaK>Ke KaK h b xbohhhx, oöhhho Ha- ÖJiiOAaeTca yMeHbiueHHe pa3Mepa Aepeßbeß c bmcotoh Haa ypoBHeM Mopa. 3to 8b1383H0 MHO>KeCTBOM (j)aKTOpOB, HanpHMep, CHJIbHbIMH BeTpaMH H HH3- khmh TeMnepaTypaMH. K TOMy >Ke, cymecTßyeT jjocTaTOHHO cnjibHbin Heaoc- TaTOK nHTaTejibHbix BeinecTß, yßejTHHHßaromHiica c bmcotoh. rio3TOMy böjih -3H BepxHen rpaHHu,bi Jieca oöteM ÖHOMaccbi 3HaHHTejibHo cHH>KaeTca. Han oojibiiiHe 3anacbi yraepoaa h KpaxMajra HaKanjiHßaioTca b pacrenHJix b KOHue jieTa h oceHbio (Mäenpää h ap. 2001), TaK)Ke b MecTax c hh3koh önoMaccon. 3/iecb oHa aocraraeT okojio IOOt/m 2 >khboh Ha3eMHoM ÖHOMaccbi, npo/iynH pyeMOH Ha nycTomax pagoM c rpaHHnen jieca b ceßepHon Ohhjthh- Ahm Ha BbicoTe 330 m Haa ypoBHeM Mopa (Kjelvik h Kärenlampi 1975), b to BpeMH KaK HM>Ke Ha 200 MeTpOB npOfIyKTHBHOCTb aHajIOTHMHOH paCTHTeJIbHO cth eocTaßJiaeT okojio 750 t/m 2 . Bylund h Nordell (2001) noflCHHTajin kojih necTßO ÖHOMaccbi 6epe3bi b Aöhcko Ha rpaHnne c xbohhmmh jrecaMH. OHa cocTaßHjia 935 t/m 2 . BbicoKne 3HaneHHsi Ha3eMHOH ÖHOMaccbi AOCTHraiOTCH b onTHManbHbix ropHbix 6epe3oßbix jiecax b npnöpe>KHOH cy6ajibnHHCKOH 3a naflHOH HopßerHH, 2365 t/m 2 (Kjelvik 1973), hto oöycjroßjreHO, TaKaKero4Ha>i 214 npoayKTHBHOCTb jiHCTbeB 6epe3bi, TeM He MeHee, KaK b Aöhcko, TaK h 3ana/i --hoh HopßernH cocTaßJiaeT öojiee 100 t/m 2 . B HacToamee BpeMu KaK /jaHHbie o KOJIHHeCTBe ÖHOMaCCbI, TaK H O npOJiyKTHBHOCTH yCTaHaBJIHBatOTCfI npH no- MoinH fIHCTaHUMOHHoro 30HflHpoBaHMfl, KOTopoe npoßO/jHJiocb b paMKax HIBECO, fleiicTßyiomero npoeKTa no nccjreflOßaHHio rop- Hbix 6epe3oßbix jrecoß (cm. Nilsen h Tommervik 2001; Tommervik h 2001). CKopocTb pocTa ropHofi 6epe3bi b o/ihom h tom ®e MecTe, ho c pa3HbiM reHe 3hcom CHjibHO OTJiHHaeTCfI ( Skre 1993). OneHb 3HaHHTenbHbie pa3JTHHHa ot- MenaioTCH koitui ca>KeHUbi isbica>Khßacrcm He Ha toh umpoTe, Ha KaKOH OHa Bbipocjia. PacTeHHH H 3 ceBepHOH OeHHOCKaHAHH OTJiHnaiOTca öojiee Mea- JieHHblM pOCTOM, HeM paCTeHHfI H 3 K)>KHOH HopßerHH, KaK Ha paBHHHaX, TaK H Ha rpaHHue jieca (Phc. 2). IlofloÖHbie HccjieflOßaHH» no TpaHcnjiaHTannn ae peßbeß, b ceßepHon OeHHocKaHflnn, ocymecTßJiaeMbie b paMKax npoeKTa HIBECO no ropHbiM 6epe3oßbiM uecaM noKa3bißaiOT, hto (JjeHOJiornnecKHe y 6epe3 b pa3Hbix iiinpoiax OTJinnaiOTca KaK oceHbK), TaK n BecHOH. (nHHHbie KOMMeHTapnn Jarle Nilsen ), hto paHee xopouio öbiJio H3BecTHO ot- HOcnTejibHO xBOHHbix. ca>KeHneß T3K>Ke noKa3ajin, hto 6onee K»KHbie ca>KeHUbi ropHon 6epe3bi npn TpaHcnjiaHTauHH b öojiee ceßepHbie npnöpe>KHbie panoHbi MoryT xopouio pacra aa>Ke npn kopotkom BereTauHOH hom nepnofle. Skre (1993) OTMenaeT cpaBHHTenbHO bmcokhh oöteM ÖHOMac cbi ca>KeHneß ropHon 6epe3bi H 3 hopbokckhx paBHHH, neM H 3 apyrnx paöoHOß, pacnojio)KeHHbix Ha öojibuieH BbicoTe (cm. Phc. 2). Oahhm H 3 oöt.- HCHeHHH 3TOrO MO>KeT ÖblTb TO, HTO B fIOnOJIHeHHH K KJIHMaTHHeCKHM OTpaHH neHHfIM, Ha öojibuiHX BbicoTax HanHHaeT aencTßOßaTb <})aKTop CHJibHoro He- AOCTaTKa b nHTaTejibHbix Bcmecißax. YcTaHOBJieHO, hto ypoßeHb (j)HKcannn KopHaMH nHTaie.nbfibix bciucctb CHjibHO cnn>KaeiCH c TCMiieparypoH (Karlsson n Nordell 1996). B apyrnx HccjieaoßaHnax ycTaHOBJieHO, hto Han öojibmee Bo3flencTßHe BHeceHra yaoöpeHHH Ha BbicoTy 6epe3oßbix aepeßbeß OKa3bißaeTca Ha caMbix noHßax (Sveinbjörnsson 2001) Ha öojibinnx BbicoTax. riocjie/iiine Ha6jHO,neHM b nHTOMHHKax Ha ceßepe Ohiijihii/ihm. tcm He MeHee, name CBHjieTejibCTßyiOT o öojibmen BbicoTe .qepeßbeß b nHTOMHH- Kax, pacnojio>KeHHbix Ha MaKCHMajibHbix BbicoTax Haa ypoBHeM Mopa, c öojiee njioflopoflHbiMH h Jiynrne yBJia>KHeHHbiMH noHBaMH (Ovaska h AP- b noAroTOBKH), b to BpeMH KaK 6ojiee HH3Kopocjibie aepeßba toto »e reHe3nca h Bo3pacTa BCTpenaiOTca Ha öonee hh3khx BbicoTax c öcahmmh noHBaMH. Ba>KHOCTb oöecneneHHOCTH 3JieMeHTaMH nnTaHna, t3khmh KaK a3OT, /yia poc- Ta 6epe3bi MoaceT öbiTb npnnHHOH toto, hto ee caaceHnbi pacTyT jiyniue nocjie Bbiceßa MHKopH3bi, HHTpoAyKHHpoBaHHOH H 3 HBHHKa, npoH3pacTaiomero Ha öegHbix noHßax Mcjiammn (Magnusson h Magnusson 2001). KOHHeHTpanHH MHHepajlbHblX 3JieMeHTOB nHTaHHH, TaKHX KaK KaJIHH, a3OT H (J)oc(J)op, oöbiHHO yßenHHHßaeTca c BbicoTon n mnpoTOH, hjth, BepoaTHO, npo cto npn noHH>KeHHH TeMnepaTyp (Partanen h ap. 2001), HecMOTpa Ha orpaHH- HeHne nHTaTejibHbix BemecTß c bmcotoh. TeM He MeHee, o6m.ee KOjranecTßO 3jieMeHTOB b >khbom BeujecTße Ha njiomaflH yMeHbuiaeTCH b tom ace HanpaßJieHHH H3-3a hx hh3koto coflep>KaHHH b noHßax h hh3koh npofIyKTHB HOCTH. 215 HaAe>KHoe yicopeHeHHe ropHOH 6epe3bi 33HHMaeT 1,5-2 ro/ja, mto b 2-4 pa3a flojibiue, neM y nHCTona/iHbix nopoA b yiviepeHHbix wnpoTax (Karlsson h ap. 2001). HecMOTpa Ha kopotkhh BereTauHOHHbifi nepno/i b cyöapKraice, e>Ke- AHeßHaa npoAyKTHBHOCTb ÖHOMaccbi ropHOH 6epe3bi Ha e/jnHHijy Maccbi jih- CTbeß cpaBHHMa hjih Bbirne, neM b öojiee kökhmx mnpoTax. 3to cnocoöcTßy eT OTHOCHTenbHO BbicoKoii 3(j)cJ)eKTHBHOCTH ycBoeHHH ropHofi 6epe3oii nHTa- TejibHbix BemecTß. Рисунок 2. Биомасса растения (грамм сухого вещества +_ 2 SE) в различных про винциях высадки саженцев березы на двух высотах (Квамскоген, 450 м и Фана, 50 м) в западной Норвегии за более чем два года. Четыре провинции Betula ри bescens: В.l=Кево, северная Финляндия (200 м), ВН= Блефджелл, южная Норве гия (750 м), ВB=Фана, западная Норвегия (50 м), ВА/М=Латен, восточная Норве гия (200 м); одна провинция Betula pendula: Лотен, восточная Норвегия (200 м) (Skre 1993). M3MeH4HBOCTb h HacjieflCTßeHHocTb BereTauHH pa3Hbix reHoranoß ropHoii 6epe3bi cBH/ieTejibCTßyfOT o tom, hto pa3jniHHbrä reHe3HC pa3BHBaeT b ochob hom HacjieflCTßeHHbie npH3HaKH, b to BpeMH KaK nonyjiHHHH, pacnojio>KeHHbTe 216 Ha pa3Hbix BbicoTax na/i ypoBHeM Mopa b ochobhom noflHHHaeTca 33KOH3M H3MeH4HBOCTH. BbicoKoujHpoTHaa h KapjiHKOßa» 6epe3a (B. nana) oÖHapy>Kn- BaiOT MeHbiuyK) M3MeHHHBocTb no cpaßHeHHio c HH3KOiiinpoTHbiMH 6epe3aMH. 3to MO>KeT öbiTb CB33aHO c a,nariTauHeH k 3KCTpeMajibHbiM npHpo/iHbiM ycjio- BHHM H ÖbiTb pe3yJIbTaTOM B3aHMOfIeHCTBHfI MC"/K,:IV MaK CH M ajl H3aH HC H CKOpO cth pocTa npn HeSjiaronpnaTHbix ycjioßHax h BO3MO>KHOCTbK> pearapoßaTb Ha yjiynmeHHbie ycjioßHa (Weih h Karlsson 2001). Вредители растений и влияние человека H3MeHeHHH b 3KOCMCTeMax ceBepHOH ropHOH 6epe3bi TaioKe b CHJibHOH cTene hh 3aBHCHT OT HaceKOMbix- Bpe/HiTejieK, ocoöeHHO ot ryceHHu oceHHen mojth Erirrita autumnata h Operophtera brumata. I Ipn6;iH3HTc;ibHO pa3 b KavKVihie 10 jieT HaÖJHOAaeTca BcnjiecK hhcjtchhocth nonyjiauHH ryceHHu, nHTaiomnx ca jihctboh ropHOH 6epe3bi (Tenow 1972). Ha ynacTKax, rae shmhhc TeMne paTypbi He OHeHb hh3kh, h aftua mojih nepe3HMOßbißaroT, SojibuiHHCTßO noöe roß 6epe3bi mcokct öbiTb nojiHOCTbro yHHTOmeHO ryceHHuaMH Ha cjieayro mee jreTo (Neuvonen h AP- 2001; Tenow h ap. 2001). Xhmhh6ckhh cocTaß oc- TaBHJeHCfI H HOBOH JIHCTBbI H3MeHSieTCSI nO Mepe yMeHbHieHH» ÖHOMaCCbI, B HacTHocTH npn Mpe3MepHOM CTpaBJiHBaHHH (Haukioja h Koponen 1975). Ha npHMep, .qojifl HectefloÖHbix pacTHTejibHbix KOMnoHeHTOB MO>KeT yMeHbmaTb ch. FyceHHHbi, noe/jaromHe 3th jiHCTba, pacTyT 3HaHHTenbHO MeaneHHee, H BO B3poejiOM coctohhhh OTJiHHaiOTca MeHbuieH njioflOßHTOCTbio, HeM Apyrne ocoöh. lIoAOÖHoe yMeHbiueHHe KOJiHnecTßa h H3MeHeHHe KanecTßa nnuin, T3K>Ke KaK h yBenHHeHHe Harpy3KH Bpe/jHTejieö npHBO/HiT k cnajjy BcnuecKa HHCJieHHOCTH nonyjiaHHH BpeflHTejien. B nepßbrä rofl nocjie aTaK HaceKOMbix oömhho ocTaioTCH tojihmh BepxyuiKH ito oötacHaeT BbicoKyio npoayKTHBHOCTb fljraHHbix BeTBeM (Karlsson h Weih b nenara). 3to Mo>KeT 06-bHCHHTbCH yBejiHHeHHeM kohhch- TpauHH a3OTa b jiHCTbax, ocTaiouHixcfl na BeTßax Aepeßbeß. PaHee öbijio ycia- HOBJieHO (Hillman, 1984), hto BbicoKaa oöecneneHHocTb nHTaTejibHbiMH Be mecTßaMH Mo>KeT npHBOfIHTb k BepxymeHHOH noTepe jiHCTbeB. flo npomecT bhh HecKOJibKHx JieT, TeM He MeHee, HaönioflajTocb, hto /jepeßbfl npoflyuHpo- BajiH öojiee MenKHe AJiHHHbie noöera b KanecTße KOMneHcauHH noTepb. Staf fan Karlsson npeA.no>KM.jT BapnaHT oötacHeHHa 3Toro Ha AHarpaMMe (Phc. 3). PacnpocTpaHeHHe mhothx /ipcßCCiibix (nanpnMcp, Vaccinium myrtillus) h Bbi- COKHX TpaBaHHCTbIX BHfIOB B 3KOCHCTeMaX TOpHblX 6epe3oßblX JieCOB MO>KeT öbiTb 3HaHHTejibHO yMeHbiueHO H3-3a rpbnyHOß, Hacejiaiom,Hx norpaHHHHbie panoHbi mnpoTHoro pacnpocTpaHeHHH Tex hjih hhhx pacTeHHH (Henttonen h Wallgren 2001). B AonojiHeHHH k 6ecno3BOHOHHbiM, mo>kho ot- MeTHTb, hto cymecTßyiOT onpeaejieHHbie 3aKOHOMepHocra pacnpocTpaHeHHa HeKOTOpbIX TpaßOHflHblX nO3BOHOHHbIX (B HaCTHOCTH, MejIKHX MJieKOnHTaiO IHHX). B K»KHOH H CeBepHOH OeHHOCKaHfIHH npOCJie>KHßaeTCfl HCTKaa 3aKOHO- MepHOCTb, Kacaromaaca nonyjiauHH öojibiiiHHCTßa MejiKHX rpboyHOß (Hansson 1984, Framstad h flp. 1997), xot» AHHaMHKa HHCJieHHOCTH JieMMHH roB HaMHoro öojiee HenocTOHHHa Ha ceßepe. CymecTßyeT TaKMce TOHKaa B3an- 217 MoCßa3b MOKjy njiOTHOCTbK) HacejieHHa MejiKHx rpbi3yHoß, pa3opeHneM nTHHbHX nie3;i h HHCJieHHOCTbio nonyji>mnH iithu (Järvinen 2001). IT™ hm MoryT BCTynaTb bo b3a h m o/ie h ctb m e c 3kocnct ema m h ropHbix 6epe3oßbix ne cob pa3JiHHHbiMH nyTKMH, b Tom HHCJie h nepe3 hmh MOJioabix 6epe 30BbIX noneK. Рисунок 3. Предлагаемый ряд событий/ реакций горной березы в течение восстано вительных процессов после нападения осенней моли. Стрелки внизу показыва ют относительный временной масштаб (Staffan Karlsson, личные комментарии). YbCJIHHCHHC KOHUCHrpaHHH MHOrHX MHHepajlbHblX 3JieMeHTOB [IHiaHHM B pacTCHHax c yMen[,iiienneM TeMnepaTyp npeßpamaeT sth pacrenMH b o Licnb 218 LjeHHbiH KopM fljia pa3BO/iHMbix 3/iecb aoMaiiiHHx >KHBOTHbix. 3to CTajio eme oflHoö npHHHHoii Toro, hto b TeneHHe coTeH JieT b noace ropHhix 6epe3oßbix jiecoß OeHHocKaHfIHH npaKTHKOßajiocb ottohhoc nacTÖHiiiHoe >khbothobo,h- CTBO, HTO Bbl3BajlO CHJIbHOe CTpaBJIHB3HHe Ha ÖOJIbLUHX nJlOiyaflHX. FIO3TOMy rpaHHua Jiecoß cAßHHyjiacb bhh3 3a KJimviaTHHecKH oöycjiOßJieHHbie pyöe>KH. 3to ocoöeHHo KacaeTCH o6jiacTen, Bbinac KpynHoporaToro CKOTa, OBeu n KO3 npoBOfIHJTCH oneHb flojiro. HanpHMep, b cyöajibnHHCKHx oÖJiacTHx Hopße- THH, H OCOÖeHHO B McjiaHflHH BbinaC OBeU 6bIJl OHeHb HHTeHCHBHbIM H CHJIbHO yxy/iuiHJi cocToaHHe 6epe3, TaK>Ke H3-3a flerpaaauHH itomb (Aradottir h Ar nalds 2001). K TeM >Ke nocjieflCTßHAM npMßejin CTpaßjiHßaHne h BbiTanTbißa- HHe fIOManiHHMH ojieHHMH, huh, KaK hx aoMaiiiHMMH (Helle 2001). 3to nponcxoAHT ocoöeHHo hht6hchbho b caMbix ceßepHbix oÖJiacTHx OHHjianziHM h HopßerHH, r/ie MHrpau,HH ojieHbnx CTaa 3anpemajiacb no nojiMTHHecKMM/3KOHOMHHecKHM npHHHHaM. B TeneHHH nocjieflHMx 50-80 JieT MHorne H 3 cnjibHO CTpaßJieHHbix ottohhmx nacTÖnm OeHHocKaHfIHH CTajiH Hcnojib3oßaTbCfl BHOBb (Bryn h Daugstad 2001), ruaßHbiM oöpa3oM H3-3a Toro, hto neperoHSTb >KHBOTHbix BBepx Bec hoh, h oöpaTHO no3AHen oceHbio, a TaiOKe aep>KaTb nacTyxoß Bce JieTo ao- BOJibHO floporo. riosTOMy cennac BO3MO>KHa cyKueccHH ropHOH 6epe3bi Ha MHorax CTapbix OTroHHbix nacTÖnmax cyöajibnHHCKOH OeHHOCKaHfIHH. M3-3a BJiHHHHa cypoßoro KJiHMaTa cyKueccHH npoxoflHT He CTOJib öbiCTpo. Hoe noßbimeHHe rpaHnubi Jiecoß b nocjie/iHHe (Sonesson h Hoogesteger 1983, Kullman 2000) Bepo>iTHO npoHCXoanno KaK coKpauueHH» Bbinaca, TaK h yßejinneHna cpe/iHHx TeMnepaTyp H3-3a H3MeHeHna KJiHMaTa (Skre 2001), a b HeKOTopbix pernoHax h H3-3a yßejiHneHHfl KOJinnecTßa ocafl- KOB. npeoöJiaaaHne MHorocTßOJibHbix ceßepHbix ropHbix 6epe3 (cm. npnjio>KeHHe D. Pnc.7) o6mhho xapaKTepHO ajia HcjiannMH (Aradottir h ap. 2001) n jina mhothx paiioHOß OeHHOCKaHfIHH. HeKOTopoe KOJiHnecTBO noöeroß nocjie noeflaHHa nx no3BOHOHHbiMH hjih 6ecno3BOHOHHbiMH >kmbothmmh, b pe3yjibTaTe nero MHorne ctbojim ocTaiOTca ro/ibiMH. TaKaa CHTyann» HaHÖo jiee xapaKTepHa zpia ropHbix 6epe3oßbix Jiecoß Ha ojinroTpoc|)Hbix cyxnx non- Bax C HM3KOH ÖHOJIOrHHeCKOH npOfIyKTHBHOCTbK), KaK B ®HHHMapCBHfIfIe B ceßepHon Hopßernn h b KOHTMHenrajibHOH LUbc/ickoh JlannaHflHH (Sonesson n Lundberg 1974), npHHeM MaKCHManbHaa BbicoTa aepeßbeß 3aecb He npeßbi rnaeT 2-3 MeTpa. 3toto TMna pacraTejibHocTH xapaKTepeH no/ure cok H 3 B. nana, Empetrum nigrum ssp. hermaphroditum u Vaccinium spp. JlHuiaiiHHKH 3Aecb öojiee niHpoKO pacnpocTpaHeHbi, neM Moxoo6pa3Hbie. OjieHH peryjiapHO CTpaßJiHßaioT 3Ty pacraTejibHOCTb. Ha öojiee öoraTbix non- Bax, OÖbIMHO Ha HHSKHHX H3CTSIX CKJIOHOB, HaÖJHOaaeTCH yBeJIHHeHHe HHCJia ofIHOCTBOJibHbix aepeßbeß ( Sonesson h Hoogesteger 1983), jia)Ke nocjie hh- TeHCHBHoro OTpacTaHHa MOJiOAOH nopocjiH. öbiJio TaK>Ke 3Kcnepn- MeHTajibHo noflTßep>KAeHO, hto hhcjio ctbojtob, pasßHßaiomHxca nocjie no aoÖHoro OTpacTaHHa, yMeHbmaeTca no Mepe yjiyHuieHHa MMHepanbHoro nw- TaHHH (Welgolaski h Nilsen 2001). B cpaßHHTejibHO «öoraTbix» THnax pacTH- TejibHOCTH, ruaßHbiM oöpa3oM npHypoHeHHbix k CKJioHaM OKeaHHHecKO cyöoKeaHHHecKnx ceKTopoß, cyöajibnHHCKHx pernoHax (t>eHHOCKaHfIHH wHa 219 paBHHHax HcnaHaHH, BbicoTa oaHOCTßonbHbix, öojiee CTapbix öepe 3bi KOiieojieica b upe/iejiax 10-15 m. Bojibiuoe KOJiHHecTBO MOflejieft öbino nocTpoeHO b nocJicjHHC roflbi Ha aHanH -3e Bo3Mo>KHbix co'iexanHH TeMnepaTypbi h oca/iKOB b cjiynae flajibHeninHx rjio6ajibHbix H3MeHeHHH KJiHMaTa. B HC\aaBHCM ( Forland h ,ap. 2002) npeanojiaraeTca, hto b ÖJin>KaHiuHe 10 jieT b OeHHOCKannHH cpeflHeroflOßaa TeMnepaTypa noßbicHTca öojiee neM Ha O,4°C. OcoöeHHO 3HaHHTejibHoe no- BbiLueHHe TeMnepaTyp b 3hmhhh nepno/i. B stom »e pernoHe npo rHo3HpyeTca yßejimeHHe Ha 1,4% 3a 10 JieT, c MeHbinHM yßejinneHH eM b jieTHHH nepHOA- BcjieACTßne cwibHoro yßejinneHHfl ocaflKOß 3hmoh, b ochobhom b BHfle CHera, b öojiee KOHTHHeHTanbHbix pernoHax cpoKH TaaHHfl CHera He CTaHyr öojiee paHHHMH, HecMOTps Ha öojiee bmcokhc TeMnepaTypbi, b OTjiHHHe ot OKxaiiHqecKHX ceKTopoß (Karisen 2002), a ocraiiyTCi-i npe>KHH mh, hjih aa>Ke öojiee no3AHHMH (cm. llpHJioaceHHe D. Pnc. 8). TaK KaK yßejiH neHHe TeMnepaTyp h BJia>KHOCTH ÖJiaronpHHi iibi juiKHBbie MaCTH paCTeHHH. M3MeHeHHH BHfIOBOTO CO CTaBa jiHinaÖHHKOB raioKC hmcjih MecTO, HanpHMep jiHinaifflHK Clodonia ömji 3aMeHeH Cetraria. 110 /uuuibim aßTopa, neflHHaa KopKa (öyaynn öojiee HacTbiM HBJieHHeM H3-3a yBeJIHHeHHSI MOIH.HOCTH CHOKHOTO nOKpOBa H 3HMHHX TeMne paTyp B OHHHMapKCBHÄXie) MO>KeT npHBeCTH K IHOCJIH MHOTHX BHfIOB KyCTap hhhkobhx jiHiuaHHHKOB, h k H3MeHeHHio pacTHTejibHOCTH (Wielgolaski 2001 b). Bce sto k TOMy, hto noßepxHocTb noHB CTaHeT öojiee ot- KpbiToii h, b cjiynae ÖJiaronpnaTHoro KJiHMaTa, Hepe3 HecKOJibKO ner öy/ier cnocoöcTßOßaib jiyHiueMy npopacTaHHio 6epe3bi h HeKOTopbix ;ipyrnx bh;iob, OCOÖeHHO lIpH CHH)KeHHH CTpaBJIHBaHHfI OJieHHMH HJIH OBHaMH. BblTanTblßa- HHe OJieiIHMH JiHiuaHHHKOB OCOÖeHHO CHJIbHO BflOJlb H3rOpOfleo, OI Opa>KH- BaioiHHX nacTÖHina. 3flecb 3anacTyio paipymaerca bch pacTHTejibHOCTb (hto TaK>Ke 3a/iep>KHßaeT BO3OÖHOBJieHHe h pocT öepe3bi), h TOJibKO coKpameiiHe KOJiHHecTBa >khbothwx, h/hjih öojiee KopoTKHH nepno/i Bbinaca b 3aroHax MO>KeT 3TO iipe/ioi BparHTb (Muller-Wille 2001). MacTHHHO noMomb MoaceT ÖblTb OKa3aHa C HCnOJIb3OBaHHeM MexaHH3HpoßaHHbix cpeacTß fljia cöopKH H yCTaHOBKH B H6JISIX yMeilbllieilHJl ypOHa OT 3PO3HH BCJie/ICIBHC npOKJiaflKH flopor. 220 Рисунок 4. Диаграмма различных взаимосвязей экосистем горной березы и окру жающей природной средой (Wielgolaski и Sonesson 2001). OHeBHfIHO, HTO 3KOCHCTCMbI TOpHblX 6epe3oßblX JieCOB nOflßepratOTCH CHJIb- HOMy BJIHHHHK) KJIHMaTa H 3aBHCHT OT ypOBHeH OÖeCneHeHHOCTH nOHB nHTa- TejibHbiMH BemecTßaMH, a TaioKe ot coctoshhh TpaBHHHCToro noKpoßa hot xapaKTepa aHTponoreHHoro BO3fIeHCTBHH (Phc. 4). Poct TypH3Ma TaioKe Mec- TaMH ycHJiHBaeT Bo3fleHCTßne nejiOßeica Ha npnpoay. CTpoHTenbCTBO kottca /K6H, 10pIIO JIbl>KH blX IK);ibCMHHK()B, H ;jpyrne BHflbl fIeaTejJbHOCTH B 10 pH bIX 6epe3oßbix jiecax öynyT h b flajibHeniiieM oKa3bißaTb Bee öojiee Bo3pacTajomee HeraTHßHoe bjihhhhc (Tolvanen h AP- 2001). Me/uieHHoe BOccTaHOBJieHHe ropHbix 6epe3oßbix necoß oöycjiaßJiHßaeT to, hto HeraTHßHbie npOHBHTCH B TCHCHHH HeCKOJIbKHX JieT, /ia>lKeHa (Welgolaski 1998). TopHaa 6epe3a Hcnojib3yeTca MecrabiMH >khtcjihmh rjiaßHbiM oöpa3oM b KanecTße TonnHßa. Ho 6epe3a mo>kct HaxoflHTb npHMe- HeHHe h b KanecTße CTpoHMaTepnajia juia BO3BeaeHHH KOTTexpKeH, huh npoH3- 221 BOfICTBa flocoK. TeM He MeHee, TOJibKo b tbkom pafloHe KaK Majibcejibß b Hop- BerHH, ecTb npoMbiuuieHHOCTb, jiMiub 1/3 nacTb oöteMa apeßecHHbi no- TpeöJiaeMOH Ha TonjiHßO, Hcnojib3yeTca b Bbirne yKa3aHHbix uejiax (Birger Solberg, jiHHHbie KOMMeHTapHH). Eepe3a MO>KeT TaK>Ke HcnoJib3oßaTb«i h ÄJia npoH3BOACTBa MeöejiH, a y caaMOB ipa/iHiiMomio jjjih opyjHH, HHCTpyMeHTOB h cTpoHTejibCTßa xpaflHUHOHHoro acHJiHiua (Muller-Wille H ap. 2001). ABTopbi no;[ LiepKHBaK)T ycHjiHßaiomytoca ko hkvpeh uh k> b Hcnojib3o - 6epe3bi rypHCTaMH, ocoöeHHO b KanecTße TonjiHßa. HeKOTopbie yiiosni c co6oh b ropo/i, uejibie /lepeßbH KaK fljia npo;ia>KH, TaK h ajth cbohx Hy>K;i. Литература Aas, B. & Faarlund, T. 2001. The Holocene history of the Nordic mountain birch belt. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosys tems. UNESCO, Paris and Parthenon, New York and London, p. 5-22. Aradottir, A.L. & Arnalds, O. 2001. Ecosystem degradation and restoration of birch woodlands in Iceland. In: Wielgolaski, F. E. (ed.). Nordic Moun tain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 293-306. Aradottir, A. L., Thorsteinsson, I. & Sigurdsson, S. 2001. Distribution and characteristics of birch woodlands in North Iceland. In: Wielgolaski, F.E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 51-61. Bryn, A. & Daugstad, K. 2001. Summer farming in the subalpine birch forest. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 307-315. Bylund, H. & Nordell, K. O. 2001. Biomass proportion, production and leaf nitrogen distribution in a polycormic mountain birch stand (Betula pu bescens ssp. czerepanovii) in northern Sweden. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthe non, New York and London, p. 115-126. Forland, E. J., Hanssen-Bauer, I. & Haugen, J. E. 2002. Klima-scenarier for norsk Arktis. ACIA-Fagmoter vären 2002. Kautokeino, Norway. 10 p. Framstad, E., Stenseth, N. C., Bjornstad, O. N. & Falck, W. 1997. Limit cycles in Norwegian lemmings: tensions between phase-dependence and den sity-dependence. Phil. Trans. Royal Soc. London (B) 264: 31-8. Gaare, E. & Tommervik, H. 2000. Monitoring of lichen grazing areas in Finnmark. NINA Oppdragsmeld. 638: 1-33. Flansson, M. 1984. Composition of cyclic and non-cyclic vole population: On the causes of variation in individual quality among Clethrionomys glareolus in Sweden. Oecologia 63: 199-206. Flaukioja, E. & Koponen, S. 1975. Birch herbivores and herbivory at Kevo. In: Wielgolaski, F. E. (ed.). Fennoscandian tundra ecosystems. Part 2: Animals and systems analysis. Springer, Berlin, p. 181-188. Helle, T. 2001. Mountain birch forests and reindeer husbandry. In: Wielgo laski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 279-291. 222 Henttonen, H. & Wallgren, H. 2001. Rodent dynamics and communities in the birch forest zone of northern Fennoscandia. In: Wielgolaski, F. E.(ed.), Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 261-278. Hillman, J. R. 1984. Apical dominance. In: Wilks, M. B. (ed.). Advanced Plant Physiology. Pitman, Bath. p. 127-148. Järvinen, A. 2001. Birds in subarctic mountain birch forests - dynamics and strategies. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosys tems. UNESCO, Paris and Parthenon, New York and London, p. 251 — 259. Karisen, S. R., Hogda, K.. A., Johansen, 8., Elvebakk, A. & Tommervik, H. 2002. Use of AVHRR NDVI data to map vegetation zones in north western Europe. In: Proc. 29 th Int. Symp. Rem. Sens. Environm. Bue nos Aires, Argentina. 4 p. Karlsson, P. S. & Nordell, K. O. 1996. Effects of soil temperature on the nitro gen economy and growth of mountain birch seedlings near its presumed low temperature limit. Ecoscience 3: 183-189. Karlsson, P. S., Nordell, K. O. & Sveinbjörnsson, B. 2001. Biomass and nitro gen turnover and nutrient use characteristics in sub-arctic birch trees. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems, p. 127—41. UNESCO, Paris and Parthenon, New York and London, p. 127-141. Kihlman, A.O. 1890. Pflanzenbiologische Studien aus Russisch Lappland. Acta Soc. F. Fl. Fenn. 6 (3): 1-256. Kjelvik, S. 1973. Biomass and production in a willow thicket and a subalpine birch forest. In: Bliss, L. C. & Wielgolaski, F. E. (eds.). Primary Pro duction and Production Processes, Tundra Biome. IBP Tundra Biome Steering Committee, Edmonton-Oslo. p. 115-122. Kjelvik, S. & Kärenlampi, L. 1975. Plant biomass and primary production of Fennoscandian subarctic and subalpine forests and of alpine willow and heath ecosystems. In: Wielgolaski, F. E. (ed.). Fennoscandian Tundra Ecosystems, Part 1, Plant and Microorganisms. Springer, Berlin, p. 111-120. Kullman, L. 2000. Tree-limit rise and recent warming: a geoecological case study from the Swedish Scandes. Norsk geogr. Tidsskr. 54: 49-59. Kullman, L. & Kjällgren, L. 2000. Coherent tree-limit chronology (Pinus sylvestris L) for the Swedish Scandes: Aspects of paleoclimate and "recent warming", based on megafossil evidence. Arct., Antarct., Alp. Res. 32: 419-428. Mäenpää, E., Skre, 0., Malila, E., Partanen, R., Wielgolaski, F. E. & Laine, K. 2001. Carbon economy in birch-dominated ecosystem species in northern Fennoscandia. In: Wielgolaski, F. E. (ed.). Nordic mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 93-114. Magnusson, S. H. & Magnusson, B. 2001. Effect of enhancement of willow (Salix spp.) on establishment of birch (Betula pubescens) on eroded soils in Iceland. In: Wielgolaski, F. E. (ed.). Nordic mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 317-329. 223 Moen, A. (1999). National Atlas of Norway: Vegetation. Norw. Mapping Authority, Hönefoss. Miiller-Wille, L., Eikjok, J. & Thannheiser, D. 2001. People and birch: The Sami perception of the environment and its sustainability. In: Wielgolaski, F. E.(ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 369-376. Neuvonen, S., Ruohomäki, K., Bylund, H. & Kaitaniemi, P. 2001. Insect herbivores and herbivory effects on mountain birch dynamics. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 207-222. Nilsen, J. & Tommervik, H. 2001. Temporal variation in the effects of photosystem II in birch (Betula pubescens ssp. pubescens) during the growing season - a pilot study. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 185-193. Nilsen, J. & Wielgolaski, F. E. 2001. Effects of fertilization and watering on morphology in young mountain birch plants of different provenances - a pilot study. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 71-76. Odland, A. 1996. Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. In: Frenzel, B. (ed.). Holocene Treeline Oscillations, Dendrochronology and Paleoclimate. G. Fischer, Stuttgart, p. 43-59. odum, S. 2001. The establishment of an arboretum in Greenland. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 47—49. Partanen, R., Wielgolaski, F. E., Malila, E., Mäenpää, E. & Laine, K. 2001. Inorganic nutrient content in plant species of a mountain birch dominated ecosystem in northern Fennoscandia. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 155-171. Skre, O. 1993. Effects of altitude on growth in ecotypes of mountain birch (Betula pubescens Ehrh.) and lowland birch (Betula pendula Roth.) seedlings. Medd. Skogforsk, 45 (11): 1-30. Skre, O. 2001. Climate change impacts on mountain birch ecosystems. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 343-357. Sonesson, M. 2001. Ecology of some epiphytic lichens on the mountain birch. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 63-70. Sonesson, M. & Hoogesteger, J. 1983. Recent tree-line dynamics (Betula pubescens Ehrh. ssp. tortuosa /Ledeb./Nyman) in northern Sweden. Nordicana 47: 47-54. Sonesson. M. & Lundberg, B. 1974. Late Quaternary forest development of the Torneträsk area, North Sweden. 1. Structure of modern forest ecosystems. Oikos2s: 121-33. 224 Sveinbjörnsson, B. 2001. Performance of mountain birch in relation to its treeline in the Tometräsk area, northern Sweden. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 173-183. Tenow, O. 1972. The outbreaks of Oporinia autumnata Bkh. and Operophthera ssp. (Lep. Geometridae) in the Scandinavian mountain chain and northern Finland 1862-1968. Zool. Bidrag Uppsala, Suppl. 2: 1-107. Tenow, 0., Bylund, H. & Flolmgren, B. 2001. Impact on mountain birch forests in the past and the future of outbreaks of two Geometrid insects. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 223-239. Tolvanen, A., Forbes, B. C., Rytkönen, K. E. & Laine, K. 2001. Regeneration of dominant plants after short-term pedestrian trampling in subarctic plant communities. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 359-368. Tommervik, H., Hogda, K. A. & Karisen, S. R. 2001. Using remote sensing to detect caterpillar outbreaks in mountain birch forests - a new approach. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 241-249. Wahlenberg, G. 1812. Flora Lapponica. Berolini. p. 1-550. Weih, M. & Karlsson, P. S. 2001. Variation in growth patterns among provenances, ecotypes and individuals of mountain birch. In: Wielgolaski, F. E. (Ed). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 143-154. Wielgolaski, F. E. 1998. Twenty two years of plant recovery after severe trampling by man through five years in three vegetation types at Hardangervidda. NTNU Vitensk.mus. Rapp. bot. Ser.4: 26-29. Wielgolaski, F. E. 2001 a. Vegetation sections in northern Fennoscandian mountain birch forests. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London. 23-33. Wielgolaski, F. E. 2001b. Field- and bottom layer vegetation mat transplantation: A method to simulate possible effects of climate change? Skogrsektarritid, 2001-1, 167-70. Wielgolaski, F. E. & Nilsen, J. 2001. Coppicing and growth of various provenances of mountain birch in relation to nutrients and water. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 77-92. Wielgolaski, F. E. & Sonesson, M. 2001. Nordic mountain birch ecosystems - a conceptual overview. In: Wielgolaski, F. E. (ed.). Nordic Mountain Birch Ecosystems. UNESCO, Paris and Parthenon, New York and London, p. 377-384. 225 Пространственная структура ландшафта на границе леса и её отношение к климату и мерзлоте в бассейне р. Уса, северо-запад России Тармо Виртанен, Кари Миккола и Ари Никула Введение BaccefiH peKH Yea (cm. pwc. 1) yHHKajieH b KOHTHHeHTanbHOH Eb pone BCJiefICTBHe HajiMHHfl oöurapHOH nepexoAHoö 30Hbi ot TyHapbi k Tanre m pacnpocTpaHeHHK) Mep3JioTbi. KpoMe KJiHMaTHHecKHX napaMeTpoß, coßpe- MeHHaa CTpyKTypa apeßOCToa h npocTpaHCTßeHHoe pacnpocTpaHeHHe jiecoß b peraoHe b ochobhom onpe/iejiKcrcM CBOÖCTBaMH noHB h Mep3JiOTbi. Bo mho thx apyrHx nacTHx jiecoTyHflpoßOH nepexo/uioH 30Hbi rjiaßHbie (Jjaicropbi, on peaejiaiomne jMHaMHKy pacTHTejibHocra - 3to no>Kapbi, a raioKC HHOiria bm nac TpaßOHflHbix MjieKonHTaiomnx h BcnbiiiiKH HHCJieHHOCTH HaceKOMbix (e.g., Kallio and Lehtonen 1973, Zackrisson 1977, Oksanen et ai. 1995, Rupp et ai. 2000, Gromtsev 2002). Рисунок I. Расположение бассейна р. Уса. 226 Eojibinne ncmapbi b Gacceime p. Yea, b ochobhom noKpbiTOM ejioßbiMn neca- MH, CpaBHHTeJIbHO pCfIKH. Bojiee Toro, HeT flaHHblX O CKOJIbKO-HHÖyflb iHaHH- TejibHbix cjiynaax rnöejin Bbi3BaHHbix HaceKOMbiMH hjih naToreH- HbIMH npHHHHaMH. BepOHTHO, TaK)Ke, HTO CeßepHblX OJieHeH Ha 3th Jieca cpaßHHTenbHo HeßejiHKo, nocKOJibKy HHCJieHHOCTb oneHeH 3,necb He- BbicoKa, a neTHHe nacTÖHiua pacnono>KeHbi b TyH/ipe. Bo3fIeHCTBHe nejioßeKa Ha pacTHTenbHOCTb pernoHa MHHHMajibHO h cocpeflOToneHO, b ochobhom, bo- Kpyr Tpex h HecKOJibKnx aepeßeHb, pacnojio>KeHHbix Ha peKax. B paMKax npoeKTa TUNDRA, (jwHaHcnpyeMoro EC, Mbi cocTaßHjiH rHC-oasy /laini bix, BKJiioMaiomyio .aannbic o tmi iax pacTHTejibHOCTH pernoHa h paenpe aejieHHH (})HTOMaccbi, Tonorpacjjnn, peKax h 03epax, CBOHCTBax noHB, ycjiOßH ax Mep3JioTbi h ocHOßHbix KJiHMaTHHecKHx napaMeTpax. B stoh CTaTbe Mbi npe;icraßjineM aHanH3 iiojio/Kchhh h npocTpaHCTBeHHOH CTpyKTypw JiecoTyHjipoßOH 3oHbi no othoujchhk) k KJiHMaTy, th ny noHB h Mep3JiOTe. Материалы и методика Mbi cocTaßHjiH KjiaccH(|)HKanHK) pacTHTejibHOCTH c pa3pemeHHeM 30 m jxjia Bcero öaccefiHa p. Yca (okojio 93,500 km ) c Hcnojib3oß3HHeM MO3anKH, co- CTaBJieHHOH H 3 BOCbMH CnyTHHKOBbIX CHHMKOB JlaHflcaT TM-5. IlpH COCTaB- JieHHH Mbi HCnOJIb3OBaJIH aaHHbie Ha3eMHbIX HaÖJIIOfIeHHH H a3poci>eMKH, npoßOflHßuieHca b TeneHHe jieTHHx ce3OHOB 1998, 1999 h 2000 roaoß. /Veräjin cocraßjieiiHa Kjiaccn(J)HKauHH npe;icTaß;ieHbi b 3aKjnoHHTejib hom OTneTe no npoeKTy TUNDRA h Hayniibix oiMerax, KOTopbie cennac Ha xoflaTca b riponecce iio/uotobkh. KpaTKoe oiiHcaimc npone;iypbi co/jepwmca b KHHre Rees h ;ip. (2002). Hania Bbi/iejiaex ao ;ißa;inarn KJiaccoß no ranaM pacTHTeJibHOCTH/3eMJienoJib3oßaHHa. B 3tom nccjie/iOßannn Mbi crpynnnpoßajiH 3th KJiaccbi b Tpn ocHOßHbie rpynnbi: jiec, xyH/ipa h apy roe (6ojioTa, TajibHHKH h Jiyra, b ochobhom JimueHHbie pacraTejibHoera Tep pHTOpHH, BOflHbie OÖieKTbl). /],jia npoßeaeHHa aHajiH3a Mbi pa3.sejiH.jiH öaccenH p. Yca Ha aneHKH 21 km x 21 km (cm. ripHjio>KeHHe D, pnc. 9) h bbihhcjihjih nponopnnn h cpe/iHHH pa3- Mep ynacTKOB .zyia Ka>K/toro pacmTejibHoro KJiacca h aHCHKH. Mbi Taicace noA CHHTajiH BejiHHHHbi HeKOTopwx KJiHMaTHHecKHx napaMeTpoß AJia 3thx ace aneeK. Haiun KjinMaraHecKne jiamibie ocHOßaHbi Ha pernoHajibHon MO/jeiiH HIRHAM, pa3paöoTaHHon /uia ;iaimoro pernoHa HeHCOM KpncTeH ceHOM H 3 /JaTCKoro MeTeopojioi HMecKoro HHCTHTyTa. /],aHHbie o noHßax 6bi jih coöpaHbi TajiMHOH Ma>KHTOBOH, HncTHTyT önojiornn, r. CbiKTbißKap, flaH- Hbie o Mep3JiOTe - HayMOM OöepMaHOM, Teojiorna IlojiapHoro Ypajia, r. Bop- KyTa. B stoh CTaTbe aHajiH3npyeTca TOJibKO CTpyKTypa hh3mchhoh TynapoßO- Tae)KHOH 30Hbi, a ropHbie pernoHbi onymeHbi. 227 Результаты и обсуждение HaniH aaHHbie no K.naccH(|)HKaiiHH pacTHTejibHOCTH noKa3B>ißaiOT, hto 24.1 % oacceHiia p. Yca noKpbiTO jiecaMH, 26.4 % - KycTapHHKOBOH 29.8 % - oojiOTa.MH, 9.5 % - TajibHHKaMH h JiyraMH, 6.5 % cocraßJiHiOT Ka\ienHCTbie hjth iiecnaHbie yiaciKH (ropbi, 6epera peK h tji.), 2.8 % 3aHHMaiOT BOflHbie oGbeKTbi h 0.5 % HocflT cueflbi bcvvichctbhh nejioßeKa, b ochobhom jiHineH- Hbie pacTHTejibHOCTH TeppHTopHH (ropoja, aepeßHH, TeppHTopHH /ioömhh no jie3Hbix HCKonaeMbix h t.j.). llpoueHT JieconoKpbiTOH TeppHTopHH nocTeneH ho yMciibiiiaercH c lora Ha ceßep, oojiee pe3KO - Ha Bocroice b YpajibCKHx ro pax (IlpHJio>KeHHe D, pnc. 9). nepexojHaa 30Ha b HH3MeHHO cthx 6acceHHa p. Yca npH6jiH3HTejibHO 100 km ihhphhoh (llpHJioaceHHe D, pHC. 10). KpoMe JiecoTyHapoßoö nepexoflHOH 30Hbi, ocoöchho oöinnpHbie 3a oojioHCHHbie ynacTKH BKpanneHbi b necHbie h ryii/ipoßbie jiaHfliuaKeHHe D.) pncyHOK 11.4 HJunocTpHpyeT h jmchchhji cipyKTypbi JiecoTyH/i -poBOH nepexoaHoii 30Hbi c lora Ha ceßep. CymecTßyiOT HeKOTopbie orpaHHieHHa npn onpejejieHHH tohhoto noJio>Ke hhh rpaHHHbi jieca c Hcnojib3oßaHHeM chhmkob YnacTKH Jieca öojiee HecKoiibKHX reKTapoß pa3JiHHaioTCH AOBOJibHO jocTOBepHO, ho no Mepe Toro KaK pa3Mep 3epHa jiecHOH MO3aHKH eraHOBMTCJi MeHbrne, oxaejibHbie nnKcejiH (30 m x 30 m) oöbiiHO noKpbißaK)T öojiee, neM ojhh pacTHTejibHbiH KJiacc. HanpHMep, hcöojibiiihc H3oJinpoßaHHbie rpynnbi ejiH, BCTpenaiomHeca Ha acchtkm KHjiOMeTpoß ceßepHee oöuinpHbix ynacxKOß jieca, no jojiHHaM peK n Ha HeöojibuiHX necHaHbix xojiMax, nacTO öbraaiOT MeHbuie pa3Mepa iihkccjih HJIH nOJIOCbI TaK y3KH, HTO OÖbIHHO CMeiHHBaiOTCH C OKpy>KaiOmHMH THnaMH pacTHTejibHOCTH. flonojiHHTejibHaa npoÖJieMa Bbi3BaHa cneKTpajibHOH Hepa3- OepHXOH MOKjy HeKOTOpbIMH THnaMH Jieca H MeJIKO3epHHCTbIMH ÖOJIOTHbIMH ynacTKaMH (nacTO Bcero HecKOJibKO jcchtkob KBaapaTHbix MeTpoß) c npHMe- CbK) MeJIKHX 03epKOB, 6epe3oßoH, HBOBOH H JiyrOBOH paCTHTeJIbHOCTbIO. 110-3TOMy 3TOMy BO3MOSKHO, HTO ÖOJIbHIHHCTBO [IHKCejieH, KJiaCCM(|}HHMpOBaHHbIX KaK jieca h öojiee neM b 10-20 km k ceßepy ot rpaHnnbi Jieca, »b -jiaioTca ouiHÖKaMH b Haiunx aaHHbix (cm. IlpHJio>KeHHe D, pnc. 9). CoßpeMemiaji rpaHHua Jieca b pernoiie npHÖJiHSHiejibHO coßriajaeT c h3ojih- HHen HioJibCKOH TeMnepaTypbi +l3.s°C (pnc. 2a). 3to HHTepecHaa aHOMajina, nocKOJibKy oGhhho hto b öojibuiHHCTße perno hob MHpa rpaHHua jieca coßna;uier c H3OJiHHHeft TeMnepaTypbi caMoro Tenjio ro \ieoma +lO°C (Tuhkanen 1999). C /ipyroß CTopoHbi, (pannua jieca TaioKC HeTKO KoppejinpyeT c TCMiieparypoH noißbi (cpeflHeroflOßaa TeMnepaTypa Ha rjiyÖHHe Hyjießon aMnjiHTy/jbi, pnc. sb). TpaHnua Jieca, no-BH/niMOMy, pacno jiai acrcM TaM, r;ie cpe;nuiH TeMnepaTypa noHB okojio -I°C, hto cooTBeTCTByeT TeppHTopHH, r/ie nenpepbißiiaM Mep3JiOTa naiMiiacT iipeoojia/unb Taioice Ha Bo3BbimeHHbix ynacTKax. Ha caMOM ;iejie mm He oÖHapyacHJin enH, npoHspa- CTaioineH Ha Mep3JiOTe (3a HCKJHoneHneM o;[nor o cjiynaa, KOTopbrä mot öbiTb nO3fIHHM Ce3OHHbIM JlbflOM). Bbl/JBHI cL'iaCb THnOTe3a, HTO ejlb B 3TOM perHOHe He npHcriocoojiCHa k pocTy Ha Mep3JiOTe, nocKOJibKy Mep3JioTa b ochobhom, ecjiH He nojiHOCTbio, oTcyTCTBOBajia b tchchhc Tenjioro fojiouchoboio ne 228 puolia Ha I IciopcKOH HH3MeHHOCTH. B pesyjiiviarc ejib He npHcriocoÖHJiacb k TaKHM ycnoBHHM (IleTep Kiopw, nepcoHajibiioe coooihchhc). Bonee Toro, o l ic- BHfIHO, HTO 3fla(j)HHeCKHe (J)aKTOpH, T.e. OOUIHpHhie ÖOJIOTa, OrpaHH l IHBaK)T pacnpocTpaHeHHe Jiecoß, ocoöeimo b ceisepo-BOCTCiHOH nacra oaccenna p. Yca. Рисунок 2. Средний размер участков леса и тундры по отношению к (а) средней температуре июля и (b) средней температуре почв. Наблюдения - средние вели чины низменных участков леса и тундры. Надо отметить, что поскольку про порция площади и размер участков коррелируют, использование пропорции площади дает приблизительное соответствие характеру градиентов средней температуры июля и температуры почв. 229 Благодарности /Jannoe aßJiaeTca nacThK) npoeicra TUNDRA b poccHHCKOH ApKTHKe), (j)HHaHCHpyeMoro nporpaMMOH EC no ok py>KaiomeH h KjiHMaTy (KOHTpaKT ENV4-CT97-0522). Литература Gromtsev, A. 2002. Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fennica 36(1): 41-55. Kallio, P. & Lehtonen, J. 1973. Birch forest damage caused by Oporinia au tumnata (Bkh.) in 1965-66 in Utsjoki, N Finland. Reports from the Kevo Subarctic Research Station 10: 55-69. Oksanen, L., Moen., J. & Helle, T. 1995. Timberline patterns in northernmost Fennoscandia. Relative importance of climate and grazing. Acta Botanica Fennica 153: 93-105. Rees, G., Brown, 1., Mikkola, K., Virtanen, T. & Werkman, B. 2002. How can the dynamics of the tundra-taiga boundary be remotely monitored? Ambio, special issue on Treeline Dynamics. In press. Rupp, T. S., Chapin, F. S. & Starfield, A. M. 2000. Response of subarctic vegetation to transient climatic change on the Seward Peninsula in north-west Alaska. Global Change Biology 6:541-555. Tuhkanen, S. 1999. The northern timberline in relation to climate. In: Kan kaanpää, S., Tasanen, T. & Sutinen, M-L. (Eds). Sustainable develop ment in northern timberline forests. Finnish Forest Research Institute. Research Papers 734. p. 29-61. Zackrisson, O. 1977. Influence of forest fires on the north Swedish boreal for ests. Oikos 29: 22-32. 230 Лесопромышленный комплекс России и угрозы северным лесам А. И. Воропаев B Pocchh cocpeflOToneHO 23 % Bcex MHpoßbix jiecoß, b pcsyjib iaTC oHa 3aHH- MaeT nepßoe MecTO b MHpe, Epa3HjiHH, no hx njiomaan. Oömaa nnomaflb poccHHCKHx jiecoß cocTaßjiaeT 774,2 mjih. ra, 21,8 % m Koropbix HaxoflJiTCH b ee eßponeMcKofi nacra, rjiaßHbiM o6pa3oM, Ha ceßepe. riocne HecKOJibKHX JieT KpH3Hca, nocneflOßaßuiHX 3a 1990 r., b JieconpoMbim jieHHOM KOMnjieKce Pocchh Hananca noffbeM, c 1998 r. To >Ke oraocHTca h k 3KCnOpTy JieCHOH lipOJiyk'UMH. OcHOBHbIMH JieCOnpOH3BOfIaUIHMH H JieCOSKCnOpTHpyiOIHHMH perHOHaMH Pocchh hbjuhotch ceßep eßponeficKOH wacTH, K»KHaa nacTb Boctohhoh Ch6h pn h Boctok (ripHjTO>KeHHe D. Phc. 12). Ceßep eßponencKOH Pocchh BKJHonaeT MypMaHCKyio oÖJiacTb, PecnySjiHKy Kapejina, ApxaHrejibCKyio 06- jiacTb c HeHeuKHM aBTOHOMHbiM OKpyroM h PecnyöJiHKy Komh. Hanöojiee HHTeHCHBHaa 3aroTOßKa Jieca BefleTca b perHOHax, KOTopbie Taione JiHflnpyioT h b 3Kcnopie JiecHOH npoayKUHH. B ceßepHbix paiioHax a3H3TCKOH nacra Poc chh jieco3aroTOßKH HesnaHHiejibubi b cHJiy Heöojibinoro nacejieiiHM h 3HanH- TejibHOH y/iajieHHOCTH ot ochobhmx phhkob cöbrra. PyÖKH BeayTCH b OCHOBHOM flJia MeCTHbIX HyKA, XOT3 H OHH MOryT HMeTb HeraTHßHbie nocnefl- C I BHM flJlfl Jiecoß. 1 1H/KC Mbl OCTaHOBHMCfI TOJIbKO Ha yrpo3ax CeßepHbiM JiecaM pernoHajibHoro MacuiTa6a, CBH3aHHbix c hx ynpaßjieHHeM. jieconpoMbiiujieHHoro KOMrnieicca b 8811 CTpaHbi cocTaßjiaeT 2,6 %, a b 3KcnopTe - 4,3 %. b ceßepHbix perHOHax eßponencKOH nacra Pocchh ero aojia 3HaHHTejibHO Bbime (pue. 1). TaKHM o6pa3oM, jieconpoMbimjieHHbiH KOMnneKc HMeeT /khshchho BaacHoe snaqeime jxnn öjiarononyHHa stoio pe rnoHa h HacenaiomHX ero juoden. Hcnonb3oßaHHe jiecHbix pecypcoß caMO no ceöe He OKa3bißaeT neraTHßuoro 3KonorHHecKoro BO3fIeHCTBH» Ha Jieca. 3to pe3yjibTaT HenpaßHJibHoro JieconojibsoßaHHH (TexHOJiorHH, Macinraöa h hh- TeHCHBHOCTH JieCo3aroToßoK). 23 1 Рисунок 2. Доля лесопромышленного комплекса в объеме производства и экспорта России и некоторых ее регионов CoßpeMeHHbie TexHOJiorHH Jieco3aroTOßOK BnojiHe OTBenaiOT KpnrepHflM yc- TOHHHBoro pa3BHTHa. KaK noKa3bißaiOT npHMepbi cepTHtJjHKauHH jiecoß no KpprrepHHM JlecHoro noneHHTejibCKoro coßeTa (FSC), H3 hhx Shjih npo- BeaeHbi b paccMaTpHßaeMOM pernoHe, fleficTßyromee b CTpaHe JiecHoe 3aKO HOfIaTejibCTBO b uejioM OTBeHaeT TpeooßaiiHHM ycTOHHHBoro ynpaßjieHHH jie- C3MH. W XOTfl B HeM HMCKITCM HeKOTOpbie C MC/K/iy FiapO/UlblMH TpeÖOBaHHHMH, HanpHMep, CB33aHHbie C COXpaHeHHeM 6HOpa3Hoo6pa3Hfl H oxpaHOH j'iccob BbicoKoro npHpoflooxpaHHoro snaMCiiHM, ohh He hbjihjotch cymecTßeHHbiMH h BnojiHe MoryT öbiTb npeo^oJieHbi. O.uiaico npHMepbi nofloÖHoro «3KOJiorHHHoro» ynpaßjieHHH jiecaMH BCTpcia 10TCH TOJibKO b cjiyHaax, «oiyia jieconpoMbiiujieHHbie KOMnaHHH HeyKOCHH- TejibHO uiKOiio/iaTeJibCTBO. K coacaneHHio, b Ha croMinee BpeMH jieco3aroTOßKH Macro Beayrca c napyuienn>iMn npaßHji pyöoK h c ncnojib3oßaHHeM TM/Kejioii TCxiiMKH, KOTopa» ynH Liro>Kaer h pa - pyrnaeT noHBeHHbiH noKpoß. HaiiHOHajibHbie jieconpoMbiiujieHHbie KOMnaHHH b 6ojibiiiHHCTße CBoeM He HMeiOT npeflCTaßjieHHa 06 3KOJiornHecKHX Tpeöoßa hhhx n, TeM 6ojiee, He HMeioT cßoefi pa3pa6oTaHHoii aKOJiornnecKOH nojinra kh. B uejiOM, TexHOJioraa neccmroTOßOK ocTaeTca 3aTparaoH h pa3pyuiH- TenbHOH, TaK ot 40 äo 60 % 3aroroßJieHHOH apeßecHHbi TepaeTca b npouecce pyÖKH H TpaHCnOpTHpOBKH flpeßeCHHbl. 3acTaßHTb KOMnaHHH coÖJHOMTb JiecHoe 3aKOHOfIaTejibCTBO mo>kho /iByMH cnoco6aMH: 3aHHTepecoßaTb hx 3kohomhh6Ckh, HanpHMep, nepe3 cnpoc Ha /ipCBCCHHy H3 «3KOJIOrHHHO» yiipai!.lMCMblX JieCOB (to eCTb, Ha eepTHCj)HHHpO- 232 BaHHyio /ipeiiCCHny), huh nyTeM CTpororo KOHTpojia 3a hx .neaTejibHocTbio. Mto KacaeTca cnpoca, to Ha BHyTpeHHeM pbiHKe oh noKa nonHOCTbio OTcyrcT- ByeT. B to >Ke BpeMa, cnpoc Ha apeßecHHy, cepTH(J)HHnpoBaHHyK) no Tpeöoßa hhhm FSC, cymecTßyeT Ha 'iapyooKHbix pbiHKax, HanpHMep, b Be.iHKOÖpH ia hhh, TepMaHHH, CLUA n HeKOTopbix apyrax CTpaHax. YHHTbißaa BbicoKyio flojiio 3KcnopTa b JieconpoMbiuuieHHOM KOMnjieKce CTpaHbi, 3to mo/kci oKa 3aTb BJiHHHHe Ha Jieconojib3oßaHHe b Pocchh h y>Ke »e KacaeTca KOHTpojia 3a Jieco3aroTOßKaMn, to b HacToamee BpeMa oh ocjiaö- JieH, B HaCTHOCTH B CHJiy HefIOCTaTOHHOrO c|)HHaHCHpOBaHHa AeHTeJTbHOCTH JieCXO3OB, OTBeTCTBeHHbIX 3a 3TOT KOHTpOJIb. 3to - eine o/jhh (J)aKTop, npeACTaßJiaromHH coöoh yrpo3y JiecaM. B HacToa mec BpcMH jiecxo3bi He HMeiOT (jjnnaiiCMpoßaiiHH hh h 3 (})e;ic pajlbHOTO, HH H 3 MeCTHbIX OKW/KeiOß, HTO He lIOSBOjIHei HM H a/UT e >K"a IH H M 06- pa3OM BbinOJlHHTb CBOH o6fI3aHHOCTH, T3KHe KaK Hafl3op 3a JieCOCeKaMH, oxpa- Ha Jiecoß, jiecoBOCCTaHOBJieHHe h t.;;. Bmccto stoto ohh caMH CTajra nacTbio npoöjreMbi. /leKci ByiomHM saKono/iarejibCTßOM jiecxo3aM pa3pemeHO npoßO flHTb Bee RH.ibi py6oK yxoaa, HanpaßJieHHbie Ha yjiynmeHHe cocToaHHa Jiec- Hbix 3KOCHCTeM. TaKHe BH/ibi pyöoK OT h noneHHOH njiaTbi h MoryT npoßO/iHTbca b npeaejiax ocoöo oxpanaeMbix npnpoflHbix Tep pHTopHH. KaK iipooejioß b 3aKOHo;iarejibCTße, jiecxo3bi no/i bh.tom pyöoK yxofla nacra HacToamne KOMMepnecKHe pyÖKH, hto no3BOJia eT hm uaTaTb jbipbi b CBoeM öioflaceTe, ho Be/ier k ;iei pa;ianHH jiecoß. Mac uiTa6 noflOÖHbix «pyöoK yxojja» BnenaTJiaiom - CBoero cj>e flepajibHaa jiecHaa cjiy>K6a 3aroTaßjiHßana öonee 20 % Bceii apeßecHHbi b CTpaHe. C HeflocTaTOHHbiM KOinpojieM 3a jieco3aroTOßKaMH, HC/iocraTKaMH ynpaßJie- HHa JieCaMH, HH3KHMH fIOXOfIaMH MeCTHOTO HaCejieHHa H HefIOÖpOCOBeCTHO CTbio HeKOTopbix KOMnaHHH-HMnopTepoß CBH3aHbi HejierajibHbie pyÖKH. 3to aßjraeTca He TOJibKO skohomhhcckoh npoöjreMOH, ho h 3KOJiorHHecKOH, Tax KaK pyÖKH BeayTca 6e3 KaKHX-JiHÖo npaßHJi, b oöteMax, npeßbiinaiomHx 30- nycTHMbie, h nacTo b ocoöo oxpaHaeMbix npnpo/iHbix TeppHTopHH. BceMHpHbiM (})OHfl aHKOH npnpo/ibi (WWF) oueHHßaeT o6i>eM HenerajibHbix pyöoK b ceßepHbix pernoHax eßponencKOH nac™ Pocchh ot 20 ao 25%. 110 jannu m HajioroßOH iiojihuhh Pocchh okojio nonoßHHbi Bcefi apeßecHHbi b CTpaHe äaroTaßJiHßaercH c HapymeHHaMH /jeöcTßyiomero 3aKOHOflaTejibCTßa. C HenerajibHbiMH pyÖKaMH CBH3aH eme o/in h (jjaicrop, npcACiaßjiaioinHH yrpo -3y JiecaM ceßepHbix perHOHOB eßponencKOH nacra Pocchh: pyÖKH b Jiecax Bbi cokoto npHpoflOoxpaHHoro 3HaneHHa. Jleca ceßepa eßponencKOH nacra Poc chh HMeiOT CpaBHHTeJIbHO BbICOKHH IipOIJCHT OCOÖO OXpaHHCMbIX npHpOflHblX TeppHTopHH - 1 1,4 %, KOTOpbIH HBJIMCICH O/IHHM H 3 CaMblX BbICOKHX B CTpaHe. 0/iHaKO ohh pacnpefleneHbi HepaBHOMepHO h oxßaTbißaiOT aajieKO He Bce ne ca, b KOTopbix cjie/iOßajio 6bi ycTaHOBHTb oxpaHHbiH pc>KHM. TaK, ManoHapy uieHHbie neca, riocjie/iHHe KpynHbie ne.ibHbie ynacTKH KOTopbix Ha eßponeM ckom KOHTHHeHTe 3flecb Bce eme coxpaHHJincb, He hmciot KaKoro-jiHÖo npn poAOOxpamioro CTaTyca, h b hhx pa3pemeHbi Jiioöbie bh/ibi pyöoK 6e3 KaKHX- orpaHHHeHHH. /],pyroH npHMep - npHTyHflpoßbie jreca, HMeiouiHe hh3khh 233 npupoflooxpaHHbiH CTaTyc (Karerapua MCOFI VI), flonycicaioiuHH npoßeae- HHe b hhx HeKOTopbix pyöoic. FIo ou,eHicaM CeTH cnaceHHa TafirH, py6- kh pa3peiiieHbi npH6jiH3H i cji!,no b Tpe™ Jiecoß Ha ceßepe eBpo neHCKOH näe™ Pocchh. Pocchhckoc WWF npoßejio aHa jih3 KaHecTßa coxpaHeHHa ÖHopa3HOo6pa3Ha b CTpaHe, b ocHOBy KOToporo no ji(»KCHbi noKa3aTejiH vKcctkocth ycTaHOBJieHHoro b iipe;iejiax ocoöo oxpaHse- Mbix npHpoflHbix TeppHTopHH npnpo/iooxpaHHoro pe>KHMa, hx pa3Mepbi h KOHcjjHrypauHa, CTeneHb aHTponoreHHofi TpaHC(J)opMauHH (ÄHajiH3..., 2001). B pe3yjibTaTe, Bce cyöteKTbi Pocchhckoh öbijin FoiaccHfJjHUHpo- BaHbl B COOTBeTCTBHH C HX BKJiaflOM B COXpaHeHHe ÖHOpa3HOO6pa3HH. B He jiom npHpoflooxpaHHbiH peÖTHHr paccMaTpHßaeMoro pernoHa oica3ajica ao- BOJIbHO HH3KHM, XOTH flOJia OCOÖO OXpaHaeMblX npHpOflHblX TeppHTOpHH B oomcH iuioma;iH pci nona BbicoKa. TojibKo zißa cy6i>cKi a b pcrnone (HeHeuKHÖ AO h PecnyönHKa Komh) hmciot fIOCTaTOHHO bhcokhh peHTHHr. B ;ipytHX cyoieKTax cncTeMbi ocoöo oxpanacMbix npnpoflHbix TeppHTopHH Tpe6yK)T yjiynujeHHa. Eme ofIHHM 4>aKTopoM, yrpo3y fljia Jiecoß ceßepHbix pe thohob eßponeßcKOH nacTH Pocchh, aßJiaeTca BbicoKaa KOHHeHTpauna uejiJiK)Jio3HO-6yMa>KHbix KOMÖHHaTOB (IlpHjiojKeHHe D. Phc. 13). /I,jia hx pa öoTbi TpeöyeTca öoiibiuoe kojihhcctbo ApeßecHHbi. EojibuiHHCTßo H 3 hhx pa öoTaeT TOJibKO Ha enH h cocHe, MeHbrne Ha 6epe3e. 0/iHaKO xBOHHbie uinpo ko Hcnojib3yK)TCsi h b ziepeßOOÖpaöaTbißaioiHeH npoMbiimieHHOCTH pernoHa, a Taioice HflyT Ha 3KcnopT. B pernoHe HMeioTca öojibmne 3anacbi ochhm, cnpoc Ha KOTopyio HeßenHK KaK Ha BHyrpeHHeM, TaK h Ha BHeniHeM pbißKax, ho ko- Topaa MO>KeT cjiy>KHTb cbipbeM U,BK. Ho JiHiiib KOMÖHHaT b perHOHe paöoTaeT Ha ocHHe. MajiOHapyuieHHbie jieca, oKaK) in nm c m poctom npoH3BOfICTBa h coKpameHHeM MecTHbix 3anacoß apeßecHHbi. C apyron cto pOHbl, UejIJHOJIO3HO-6yMa>KHbie KOMÖHHaTbI aBJiaiOTCa Ba>KHbIM ({jaKTOpOM pa3BHTHa 3KOHOMHKH pernoHa. Bjiaro/iapa hm ceßepHbie pernoHbi eßponen ckoh Pocchh hmciot 3HaMHTejibHo jiyHuiyio CTpyKTypy SKcnopTa necHOH npo ayKUHH, neM CTpaHa b uejioM (pnc. 2). ripn 3tom flojia öyMarn oKa3bißaeTca 3HaHHTenbHO Bbime, a aojia Kpyrjioro Jieca - iih>kc. otmcthm, hto aojia Kpyraoro Jieca b 3KcnopTe pernoHa Bce >Ke npeßbimaeT cpeflHHH noKa3a- TeJib no MHpy, cocTaßJiaiomHH Bcero 8 %. 234 Таблица 1. Роль целлюлозно-бумажных комбинатов в уничтожении малонарушен ных лесов севера европейской части России Рисунок 4. Структура экспорта лесной продукции из России в целом и из северных регионов ее европейской части TaKHM o6pa3oM, ajih chhacchha yrpo3bi jiecaM ceßepHbix perHOHOB eßponefi ckoh näe™ Pocchh mo>kho peKOMeHfIOBaTb npoßeaeHHe cjieayioutHX Mepo npHHTHH, yHHTbißaa npn 3tom, hto ycneiHHoe hx ocymecTßJieHHe BO 3 TOJIbKO npH COBMCCTHbIX /ICMCTBHHX OpraHOß TOCyfIapCTBeHHOH BJia cth, HenpaßHTejibCTßeHHbix opraHH3auHH h flenoßbix Kpyroß: ЦБК Доля древесины из малона- рушенных лесов Архангельский ЦБК 30% Котласский ЦБК 20% Соломбальский ЦБК 17% ОАО Кондопога 15% ОАО Соликамскбумпром 12% Сыктывкарский Лпк 6% Сегежский ЦБК 5% Питкярантский ЦЗ 4% 235 1. Совершенствование лесного законодательства, с тем чтобы при близить его к международным требованиям, особенно в области сохранения биоразнообразия, поддержания экологических функ ций лесов и охраны лесов высокого природоохранного значения. Но более важным представляется регионализация лесного законо дательства. В настоящее время оно строго централизовано, все решения принимаются в Москве, часто без учета местных условий. Федеральное законодательство должно быть рамочным, а такие вопросы, как величина расчетной лесосеки и их площадь, должны определяться на местах. В этом случае величина расчетной лесосе ки для северных регионов европейской части России могла бы быть сокращена, как того добиваются региональные экологиче ские организации. 2. Повышение эффективности контроля за лесозаготовительными операциями, что прежде всего требует разделения контрольных и хозяйственных функций. За лесхозами должны сохраниться только контрольные функции, а проведение всех типов рубок ухода должно быть передано независимым государственным или част ным организациям, и желательно по конкурсу. И конечно же, лес хозы должны получать все необходимое финансирование. Непра вительственные организации могли бы оказать существенную по мощь в осуществлении контроля, привлекая к этой деятельности местное население и организуя своего рода общественный кон троль. Лесопромышленные компании, если они, конечно, хотят сохранить свой положительный имидж, должны сделать свою ле созаготовительную деятельность прозрачной. 3. Развитие добровольной лесной сертификации, что могло бы заин тересовать компании в более «экологичном» лесопользовании. В мире действуют несколько схем лесной сертификации. Наиболее известными являются сертификация лесоуправления Лесного по печительского совета (FSC) и Панъевропейская лесная сертифика ция (PEFC). В настоящее время успешный опыт проведения на территории России имеет только сертификация FSC. Ее продвиже ние является прерогативой неправительственных организаций, и они справляются с этой задачей вполне успешно. Так как сейчас в России спрос на сертифицированную древесину отсутствует, зна чительный вклад в сохранение ее лесов могли бы внести импорте ры лесной продукции, требуя от своих российских партнеров сер тифицированную продукцию или, по крайней мере, разработку и проведение экологической политики. Это особенно важно для се верных регионов европейской части России, значительная часть лесного экспорта которых идет в страны, где имеется спрос на сер тифицированную древесину. Роль государства здесь состоит в том, чтобы согласовать лесное законодательство страны с международ ными принципами и критериями сертификации. 4. Прекращение нелегальных рубок. Это - очень сложная проблема. Хорошие результаты были получены на Дальнем Востоке России, где в 1998 г. для борьбы с нелегальными рубками были созданы специальные мобильные бригады. Эти бригады были созданы по 236 инициативе и при поддержке Российского представительства WWF, и в настоящее время действуют под эгидой региональных департаментов охраны окружающей среды. С их помощью были выявлены сотни нарушений, что способствовало сокращению не легальных рубок в регионе. Данный опыт планируется использо вать также и в Архангельской области, и далее распространить его на весь европейский север России. Иностранные компании могут содействовать в борьбе с нелегальными рубками, отслеживая ис точники импортируемой древесины и прекратив приобретение древесины из сомнительных источников. 5. Улучшить систему особо охраняемых природных территорий в ре гионе и их охрану. С этой целью необходимо увеличить их пло щадь и повысить природоохранный статус. Необходимо также ввести официальный запрет на рубки в сохранившихся малонару шенных лесах. Рубки ухода в притундровых лесах должны прово диться при строгом контроле за ними, также как и рубки в лесах, непосредственно примыкающих к ним с юга. Значительную по мощь органам государственной власти в этой работе оказывают неправительственные организации. Так, в 1996 г. по их инициати ве ряд иностранных компаний ввели мораторий на приобретение древесины из старовозрастных лесов Карелии и Мурманской об ласти. Имеются также примеры подобных мораториев, поддер жанных российскими лесопромышленными компаниями в рай онах, которые неправительственные организации считают имею щими высокую природоохранную ценность, но которые не имеют официального природоохранного статуса. 6. Наиболее трудноразрешимой представляется проблема высокой концентрации целлюлозно-бумажных комбинатов в регионе. Од ним из возможных путей является сокращение экспорта круглого леса, который конкурирует с ЦБК за ресурсы. Другой путь - более широкое использование осины в качестве сырья, но это требует больших инвестиций. Государство в этом случае могло бы содей ствовать в привлечении инвестиций и снижении железнодорожных тарифов, что позволило бы привозить сырье из более удаленных источников. Однако более перспективным, наряду с другими ме роприятиями, представляется создание крупных вертикально ин тегрированных компаний, осуществляющих все этапы лесопро мышленной деятельности от заготовки древесины до ее перера ботки в конечный продукт и продажи. Такие крупные лесные ком плексы уже действую в России, причем три крупнейшие в рас сматриваемом регионе - «Илим Палп Энтерпрайз», «Титан», «Сыктывкарский ЛПК». Mbi hto sth MeponpnaTna noMoryT caejiaTb ynpaßjieHHe JiecaMH ceßepHbix pernoHOß eßponeiicKOH nacra Pocchh SKOJiornnecKH OTBeTCTBeH- HblM, COnnajlbHO OpHeHTHpOBaHHbIM H 3KOHOMHHeCKH >KH3HeCnOCO6HbIM. 237 Литература Forest Conservation in Russia: An Overview. WWF Russian Programme Of fice Analytical Document. Moscow, 2001. 238 Оценка современной и возможных будущих реак ций на климат в бореальной Аляске Валери Барбер, Гленн Патрик Джуди, Эд Берг и Мартин Вилмкинг 2 Бореальные леса покрывают 12 миллионов км северного полушария и содержат 40 % мировых запасов почвенного реактивного углерода, что примерно равно количеству углерода, содержащегося в атмосфере (Melillo et ai. 1993; McGuire et ai. 1995). Бореальные леса занимают около 17 % поверхности суши Земли (Bonan et ai. 1992). Область распростране ния бореальных лесов в Северной Америке находится выше широты 60° на Аляске, но ниже этой широты в остальной части Северной Америки вследствие климатических условий. Преобладание низин на западной ок раине Северной Америки приводит к уклонению путей штормов и адвек ции более теплых воздушных масс к северу. На восточной границе по лярный воздух отклоняется к югу. Океанские течения вдоль границ кон тинента следуют такими же путями, усиливая температурные эффекты. Район бореальных лесов особенно склонен к климатической изменчиво сти, поскольку незначительные изменения ключевых черт климатической циркуляции могут либо усилить адвекцию теплого воздуха в этот естест венно холодный регион, либо способствовать распространению холодно го воздуха на юг региона. Последние дендрохронологические исследова ния показали, что различные части бореальных лесов по-разному зависят от климатических параметров. Ha AnacKe öopeajibHbie jieca BKJHonaioT 5 bh;iob H3 KOTopbix ppy- M» Ba>KHbiMH KOMnoHeHTaMH aßjiaioTca öejiaa h nepHaa enb. Bejiaa ejib hbjih eTca npeoÖJia/iaiomHM bmaom h 3aHHMaeT okojio 2.8 MHJiJiHOHa ra hjih okojio 26 % öopeajibHbix Jiecoß Ajihckh. YnacTKH, rjje /lOMHiinpyer nepHaa ejib, co- CTaBJisiOT 55 % TeppHTopHH öopeajibHbix Jiecoß AnacKH (Labau and van Hees 1990). BHyTpemiMH AnacKa - sto OÖJiacTb, r/ie HaxoflHTca öojibuiaa nacTb öopeajib- Hbix Jiecoß Ajisckh. 3to hctko BbipaaceHHbiH pei non, orpaHHHeHHMH xpeÖTOM BpyKca Ha ceßepe h Ajihckhhckhm xpeÖTOM Ha lore. 3tot pei HOii 3aHHMaeT TeppHTopHio Me>Kjy 63° h 67° c.m. BHyTpeHHaa AjiacKa npocrapaeTca ot lOKOHa Ha 141° 3.f1. k ao KJinMaranecKOH rpaHHHbi BepHHroßa Mopa npHMepHo Ha 155° (Edwards et al. 2001). Pcthoh coctoht H3 flßyx öojibrnnx tcktohmhcckmx öac- CeHHOB C HH3KHMH aÖCOJHOTHbIMH BbICOTaMH - /[OJIHIia p. TaHaHa H lOKOHCKaa 239 низменность, - разделенных возвышенностями 500- 1000м над уровнем моря. Климат региона - континентальный, со средними январскими тем пературами -20°С или холоднее и средними температурами июля 15-20°С в зависимости от высоты и положения в пределах региона. Хребет Брукса и Аляскинский хребет действуют как топографические барьеры для влажного воздуха с океанов. Следовательно, климат внутренней Аляски - полузасушливый, с годовой нормой осадков в пределах от 400 до <2OO мм (в среднем 305 мм) (Patric and Black 1968). Количество осадков обычно уменьшается к востоку и в значительной степени зависит от топографии (Edwards et ai. 2001). Около 60 % годового количества осадков приходит ся на летние дожди. Поскольку годовое количество осадков во внутрен ней Аляске низкое, а лето часто бывает теплым, наблюдается ярко выра женный дефицит увлажнения (превышение потенциальной транспирации над увлажнением). Рассчитанный дефицит увлажнения на Аляске состав ляет 9.5 см в Битлсе в центральной части хребта Брукс, 18.8 см с Фэрбан ксе и 28.9 см в Форт Юконе (Slaughter and Viereck 1986). /Ipyrne KJiHMaraHecKHe oöjiacra Ha AjiacKe, BCTpenafOTCH öopeajibHbie neca, BKJHonaiOT 30Hy MopcKoro KjiHMaTa (K»KHoe, ioro-BOCTOHHoe h loro 3anaflHoe Ajmckh), nepexoflHyio 30Hy ot MopcKoro k KOHTHHeH- TajibHOMy KJiHMaTy b 3anaflHOH AjiacKe, r/je jictom KjiHMaT MopcKOH, a 3hmoh - öojiee KOHTHHeHTajibHbiM BCJieACTBHe Toro, hto Mope noKpbiTO jibaom. 3th 30Hbi nojiynaiOT 6ojibme no3TOMy ,zje4)HHHT yBJia>KHeHHH 3/iecb Ha- ÖJiioflaeTCH pe^KO. CflßHr pe>KHMa öbui 3acjjHKcnpoßaH okojto 1997 bo Bcex nacTax Ajthckh. TeMnepaTypa Bo3pocjia Ha Bcex ct3hhhhx no cpaßHeHHio c npe- Abi/iymHMH 20 h öojiee ro/iaMH. Kojihhcctbo xapaKTepH3oßajrocb 3HaHHTejIbHOH H3MeHHHBOCTbK) H BO3pOCJIO Ha ÖOJIbUIHHCTBe KOHTHHeHT3JIb- Hbix cTaHHHH, KaK bo BHyTpeHHMX h ceßepHbix nacTax Ajihckh oho yMeHbuiHJiocb hjih ocTajiocb HeH3MeHHbiM. Bo3mo>kho HeflaßHO TaK »e Ha- ÖJHoaajica c/iBHr pe>KHMa, TaK KaK jieTHHe ce3oHbi, HaHHHaa e 2000 öbum öojiee h BJia>KHbiMH bo BHyTpeHHefi Ajihckc, a 3hmh ömjih Mar ie. Bejiaa ejib umpoKO pacnpocTpaHeHa b CeBepHOH AMepHKe. Ejib MoaceT pacra b KjiHMaranecKOM flHana3oHe c TeMnepaTypaMH ot -12 ao +lO°C h TOflOßblM KOJIHHeCTBOM OCafIKOB OT 200 flO 1300 MM. BHyTpeHHHH AjIHCKa Jie >kht Ha TenjiOH h cyxon CTopoHe stoto flHana3oHa, b to BpeMH KaK npH6pe>K- Hbie h ropHbie yqacTKH öojiee BJiavKfibic h/hjih öojiee npoxjia;inbie. B ueHTpajibHOH AjiacKe öejiaa ejib Ha cjiaöonpHnoflHHTbix Bo3BbimeHHocrax oÖHapy>KHßaeT nocTOHHHyK) OTpnuaTejibHyK) 3aBHCHMOCTb pocra ot TeMnepa- Typbi BCJie/iciBHC oöycjioßjieHHoro TeMnepaTypHbiM pokhmom He/iociaiKa yBjia>KHeHHH (Barber et ai. 2000). Ha BHyTpeHHHX HH3MeHHOCTax yBJia»HeHHH oöhhho He orpaHHHHBaeT pocT öejion ejiH, KOTopbin nojio>KH- TejibHO CBH3aH c TeMnepaTypoH. HepHaa ejib, pacTymaa Ha Mep3JioTe bo BHyT peHHeii AjiacKe, Taoce HMeeT OTpnuaTejibHyio 3aBHCHMOCTb ot anpejib- CKHx/MaMcKHx h/hjih HiOHbCKHx TeMnepaTyp. 240 TpaHHua Jieca - 3to Ba>KHaa 3KocncTeMa, HyßCTßHTejibHaa k KJiHMaTHHecKHM n3MeHeHHHM. 3to rpaHHua JiecoM n TyHflpon, 03HaHaK>maa nepexoA ot yMepeHHoro k apKTnnecKOMy KJMMaTy. nojio>KeHne rpaHnubi jieca Tpa/innn- OHHO CT3BHTCSI B 33BHCHMOCTb OT TeMnepaTypbl, H B HCTOpHHeCKOM nJTaHe OHO n3MeHSJiocb c n3MeHeHMeM KjiHMaTa. Ha AjiacKe ecTb n anbnMHCKHH ran rpa- Hnubi Jieca (orpaHHHeHHe xojioaom), h HM3MeHHaSi rpaHnua jieca (orpaHnne- HHe BJia>KHOCTbK)). AjibnHHCKHe nonyjiauHH aepeßbeß pearnpyiOT KaK nojio>KHTejibHO, TaK h ot pHuaTejibHO Ha Jierane noTenjieHna. B oahoh nacra xpeÖTa BpyKC nonyjiflunn öejioH ejin Ha rpaHnne Jieca oÖHapy>KHßajin KOHTpacrayio 3aBncHMOCTb ot TeMnepaTypbl, xoim 3th nonyjwunn naxojH.iHCb He;ia;ieKo ;tpyr ot ;ipyra (FlpHjio>KeHHe D. Phc. 14A n 14B). Ha apyroM ynacTKe B/iojib iwkhoto noöe pe>Kba Ajiackh HaÖJiioflajiHCb noxomie KompacTHbie 3aBHCHMOCTH (npujio >KeHne D, Phc. 14C n 14 D). D'Arrigo h Jacoby (jiniHoe cooömeHne) oÖHa py>KHJiH iiBoaKVK) peaKiiHK) oc.ioh ejiH b ro pax BpaHrenb Cenr 3jiaöac Ha Ajimckc. D'Arrigo h Jacoby (1995) TaioKe ooHapyvKHJin ywacTKH rpaHHUbi jieca b ceßepHon nac™ Ajihckh c H3MeHsHomeöca peaKunen Ha kjm- MaT. TaM, rfle Kor/ja-To pocT /jepeßbeß öbiji nojioaarrejibHO CBH3aH e jicthhmh TeMnepaTypaMH, Tenepb oh He 6biJi CBjmH hjih HaÖJiiOflaJiacb OTpnuaTejibHaa 3aBHCHMOCTb OT JieTHHX TeMnepaTyp, BO3MOSKHO BCJiefICTBHe HefIOCTaTOHHOTO yBJia>KHeHHSi. HccjieaoßaHna, npoße/jeHHbie Ha 8 ynacTKax b npe.ae.riax h b6jih3h ajibnHHCKOH h apKTHHecKOH rpaHHUbi Jieca b Tpex peraoHax Ajmckh, TaK>Ke flajiH CMeuuaHHbie pe3ynbTaTbi (Lloyd and Fastie 2002). 3th nccjie.no- BaHna oÖHapyÄHJin pernoHajibHyio H3MeHMHBOCTb pocTa b otbct Ha KjinMara necKne BapnauHH, ho 3a(j)HKcnpoßajin yMeHbuieHne pocTa BCJie/icTßne noßbi ineHHH TeMnepaTypbl Ha Han6ojiee yßJia>KHeHHbix ynacTKax HannHaa c 1950 rofla. MHBepcHH 3aBHCHMOCTH pocTa ot KjiHMaTa öbuia öojiee rannMHa ana ynacTKOB Hn>Ke rpaHHUbi Jieca, neM Ha Hen (Lloyd and Fastie 2002). Ha bo - BbiiiieHHOCTflx nojiyocTpoßa KeHan HaÖJiKtflajrocb OTcyTCTBne peaK nnn Ha noßbimeHne TeMnepaTypbl y öejion ejin (Ed Berg, jinnHoe cooöme- Hne). no/iTßep>KfleHO noßbimeHne rpaHnnbi Jieca c 1850 b boctohhoh nacrn AjiacKHHCKoro xpeÖTa (Zald 2002). ,H,pyrHe nccjieaoßaHna (Lloyd et ai., in press) noKa3ajin npoflßn>KeHne öejion ejin Ha 10 km Bniyöb KycTapmiKOßon TyHapbi Ha Bo3BbiineHHbix ynacTKax nojiyocTpoßa Cbioap/i c 1880 ro/ia. Ha HH3MeHHbix ynacTKax ohh oÖHapyacnjin iipo;ißM>KCiwe rpaHnubi Jieca npn- MepHO c 1920 r., ho TOJibKO Ha ynacTKax c TepMOKapcTOBbiMH nponeccaMn. Bojibinaa nacTb nojiyocTpoßa Cbroapa b 3ana,o,HOH Ajihckc 6e3JiecHa, ho Tjto öajibHbie KjinMaTHHecKHe (GCM) 3a4)nKcnpoßajin TeMnepaTypbl (cTaHUHH Hom), flocTaTonHbie fljifl pacuinpeHHoro pocTa 6ejion ejin Ha nojry ocTpoße k 1940-m ro^aM. nporHo3bi öyjjymero noTenjieHna rjioöajibHbiMn KJiHMaTHnecKHMH moacjismh yKa3bißaroT Ha to, mto noTenjieHHe Ha AjiacKe öy/ieT HapacTaTb b TeneHHe 3Toro cTOJieTHH. OcHOßbißaacb Ha nporHo3ax TeMnepaTyp h MOAejiax pocTa, ocHOßaHHbix Ha TeMnepaTypax, öojibniaa nacTb öejioH ejiH bo BHyTpeHHefi AjiacKe HCHe3HeT npnMepHo k 2080 (npnno®eHne D. Pnc. 15). HepHaa 241 ejib oÖHapyjKHßaeT i opasko 6ojiee yMeHhLiienne pocTa, ho ee Bbi- MHpaHHe, no-BH/iHMOMy, ycKopHTca c ycHJieHHeM TepMOKapcTOßbix npouec cob, TaK KaK npH raanHH Mep3JiOTbi HCHe3aioT ee MecTOOÖmaiiHM. 0/KH;iaexcsi, hto noTenneHHe npHße/ier k Bo3pacTaHHio ymepöa ot no>Kapoß h BcnbimeK HHCJieHHOCTH HaceKOMbix. CwjibHaa BcnbiiiJKa eJiOßoro Ha n-OBe KeHan c 1989 no 1997 y6njia öojiee 3 mhjijihohob aKpoB öejioä enH h ejiH CHTKa/JIyTH, Koropbie cocTaßJiajiH öojibiiiyio nacTb HMeioiuHxca 3pejibix jiecoß (3fl Bepr, JiHHHoe cooömeHHe). 3Ty BcnbiuiKy CBK3biBaK)T c H3MeHeHH eM KJiHMaTa h HapacTaiomHM noTenjieHHeM (IlpHJio>KeHHe D. Phc. 16). o>kh ;iaercH ycnjienne BcnbiiueK hhcji6hhocth HaceKOMbix b cjiynae npo;ioji>KeiiHM noTenjieHHa KJiHMaTa. Литература Barber, V. A., Juday, G. P. et ai. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405(8 June): 668-673. Bonan, G. 8., Pollard, D. et al. 1992. Effects of boreal forest vegetation on global climate. Nature 359: 716-718. Edwards, M. E., Mock, C. L. et al. 2001. Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmos pheric-circulation controls of regional temperature and moisture re sponses. Quaternary Sciences Reviews 20: 189-202. Jacoby, G. C. & DArrigo, R. D. 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles 9(2): 227-234. Labau, V. J. & van Hees, W. 1990. An inventory of Alaska's boreal forests: their extent, condition, and potential use. International Symposium Bo real Forests: Climate, Dynamics, Anthropogenic Effects. State Commit tee of USSR on Forests. Archangelsk, Russia. Lloyd, A. H. & Fastie, C. L. (2002). Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Climatic Change 52:481-509. Lloyd, A. H., Rupp, T. S. et al. (in press). Patterns and dynamics of treeline advance on the Seward peninsula, Alaska. JGR-Atmosphere. McGuire, A. D., Melillo, J. et al. 1995. Equilibrium responses of soil carbon to climate change: empirical and process based estimates. Journal of Bio geography 22:785-796. Melillo, J. M., McGuire, A. D. et al. 1993. Global climate change and terres trial net primary production. Nature 363: 234-240. Patric, J. H. & P. E. Black, P. E. 1968. Potential evapotranspiration and climate in Alaska by Thornthwaite's classification. Juneau, AK, U.S.D.A. For est Service. 242 Slaughter, C. W. & Viereck, L. A. 1986. Climatic characteristics of the taiga in Interior Alaska. In: Van Cleve, K., Chapin, F. S. 1., Viereck, L. A. & Dyrness, C. T.. Forest ecosystems in the Alaska taiga. A synthesis of structure and function. Springer, New York. p. 9-21. Zald, H. 2002. Treeline responses of white spruce, Picea glauca (Moench)Voss, to physiographic and climatic variation in the eastern Alaska Range. Natural Resources and Environment, University of Michigan. 243 Глобальное потепление и региональная реакция роста годовых колец на Кольском полуострове, Северо-запад России О.М. Распопов, Т. Колстрём, О.И. Шумилов, И.Ю. Киршидели, В.А. Дергачев, М. Линдхольм, И. Мериляйнен, О. Эггертссон, Е.А. Касаткина, А.В. Кузьмин, Г.Г. Матишев, СЛ. Дженюк, Bhuh npoaHajiH3HpoßaHbi /jaHHbie o pocTe ro/iOßbix KOJieii cocHbi oöbiKHO- BeHHOH (Pinus sylvestris), coopamibie Ha ;iCërna;uui'rn ynacreax Ha Kojib ckom nonyocTpoße k ceßepy ot nojiapHoro Kpyra. Ochobhoh sananen .naHHoro Hccjre/ioBaHHa 6biJio onpeAenHTb pernoHajibHyio peaKHHio önojiorHHecKHx CHCTeM (necoß) Ha raoöajibHoe noTenjieHHe b TeneHHe npoine/uimx 100 jreT. KojibCKHÖ nojiyocTpoß pacnojio>KeH Me>K,a,y 66° h 70° c.rn., n 32° h 41° CeßepHaa rpaHima neca nepeceKaeT KojibCKHfi nojiyocTpoß ot ceßepo iaiia;iHoro noöepeacba bapenncßa Mopa flo foro-BociOMiioi o noöepeacba 3Toro >Ke Mopa. IlojiyocTpoß pacnojio>KeH b pernoHe, xapaKTepH3yioii],eMCH aKTHB- HbiMH aTJiaHTHHecKHMH HHKJiOHaMH. IIo3TOMy ÖHOJiorHHecKHe CHCTeMbi pe rHOHa (BKJHonaH Jieca) He HcnbiTbroaiOT HeaocTaTKa BJiarn. OcaaKH Ha Teppn- TopHH nojiyocTpoßa pacnpegejiaiOTCH öojiee hjih MeHee paBHOMepHO. CpeflHe roflOßoe KOJiHHecTBO oca/iKOB KOJieÖJieTca Me>Kfly 500 h 800 mm b toa, a b ropHbix pernoHax aocraraeT 1200 mm b rofl. Flpn TaKHX ycjiOßHax yßJia>KHe- HHa pocT aepeßbeß, npHHHMaa bo BHHMaHHe OTcyTCTBHe 3aMeTHoro am-pono reHHoro 3arpa3HeHHH, b ochobhom onpeaejiaeTCJi TeMnepaTypon Bo3Ayxa. Ha pnc. 1 noKa3aHa inupmia roAOßbix ko.ich (Pinus sylvestris) Ha eeBepHOH rpaHHue neca Ha KojibCKOM nonyocTpoße, MypMaHCK (Raspopov et ai. 2001), 3a nocjieflHHe 400 JieT. Taioice npeACTaßJieHbi H3MeHeHHa TeMnepaTypbi b ce- BepHOM nojiymapHH h apKTHHecKHx perHOHax. Mo>kho 3aMeTHTb, hto h /jojiroßpeMeHHbiH pocT rojioßbix Koneu, m M3MeHeHHa TeMnepaTypbi, b oömeM, Be/iyT ceöa aHajiorHHHO, a H3MeHeHHSi kphboh pocTa aepeßbeß OTpajKaiOT pernoHajibHbie KJiHMaTHnecKHe ocoöchhocth Kojibcicoro nojiyocTpoßa. B fIaHHOH CTaTbe perHOHajibHbie KjraMaTHnecKHe peaKHHH Ha raoöajibHoe no- TenneHHe 3a nocjie/iHHe 100 JieT paccMaTpHßaeTca Ha ochob3hhh aaHHbix o pocTe Pinus sylvestris. Ha pnc. 2 06031 iän eno iiojiovKeiine tomck, rae npoßO 244 fIHJIHCb H3MepeHHH TOJHHHHbI TOJIOBbIX KOJieU- Ha Ka>KAOH TOHKe ÖbIJIO B3HTO He MeHee 10-15 oöpa3uoß cep/meßHHbi /yia noKa3aTejieö pocTa roAOßbix KOJieu. OcHOßHbie xpoHOJiorHH 3a cmneTHe Hbi Ha pHC. 3, bh/iho Bo3pacTaHHe pocTa roAOßbix KOJieu (TRG) b TeneHHe nepßofl nonoßHHbi npoiue/imero ctojicthh c MaKCHMyMOM TRG Meacay 1930- mh h 1950-mh h nocneayiomHM pe3KHM coKpameHHeM TRG Ha Kojib ckom nojryocTpoße. I lanHHaa c 1970-x pocT roaoßbix k o/ien OTJiHnanca cTa- ÖHUbHOCTbK). Рисунок 1. Верх: Изменения толщины годовых колец (Pinus sylvestris) на северной границе леса на Кольском полуострове за прошедшие 400 лет (по средним пяти летним значениям). Низ: Сравнение осредненных за десятилетие температур ных аномалий для Арктических регионов (Overpeck et ai. 1997) с утолщенной линией, представляющей измеренные данные, и для Северного полушария (Mann et ai. 1999) за прошедшие 400 лет, полученные посредством моделирова ния или измеренные. 245 Рисунок 2. Расположение точек измерения толщины годовых колец. На рис. 4 показаны изменения температуры в северном полушарии, сред негодовые температуры воздуха в прибрежных регионах Кольского п-ова (Кола-Мурманск) за последние 100 лет, а так же среднегодовые темпера- 246 туры в центральной части Кольского п-ова (Кировск) за прошедшие 30 лет. Рисунок 4. Сравнение региональных изменений среднегодовых температур на Кольском п-ове (станции Мурманск, Кола, Кировск) и глобальных изменений температуры. KaK BHfIHO H 3 cpaßHeHHa perHOHajibHbix h rjioöajibHbix n3MeHeHHH TeMnepa- Typbi, noßbimeHHe rjioöajibHbix h pernoHajibHbix TeMnepaTyp nponcxojnuio CHHxpoHHO flo 2O BeKa. 3aTeM, b 1960-x HaönioflajTocb noHnaceHHe TeMnepaTypbi. O/iHaKO c 1970-x H3MeHeHna rjioöajibHbix n jio- KajibHbix TeMnepaTyp öbuin pasjiHHHbiMn. Oöa iiOKaiaieJiH hmc.ih ren/ieHHMK) k HeKOTopoMy noßbimeHHio. Ho b cjiynae c raoöajibHbiMH TeMnepaTypaMn no- BbimeHHe npoHCxoflHjio b flßa pa3a SbiCTpee, neM b nepBOH nojioßHHe npo meflinero ctojicthji. B cjiynae c pernoHajibHbiMH TeMnepaTypaMH nx noßbi ineHne npoiiexoflH.no b flßa pa3a MefljieHHee (~ 0.15° 3a 10 JieT no cpaßHeHHio c -0.25° 3a 10 JieT b Haiane BeKa). AHajiH3 noßbimeHHH cpeflHeroflOßbix TeM nepaTyp 3a nocjieAHne 30 JieT noica3bißaeT, ito noßbimeHHe nponcxoflH.no 3a cneT 3hmhhx TeMnepaTyp. noßbiiueHHJi jieranx TeMnepaTyp He Haöjnoflajiocb. Bojiee Toro, cpeflHeroflOßbie jieTHHe TeMnepaTypbi noHH>KajiHCb b TeneHne no ejie;uieio fleorrajieTHa. B cjiefly loinen rafijiHue npe;icraßJieHbi cpc;iiiCMCCMLi- Hbie jierane (niOHb, niojib, aßrycT) h 3HMHne (fleKaöpb, HHBapb, (J)eßpajib) TeMnepaTypbi b neinpajibiioH nacra KojibCKoro nojiyocTpoßa (Khpobck) b 1980-x h 1990-x roflax. 247 Таблица. Среднемесячные летние и зимние температуры в центральной части Кольского полуострова (Кировск). Разница среднедекадных зимних температур за два последних десятиле тия составляет +l.B°С, а аналогичных летних температур -O.5°С. Пред ставленные данные хорошо коррелируют с данными Тимонена (2002) об изменениях температуры на границе леса в Финляндии в 1990-х: средне месячная температура декабря - марта возросла на 1-2°С, среднегодовая температура - на O.5°С по сравнению со средними температурами за сто летие. Июньские - июльские температуры за два последних десятилетия были ниже средних за 20 столетие. Рисунок 5. Корреляция между региональными среднемесячными температурами и показателями роста годовых колец в Хибинах (Кировск), 1964-2001 г.г. Temperature, Year °C 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 Summer 11.4 9.9 8.2 9.9 10.5 10.9 11.2 9.2 12.5 11.9 Temperature Year °C 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Summer 10.7 10.4 8.3 11.1 9.9 11.0 7.2 11.3 9.7 10.8 Winter -9.1 -9.9 -7.8 -11.7 11.0 -10.1 -10.0 -13.0 -13.6 -13.2 248 Ha pHcyHKe 5 noKa3aHa KoppejnmHH Me>Kfly noKa3aTejiHMn pocTa KOJieu h cpefIHeMecHMHHMH TeMnepaTypaMH b ueHTpajibHon nacra KojibCKoro nojiyocTpoßa (Khpobck) 3a 4O JieT. HeTKO npocjie>KHßaeTca 33bh- CHMOCTb Me>K/iy pocTOM roflOßbix KOJien h n3MeHeHMHMM TeMnepaTypbi B hk> He - aßrycTe. TaKHM oöpa3oM, CTaönjibHOCTb pocTa roAOßbix KOJieu 3a nocjieAHHe 30 jieT npoine/nnero ctojicthh, CBH3aHa c oTcyTCTBHeM noßbiineHiifl jieTHHx TeMnepaTyp b 3tot riepno/j. Выводы nepßaa nojiOßHHa nponie/nnero CTOJieTna oTjinnanacb KaK rjioöanbHbiM, TaK h pernoHajibHbiM (KojibCKHH n-OB) noTermeHHeM, KOTopoe co npoßO>Kaajiocb pacmnpeHHbiM poctom ro/iOßbix KOJieu Ha KojibCKOM nojiy ocTpoße. O.uiaico, nocjie raoöajibHoro TeMnepaTypHoro MaKCHMyMa, KOTopbiii Haöjrioflajtcfl Me>K/iy 1930-mh n 1950-mh n noHiDKeHna TeMnepaTypbi b 1960-x, npoH3om.no pe3Koe H3MeHeHHe aTMOccfjepHon nnpKyjnmHH. 3to hb jieHne co3flajro CHTyaumo, pernoHajibHbrä xoa TeMnepaTypbi nepecTaji CJieflOßaTb 3a rjioöajibHbiM xo/iom TeMnepaTypbi. K TOMy »e He Haöjno/jajiocb noTenjieHHa b TeweHne jicthhx Mecaneß b KOHue 20-ro ctojicthji. Bcne,acTßne 3Toro pocT roAOßbix KOJieu CTa6njiH3Hpoßajica h He pearnpoßan Ha ruoöajib- Hoe noTenjieHHe. 3a cneT oca/tKOB n ycjiOßHii bji3>khocth iiomb, npeoÖJia/iaioinHx Ha KojibCKOM nojiyocTpoße, mo>kho npeanojio>KHTb, mto npn flaHHbix H3MeHeHHax rjioöajib hoh HHpKyjiHHHH h BOCCTaHOBJieHHH KjiHMaTHHecKOH CHTyannn, npeoÖJiajiaß uien b nepßoii nojioßHHe 20-ro BeKa, Kor/ja Bo3pacTaHHe cpeaHeroaoßbix TeM nepaTyp conpoßoxaajiocb noßbimeHneM jieTHnx TeMnepaTyp, pocT roflOßbix KOJien MO>KeT ycmiHTbca. B TaKOM cjiynae raoöanbHoe noTenjieHHe mo>kct npHBecTH k yBenHHeHHK) JiecHbix pecypcoß KojibCKoro nojiyocTpoßa. Благодарности Mbi Bbipa>Kae\i 6:iaro;iapnocTb EC 3a rio;uiep>KKy .uiiiiioh paöoTbi b paMKax nporpaMMbi INCO-COPERNICUS (npoeKT EXTRATERRESTIAL ICIS-CT -98-0123), h PoccnflcKOMy OoH/iy Hccjie/toßaHnn (rpaHT 00-05-64921). Литература Mann M. E., Bradley R. S. & Hughes M. K. 1999. Northern hemisphere tem peratures during the past millennium: inferences, uncertainties, and limitations. Geophys. Res. Lett. V. 26: 759-764. 249 Overpeck J., Hughen K., Hardy D., Bradley R., Case R., Douglas M., Finney 8., Gajewski K., Jacoby G., Jennings A., Lamoureux S., Lasca A., Mac Donald G., Moore J., Retelle M., Smith S., Wolfe A. & Zielinski G. 1997. Arctic environmental change of the last four centuries. Sci ence Vol. 278: 1251-1256. Raspopov, O. M., Shumilov, O. 1., Kasatkina, E. A., Turunen, E., Lindholm, M., & Kölstrom, T. 2001. The nonlinear character of the effect of solar activity on climatic processes. Geomagnetism and Aeronomy 41(3): 407-412. Timonen, M. 2002. Is the climate warming at the pine timberline? In: Abstracts prepared for Arctic Council, Northern Timberline Forests Workshop, Rovaniemi, Finland, May 23-25, 2002. p. 22. 250 Приложения Приложение А Тезисы докладов и постерных выступлений на ра бочей группе «Северная граница леса» в Рова ниеми,23-25 мая 2002 года. Тезисы докладов Мониторинг северной линии лесов с использованием дистанционных методов и ГИС-технологий: Современное состояние и перспективы. Томас Р. Аллен ApKTHHecKaa jihhhh necoß - 3to nepexoflHaa 30Ha Me>i<;iy apKirmecKOH TyH/i -pofi h cyöapKTHHecKHMH öopeajibHbiMH JiecaMH. B HeKOTopbix MecTax OHa npeACTaßJiaeT coöoh pe3Kyrc> rpaHHuy, b apyrnx - njiaßHbm jihhhh jiecoß (npeaen pacnpocTpaHeHH» h cooTßeTCTßyioinaa en rpaHHua Jieca pearnpyiOT Ha KjTHMaTHHecKHe n3MeHeHna. 3tot othct 0606- maeT jiHTepaTypy no npHMeHeHMHM fIHCTaHUHOHHbix mcto/job h reorpa<})HHe- CKHX HH(J)OpMaUHOHHbIX CHCTeM (FHC) B HCCJiefIOBaHHHX JIHHHH JieCOB H KpH THnecKH paccMaTpHßaeT ej)aKTopbi, MemaiouiHe npoße/ieHHK) FMC- TeXHOJIOrHMeCKHX HCCJiefIOBaHHH H yCTOHHHBOMy pa3BHTHK3. C npOCTpaHCT- BeHHofi tomkh 3peHHH xpeöeT BpyKC Ha AjiacKe npeflCTaßJiaeT coöoh rnnpo- KHH CneKTp H3MeHeHHH paCTHTeJIbHOrO nOKpOBa H npOfIyKTHBHOCTH ÖHOMaC cbi Ha ypoßHe jiaHfliuaiJrroß. O/iHaKo fIHCTaHUHOHHbie HccjieAOßaHHH 6 bin h HanpaßJieHbi Ha y3Kyio ou,eHKy pecypcoß hjih cfjOKycHpoßajincb Ha iiih- Pokhx Kjiaccax pacTHTejibHoro noxpoßa, a He Ha cjjyHKUHOHajibHbix 3KOCHCTe- Max. riOTeHUHail MHTerpaUHH TpaAHIJHOHHbIX 3KOJIOrHHeCKHX 3HaHHH B THC H /IHCTaHUHOHHbie cnyTHHKOBbie HccjieAOßaHHH T3K>Ke Hcnojib3yeTCH HeaocTa- TOMHO. yrjiyÖHTb CBfl3b TpaAHUHOHHbIX 3KOJIOrHHeCKHX 3H3HHH C HayHHbiMH HccjreflOßaHHHMH, a TaK »e yBejiHMHTb none3HOCTb 3Ha- HHH Jim Mecraoro H TpafIHUHOHHOrO npHpOfIOnOIIb3OBaHHa. B3aHMOCBH3b Me>Kfly MacniTaöoM Hccjie/ioBaHHH, 3eMJiencuib3oßaHHeM h >KH3Heo6ecneHeHH eM .ziojDKHa SbiTb o6H3aTejibHo ywTeHa npn THC h AHCTaHUHOH- HblX MeTOfIOB MOHHTOpHHra JIHHHH JieCOB. 251 Оценка современной и возможных будущих реакций лесов на изме нения климата в бореальной Аляске. Валери Барбер, Гленн Патрик Джуди и Эд Берг HeriaßHHe Hccjie;ioßaiiHH ;ieii;tpoxpoHOJiorHH noflTßepacaaioT Heoöbimiyio JieTHHX noTenjieHHH b ceßepHbix öopeanbHbix Jiecax Ajiackh, ho Bo3BpaT k 6ojie jreTy hmcji mccto b 2000 h 2001 Ha AjiacKe BCTpenaiOTCH 06a -rana jihhhh Jiecoß - h ajibnHHCKHH c HH3KOTeMne paTypHbiMM orpaHHHeHHHMH, h HH3HHHHH cyxoH. AjibnHHCKHe nonyjiflHHH oÖHapy>KHßaioT KaK no3HTHBHyio, TaK h HeraraßHyfo peaKUHK) Ha jieraee noTenjieHHe. Ha cjiaöonpnnoiiHflTbix BO3BbiuueHHOCTHX ueHTpajibHOH Ajisckh öejiaa ejib iioctohhho npoHßjiaeT HeraTHßHyio peaKUHK) pocTa Ha TeMnepaTypy. 3to nponcxo.am bc.icactbhc nopo>KjeHHoro reMiiepaiypoH yßejiHHeHHa BJia>KHocTH. MepHaa ejib, npoH3pacTaK>maa Ha ynacTKax Mep3.no - bo BHyTpeHHHx nacTax Ajimckh, TaK>Ke nci aiMßiio pcai npyci Ha anpeiib- CKHe h/hjih MancKHe TeMnepaTypbi. BcnbiuiKH hhcjt6hhocth Hace- KOMbix MoryT SbiTb TaK>Ke CBH3aHbi c KjiHMaTOM. noTenjieHHe 21 BeKa (JiopMH pyeT KJiHMaT, noaxoflamHH an» pocTa flepeßbeß b coßpeMeHHbix perHOHax, h k Hpe3MepHOMy neraeMy noTenneHHio, KOTopoe mtokct yHHHTO>KHTb oe.iyio ejib Ha npoflyKTHßHbix ynacTKax b nein pajibiiOH Ajimckc. Рост деревьев вдоль границы леса и изменения окружающей среды: исследовательский анализ. Фрэнк Бериингер POCT COCHbI OÖbIKHOBeHHOH B CyÖapKTHKe H3yHajlCH C HCnOJIb3OBaHHeM KOM ÖHHaHHH MOfIeJIHpOBaHHfI H /],eHfIpO3KOJIOrHHeCKHX nOfIXOAOB. Mbl OÖHapy- HTO HHfleKCbl IHHpHHbI TOflOßblX KOJieU HMCJIH BbICOKHH KO3(})4)HHHeHT aBTOKoppejiHHHH h KoppenflUHH c pacHeTHOH cJ)OTOCHHTe3a npe flbiaymero roaa, a TaK >Ke c opraHHHecKoro BeiyecTßa 3a npe/ibifly ihhh ro,n. OflHaKO, OTHomeHHa 3a nepnofl 1950-1992 r.r. 3HaHHTenbHO otjth najiHCb ot OTHOiueHHH öojiee paHHero nepHOfla (1876-1949 r.r.- HaKjiOH per peccHH HHfleKca TOJHHHHbi roAOßbix KOJien h <})OTocHHTe3a öbui MeHee KpyroH. TaK>Ke H3MeHHJiacb CTpyKTypa aßioKoppejiaunM jamibix. Ko9(j)(j)HUHenr 3bto- KoppejiauHH nepßoro nopa/iKa yMeHbuiHJica, a KO3(})(})HHHeHT aßTOKoppejunjHH BToporo yßejiHHHjica. 3th H3MeHeHHSr He MoryT öbiTb oraeceHbi k Bo3pacTy ;icpcßbe'B, h MoryT öbiTb HHTepnpeTHpoßaHbi KaK Bo3pacTaK>iHHe or paHHHeHHH pocTa Ha rpaHiiue jieca. 252 Влияние оленеводства и охраны природы на заповедник Малла Стрикт Ханну Хейккинен и Микко Йокинен Ll,ejib npoeKTa - H3yHHTb MHoroHHCJieHHbie nocjie/iCTBHH npnpo,nooxpaHHOH fIeHTejibHOCTH h ojiciiCßo;ic i Bab 3anoßeflHHKe Majuia Ctphkt h ero ÖJiHMcaM ihhx OKpecTHOCTHx. OneHeBOfICTBO öbijio 3anpemeHO b 3tom paMoHe c 1981 ro/ia. OgHaKO panoH KHJinnctapßH hbjihctch nacTbio HCTopHnecKon ojieHe- BOAHecKoii TeppMTopMH caaMOB, h Koe-rfle b npcvie.mx Majuia npcxio.i/Kaioi 3aHHMaTbCH OJieHeBOfICTBOM. IloCJieflHHe HeCKOJIbKO JieT BbICKa3bIBaeTCH Tpe öoßaHHe nocTpoHTb 3a6op BOKpyr Majina. 3to npnße.no k KOHcjjpoHTaHHH Me >K,ny fleaTejibHOCTbio h ojieHeßO/iCTBOM. Ohhckhh Hhcth- TyT Jieca (FFRI) h Mecraaa acconnanHH ojieHeßjiaflejibueß npniiuiH k cobmc- CTHOMy 3aKJIK)HeHHK) O HeOÖXO/IHMOCTH H3yHeHHH 3TOTO BOnpOCa, HBJiarome rocfl xoponiHM npHMepoM Toro, KaK KyjibTypa h npnpo/ia ycTOHHHBo B3aHMO fIeHCTByioT Me>Kfly COÖOH. B npoeKTe TeMbi: sKOJiorHHecKaa h connajibHO-KyjibTypHaa. B paMKax nepBOM TeMbi ctoht 3aaana H3yHHTb H3MeHeHHH, KOTopbie ojieHeßoacTßO mo >KeT Bbi3BaTb b ecTecTBeHHOM cocToaHMH Majuia h, npe>KAe Bcero, b oTHorne hhh pe/iKHx h HCHe3aiomHx bhjiob. Brapafl TeMa 6yqeT H3ynaTb counajibHbie h 3KOJiornHecKne ycjioßHa, b KOTopbix cymecTßyeT ojieHeBOfICTBO h caaMCKaa KyjibTypa. BaxcHaa 'tacit» npoeKTa - paji>sicneime npnpo/iooxpaHHbix h flpyrnx neiiiiocreii 3arioße;iHHKa Majuia. Pe3yjibTaTbi 6y;iyr Sojibinyio ijeHHOCTb zuia npaKTnnecKoro ynpaßJieHHH 3eMjienojib3oßaHHeM. KjiioHeßbie cjiOßa: oxpaHa npnpoflbi, KyjibTypa, caaMH, 6ho pa3HOo6pa3ne, TypH3M. Изменения линии сосны лесной (Pinus Sylvestris) в северо-западной Лапландии, полученные на основе дендрохронологического датиро вания ископаемых остатков. Самули Хелама, M. Линдхолъм, M. Тимонен и М. Эронен BbICOTHbie H UIHpOTHbie H3MeHeHHH JIHHHH JieCOB B TeneHHe npomefllHHX 7500 JieT b 3HOHTeKHe (ceßepo-3anaflHaa (J)HHCKaa JlanjiaHflHa) h Ha npnjie raiom,Hx TeppHTopHKX öbiJin c Hcnojib3oßaHHeM HCKonaeMbix OCTaTKOB cocHbi JiecHofi (Pimis sylvestris L.), /laTnpoßaiiHbix ;ieii;ipoxpoiiojK> rHHecKH. lIpHMeHeHHe .naTnpoBaHHH no fleHflpoxpoHOJiorniecKHM o6pa3Li;aM no3BOJi>ieT flocTHraa MaKCHMajibHoro pacnpocTpaHeHHa npHMepHO k 2800-2200 r.r. ao h.3. CpaßHHTejibHO pe3Koe coKpameHne npoH3ouuio npHMepHO k 800-200 r.r. AO h.3. riocjieAHee TbiomejieTne peAKo noKpbiTO HCKonaeMbiMH HaxoflKaMH. noHH>KeHHe jihhhh jiecoß MO>KeT öbiTb nacTHHHO oötacHeHO TJIHnHOH3OCTaTHHeCKHM nOfIHHTHeM B 3TOM paHOHe. PaCUIHpeHHe MOfIeJIH 3a 253 cneT y>Ke coöpaHHbix o6pa3UOB c ropa3flo öojiee o6ihhphoh TeppHToppiH mo »ceT flaTb öojiee /jeTajibHyK) npocTpaHCTßeHHyio peKOHCTpyKumo H3MeHeHHH JIHHHH COCHOBbIX JieCOB B foJlOLieHe. Изменения популяционных циклов мелких грызунов в северной Фенноскандии. Хейкки Хенттонен Peryjiflpiibie 4-5-JieTHHe uHKjibi mcjikhx rpbnyHOß ömjih naHÖOJiee xapaicrep hoh nepTOH npnpo/ibi ceBepHOH cJ>eHHOCKaHfIHH. 3th uhkjibi Haxo/iHUH OTpa >KeHHe Ha öojiee bmcokhx h öojiee hh3khx Tpot})HHecKHX ypoßHax, T.e. b pac- TeHHax, ynoTpeÖJiaeMbix b nnm,y rpbi3yHaMH, h xHmHHKax, nHTaiomnxca HMM. OflHaKO, HaHHHafl C CepeflHHbl 1980-X r.r. 3TH HHKJIbI H3MCHHJIHCb hjih HCHe3Jin Ha öojibiiiHx TcppHropHHx, hto coiipoßo>K;ia;ioci> [lapynienHCM reo rpai})H4ecKoH chhxpohhocth (JwiyKTyaiiHH. TaKHe BHflbi pe3KHX h3mchchhh b ceßepHbix MaTepHKOßbix skochctcm i ry>K;uuoic>i b oötacHeHHax. HeKOTopbie H 3 hhx 3,qecb. He3aBHCHMO ot npHHHH, nocTOHHHbie H3MeHeHHH HMeiOT [ JiyÖOKHH CMbICJI C TOHKH äpCHHJI ÖHOpaSHOOÖpa iHi-l. Северный лесотундровый экотон в Финляндии: необходимость изу чения изменений окружающей среды с позиций ландшафтной эколо гии. Фридрих-Карл Хольтмейер B raoöanbHOM MacuiTaöe noHHTHe «rpaHHua Jieca» oömhho noflpa3yMeßaeT «jiHHHFO», pearnpyromyK), KaK opraHH3M, öojiee hjih MeHee pe3KO Ha H3MeHe hhh KJiHMaTa, Bbipa>KaeMbie hsmchchhhmh cpezuiMX h cyMMapHbix TeMnepa- Typ, kojihmcctbom jxueti c aKTHBHbiMH TeMnepaTypaMH h tji 0/uiaKO, TepMHH «r paiiHna jieca» - h ceßepHaa rpaHHija jieca b nacTHOCTH - oöhhho othochtch k nepexoflHOH 30He (jieco-TyH/ipoßOMy 3KOTOHy), a He k jihhhh. 3tot skotoh xapaKTepH3yeTca SKOJiornnecKHMH ycjioBHHMH, otjihhhmmh ot mHX B JieCHOH 30He H B apKTHHCCKHX HJIH aJIbnHHCKHX TyHflpaX. YCTaHOBJie- HHe öojiee hjih MeHee npoH3BOJibHbix 3aBHCHMOCTen rpaHHUbi jieca ot cpe/i -hhx TeMnepaTyp Bo3flyxa h noHßbi, KOTopbie CHHTafOTCH (J)aKTopaMH, kohtpo jiHpyiomHMH rpaHHuy Jieca, ABJiaeTCH cjthhikom ynpomeHHbiM h iipcvac raßJiaeT coöoh aTaBH3M paHHHX JieT HCCJiejjoBaHHH rpaHHUbi Jieca. ahai ji a (jjih o-3icojior niecki h e MCCjie/iOBaiiMH rpaiinubi Jieca CBH3aHbi c npo- CTpaHCTBeHHbiMH CTpyKTypaMh h MO3aHHHOCTbK> öojiee HJIH MeHee HIHpOKOrO Jieco-TyHflpoßoro SKorona. IlpocTpaHCTßeHHbie CTpyKTypbi h MO3amHOCTb rjiaßHbiM oöpa3oM 3aBHC»T ot MecTHOH Tonorpat})HH, ee bjihhhhh Ha ckjioho- Bbie ycjioßHa h peaKUHH aepeßbeß Ha AaHHbie ycjioßHa. MecTHbie ycjioßHa KOHTpojiHpyioT CKopocTb h (jiopMbi pocTa, xapaKTep pacnpocTpaHeHHa peßbeß, jiecHbix ynacTKOB, noapocTa, MO3aHHHOCTb pacraTejibHbix cooömecTß, pa3Jio>KeHHe onaaa, nHTaTejibHbie BemecTßa, /jocTynHbie pacTeHHAM h CTeneHb 254 yrHeTeHHOCTH. HeoöxoflHMO noHHMaTb, hto coßpeMeHHaa erpyicrypa 3kotoh3 rpaHHUbi Jieca OTpa>KaeT b öojibiueii CTeneHH HCTopmo mccthocth, hcm ee co- BpeMeHHblH KJIHMaT. TaKHM OÖpa3OM, Ha MeCTHOM H JiaHAIiia(J)THOM ypOBHHX aKKyparabiH h aeTanbHbift aHajiH3 MecTHbix ycjioßMH h MecTHoft hctophh He oöxoflHM fljia noHHMaHHa cj)yHKUHOHajibHbix CTpyKTyp, a TaK ace npocTpaHCT- BeHHOH H BpeMeHHOH JHHäMHKH B JieCO-TyHfIpOBOM SKOTOHe. I iai OK Ta koh HH(})opMauHH öyzieT ycTpaHeH öjiaroaapa HauiHM HCCJie/iOBaHHHM rpaHH- Übi Jieca b ceßepHofi cDhhjihhahh. Сравнительная ценность деревьев: саамское восприятие деревьев и леса Анна Ярпе KaK JlfOflH OTHOCHTCH K OKpy>KaiOU],eH cpefle, H KaK pa3JIHHHbie BHflbl 3H3HHH bo3hhk3K)t Ha pa3Hbix TeppHTopnax - 3th Bonpocbi npHßjieKaiOT noßbiuieH- Hoe BHHMaHHe aHTponojioroß. 3tot flOKJiaa rioKaweT, KaK aHTponojiorHHecKHe MoryT 6biTb npHMeHeHbi ajih toto, htoöu Jiynme oueHHTb, KaK >KHByuj,He b eßponeöcKHx Jiecax, BOcnpHHHMaiOT OKpy>KaiomyK) cpeay h othochtch k HeH. OoKycwpyacb Ha io>KHMx caaMax (LLlbcuhm), h npefljiaraio npH3HaTb, hto ecuH Bonpocbi ynpaßjieHHH jiecaMH h hx oxpaHbi aojiacHbi öbiTb HeHTpaJIbHbIMH npH OnpefleJieHHH nOJIHTHKH yCTOHHHBOIX) pa3BHTH>I, HaM TaK>Ke HeoöxoflHMO paccMOTpeTb, KaK pa3JiHHHbie nepcneKTHßbi bjihhiot Ha B3aHMO/jeHCTBHe c OKpy>KaK)meH h, TaKHM o6pa3oM, KaK jieca h /jepe- BbH ynaCTByiOT B (jDOpMHpOBaHHH pa3J!HHHbIX BHfIOB 3HaHHH. KjiHJießbie cjioea: BoenpHHTHe OKpy>KaiomeH cpeflbi, 3Konor™ nejiOßeKa, 3HaHHH, npHpoflonojib3oßaHHe. Взаимоотношения между лесом и тундрой в Якутии Николай С. Карпов B iIKyTHH, k 3ana;iy ot p. Hena, rpaHHHy Jieca oöpa3yeT jiHCTBeHHHua rviejin- Ha, a k BOCTOKy - JiHCTBeHHHua Käännepä. Jieca pacnpocTpaHeHbi k ceßepy b ochobhom no aojiHHaM peK. Ceönac HMeeT MecTO noc roHimoe OTCTynaHHe 30Hbi ceBepHOH rpannnbi jieca b 3tom pernoHe. Ochobhmc npHHHUbi 3Toro: BbipyÖKa Jiecoß Ha ;ipoßa n/iojib ee ceBepHOH ipaiiHUbi; (j)opvfHpoßaiine CTaÖMjibHbix «imporeHHbix» ryn/ipoßbix TeppHTopHH nocjie no>Kapoß, noKpbiTbix Kycrapi iHKOBO-KOHKoiiaiofi pacra- TejibHOCTbio BMecTO jieco-ryii/ipbi; nejiocraTOK >KM3iieciioco6nbix ceMHH /ie peßbeß b TyHflpoßbix h oÖJiacTax, t.k. ohh He Bbi3peßaiOT. BMeCTe B3HTbie 3th (j)aKTOpbI npHBOfIHT K OTCTynaHHK) JieCOB Ha JieCHTKH H cothh KHJioMeTpoB ot ero noTeHUHajibHbix rpaHHH, (})opMHpyeMbix ec- TecTBeHHbiMH reorpacfwnecKHMH KHbie perHOHajibHbie peaKUHH önojiorHHecKHx CHCTeM (jiecoß) Ha niooajibiroe no'ren;ieHHe b revenue nporire/uuero CTOJieTHa. Ba pHauHH pocTa roflOßbix KOJieu cpaßHHßajracb c H3MeHeHH»MH TeMnepaTypbi b iipnopoicHbix nacTHx KojibCKoro n-OBa. Ha6.'iio;iajiocb yßejiHHeHHe pocTa ro flOßbix «ojien c nanajia 20-ro ctojtcthh h Ha KojibCKOM nonyocTpoße, h b (|)hh ckoh JlanjiaHflHH. MaKCHMajibHbrä pocT KOJieu, naöjno/iajioi Me>K;iy 1930-mh h 1960-mh rojiaMH. 3aTeM b 1970-x KpHßaa pocTa pe3KO chh 3Hjiacb. B reHeiiHe cjie/iyiomnx 30 jieT He iiaojno/iajiocb 3aMe™oro yßejiHne hhh pocTa b SojibuiHHCTße o6pa3Li,Oß, HecMOTpa Ha 3HaHHTejibHoe raoöajibHoe noTenjieHHe, npoHCxo/iHßiiiee b sto BpexiM. O/uuiko HeKOTopoe yBCJiMHCHHe pocTa Haöjiroaajiocb b TeneHHe 3Toro BpeMeHH BflOJib bhcothoh (ajibnHHCKOH) rpaHHHbi Jieca b (Jihhckoh JlanjiaHflHH. M3MeHeHHH TeMnepaTypbi Ha eeßepe KojibCKoro nojiyocTpoßa He yKa3bißanH Ha noTenjieHHe b pernoHe 3a nocne#- HHe 30 jreT. CpaßHeHHe o pocTe KOJieu c npn6pe>KHbix Tep pHTopHH EapeHueßa Mopa c /jaHHbiMH H 3 KOHTHHeHTajibHbix nacTefi eeßepo -3anaaa Pocchh (KapejiHfl) noKa3bißaeT, hto hh Ha oahoh h 3 3thx TeppHTopnM He oiuymae rcM 3HaHHTenbHoro raoöajibHoro noTemieHH». Биоразнообразие жуков (Coleoptera) и древоразлагающих грибков (Polyporacea) на границе леса в финской Лапландии Анна-Jluuca Curt пола )KyKH h flpeßopa3JiaraiomHe rpHÖKH HrparoT Ba>KHyio pojib b JiecHbix 3koch- CTeMax. Pa3HOo6pa3Me bhaob >KyKOB CHHJKaeTCH noHTH Ha 40% ot rpaHHHbi k»khoh h cpeflHefi SopeajibHOH 30Hbi k ceßepHoii rpaHHne Jieca, Toraa KaK pa3HOo6pa3He rpnÖKOB ocraercH iiohih HeH3MeHHbiM b cpe/ineH h ceßepiioft 6opea;ibiibix 30Hax. Mto Kacaerca mctojob ynpaßJieiiHM jieeaMH, to enjioniHbie pyÖKH h H3MeHeHHe BHaoßoro cocTaßa Jiecoß OKa3bißaiOT HaHÖojiee HpKO Bbi paaceHHbiö 3(J)(J)eKT Ha jiecHyio KHBaK)T jrecHOH noKpoß h oöecneHHßaiOT HaKonjieHHe paenaaaiomeroea /ipeßecHoro MaTepHajia Bcex no-BHfIHMOMy, HaHJiymiiHM o6pa3oM yaoßJieTßopaioT TpeöoBaHHHM thhhhho JiecHbix bhaob. PeanbHoe Bo3fleficT ßHe JieCHOH npOMbIUIJieHHOCTH MO>KHO OUeHHTb TOJIbKO HeCKOJIbKO fleCflTHJie thh cnycTH, nocKOJibKy pacnaflaiomaaca apeßecMHa, ocTaßiuaacH ot nepnoAa, iipe;uiiecriiyioinei o bos/ichctbhio, no;i;iep>KHßaei nonyjiauHH HeKOTopbix bh- 256 fIOB B reMCIIHC fIJIHTeJIbHOrO BpCMCHH. MVBCTBHTejIbHOCTB K H3MeiICIIHHM OK pyacaiomeH h orpanHMeHHaa BO3MO>KHOCTb paccejieHHa MoryT TaioKe Bbi3BaTb jioKajibHoe BbiMHpaHHe nonyjiau,HH. Динамика регенерации доисторической растительности после нару шений в зоне границы леса. Анне Толванен, Оути Маннинен и Анне Торн HapymeHHJi MoryT SHaMHiejibiio noBjiHHTb Ha h bm/ioboh cocTaß pacTHxejibHbix cooömecxß. IlporajiHHbi (jiecHbie OKHa) MoryT CTaTb mefi cpeflofi fljifl ecTecTßeHHoro bosoöhobjichhh no/ipocTa, KOTopoe pe/iKO HaSjitoflaeTca b cjiynae oömibHOH pacTHTeJibHOCTH. Mbi H3ynaeM cnocoöbi pe- I CHCpaiJHH H fIHHaMHKy ;iOHC'IOpH I ieCKHX BHfIOB nOCJie BbI3BaHHbIX '[CJIOBCKOM HapymeHHH (cnjioiuHbix pyöoK, BbiTanTbißaHHa) h H3MeHeHHH cpeflbi (yßejiHHeHHe a3oTa) b FlajiJiac-OyHacTyHTypH, KHJinneb apßH h KyycaMO. BKjnonaiOT 3KcnepHMeHTajibHbie HapymeHHa, MOHHTopuHr h 3KcnepHMeHTbi c /joöaßJieHHeM nHTaiejibHbix BemecTß h nepe ca;uKH3HeHHbie (jjopMbi h MOp(})OJlOrHH BHfIOB HBJUHOTCH Ba>KHbIMH (j)aKTOpaMH B npOUeCCe BOCCTaHOB jiemw pacTHTeJibHOCTH nocjie HapyuieHHH. Российская лесная промышленность и угроза лесам на северной гра нице. Александр Воропаев nocjie flecHTHJieTHero KpH3Hca b Pocchh CHOBa HaöJTKxaaeTca pocT JiecHOH npoMbiiujieHHOCTH, ocoöeHHO b ceßepo-3anaflHbix oSjiacTax. 3tot pocT cno- COÖCTByeT pa3BHTHK) 3KOHOMHKH H nOBbILLieHHK) 6jiarOCOCTOHHHfI JIIOfIeH. Ofl- HaKo oh TaK>Ke yrpo>KaeT JiecaM. OcHOßHbie ejmicropbi 3to HeycTOHHHBoe ynpaßJieHHe JiecaMH, He3aKOHHbie pyÖKH h pyÖKH b KopeHHbix Jiecax. HTOÖbi nofljiep>KaTb npoMbnujieHHbiH pocT h, b to >Ke BpeMfl, coxpaHHTb jieca, Hy>KHO nepeiiTH k ycroiiMHßOMy pecypconojib3oßaHHK>, npeKpaTHTb He3aKOHHbie pyÖKH h oöecnenHTb oxpaHy KopeHHbix Jiecoß. 3Toro mo>kho fIOCTHHb cobmc- CTHbiMH ycHJiHHMM npaßHTejibCTßa (3aKOHOfIaTejibCTBO, 6opb6a c SpaKOHbep ctbom), HenpaßHTeubCTßeHHbix opraHH3auHH (BOBJieneHHe MecTHbix coo - mcc i B b ynpaßJieHHe JiecaMH h 6opb6y c öpaKOHbepcTBOM, cep- TH(J)HKatI,HH JieCOB) H HMnOpTepOB XipeßeCHHbl (cnpoc Ha CepTH(j)HHHpOBaHHbie jiecoMaTepHajibi). 257 Тезисы постерных выступлений Годовые вариации метеорологических условий и накопления пыль цы на плато Аакенустунтури в северной Финляндии: возможность использования ископаемой пыльцы в качестве климатического по казателя. Юрки Аутио, Шейла Хикс ToAOßtie BapnauHH MeTeopojionraecKHx napaMeTpoß h HaKomreHH» nbiJibUbi H3ynajTHCb Ha neTbipex njiomaAKax no TpaticeKTy Ha bmcothoh rpaHHue Jieca. 3aAana cocToajia b tom, mtoöm npocjieflHTb, KaK HaKonjieHHe nbiJibUbi (koto poe MO>KeT öbiTb npeflCTaßjieHo KaK Mecraoe npoH3BOACTBO nbiJibUbi) 3aBHCHT ot KJiHMaTHHecKHx ycjioßHH. /Jjih cocHbi jiecHOH Pinus sylvestris, kojimhccibo HaKonjieHHofi nbiJibUbi 3aßncHT ot cpe/inen TeMnepaTypbi hiojia, cyMMbi aK THBHbix TeMnepaTyp hiojia h oömeö cyMMbi aKTHBHbix TeMnepaTyp, Bce 3a npeAbwymHH roa. FoflOßbie KOJiHHecTBa HCKonaeMoii cochoboh nbiJibUbi, Ta- KHM OÖpa3OM, HBJIHIOTCfI nOTeHIJHaJIbHbIMH HHfIHKaTOpaMH KJIMMaTa. Ha HaKO njieHHe nbiJibUbi 6epe3bi Betula n cjih Picea bjihhiot /ipyrne TeMnepaTypHbie (})aKTopbi, ho 3a roa, npe,o,uiecTßyiomHH LißeTeHMio. Распределение древесных видов на границе леса в западной Финской Лапландии. Мари Хагберг, Маури Тилюнен, Марья-Jluuca Сутинен и Раймо Сутинен PerHOHanbHoe pacnpeflejieHHe /ipeßecHbix bhaob Ha rpaHHue Jieca, flOHCTopn necKHe pacTHTejibHbie cooömecTßa h pa3HOo6pa3ne bhaob CBasaHbi c reojio- THHeCKHM XapaKTepOM TeppHTOpHH. OH3HHeCKHe CBOHCTBa H XHMHHeCKHH co- CTaB MaTepHHCKOH nopoflbl, T.e. THJIJIHTOB, CTpaTHtjjHUHpOBaHHbIX rJTHUHOtJ)- JIIOBHajIbHbIX H rjlflUHO-03epHbIX OTJIOJKeHHH OKa3bIBaK)T OrpOMHOe BJTHHHMe Ha ycjioßHa pocTa pacTeHHM, T.e. BjiamiocTb, nm-aTejibHOCTb h KHCJioraocTb. Mbi H3ynajiH .mojieKTpHnecKyio npoHHuaeMOCTb noHB (e) KaK hhackc co,qep >KaHHH nOHBeHHOH BJiarH (0 V ), H 3JieKTpOnpOBO,HHOCTb nOHB (ct) KaK HHfIeKC noTeHUHajibHoro coaep>KaHH>i nHTaTejibHbix BemecTß B HenocpeflCTßeHHofi 6jih3octm ot 7 500 3pejibix aepeßbeß b 30He rpaHHUbi Jieca n 1 072 3K3eMnjiH poß cocHbi JiecHOH (Pinus sylvestris L.) h ee nojpocia Ha rpaiiHTOM/iax h 3e jieHOKaMeHHbix nopoaax (rpioHLUTeÖHax) b 3anaAHOH Ohhckoh JlamiaHflHH. CocHa jiecHaa Ha khcjihx npoH3BOflHbix ot rpaHHTOcoflep>KamHX ropHbix nopofl, b nacTHocra, XeTTa rpaHHT. TaKsce cocHa fIOMHHHpyeT Ha 3aHflpoßbix necHaHbix h rpaßMHHbix OTjio>KeHHHx h BeTpoßbix necnaHbix ot- JIO>KeHH}IX. 3THX HOHB (nOfl30Jl) THnHHHO HH3KOC ce3oHHoe co,nep>KaHHe 258 BJiarn (0 V<0.27 CM 3 civf 3 ) h hh3khh ynejibHbift Bec noHßbi a. CocHa (j)opMHpyeT JIHHHK) XBOHHbIX JieCOB Ha TeppHTOpHH XeTTa rpaHHT. licXOflH H 3 BO3paCTHOM CTpyKTypbi, cocHa oöocHOßajiacb 3/iecb ecTecTßeHHbiM oöpa3oM c 1920-x ro flOß. Bo3pacT cocHbi Ha rpaHHue jieca (cyMMapHaa TeMnepaTypa 600-500 rpa ayco-fIHeM) KOJieöneTca ot 50 flo 80 a, Toraa KaK cocHa b Bo3pacTe 20-30 a (|>opMHpyeT BHeuiHioK) jiMHHK) jieca (470 rpaayco-flHeii). HopBOKCKaa enb (Picea abies (L.) Karsten) h nymncTaa 6epe3a (Betula bubescens Ehrh.) Ha rpaiiMnc Jieca KOimeiirpHpyioTCM Ha Gojiee iuio;iopo;uibix (a>0.55 mS/m) nOHBaX Ha KOMÖHHaHHH OCHOBHbIX TOpHblX nopofl. Ejlb B 3TOM perHOHe (J)Op- MHpyeT JIHHHK) XBOHHbIX JieCOB Ha aMCjIHÖOJIOBbIX HnaTO, HO OTCyTCTByeT Ha rpaHHTHbix noHßax. OcHHa (Populus tremula) öbuia o6Hapy>KeHa TOJibKO Ha raaHHO-03epHbix cojieHbix OTJioaceHHax, HaKonneHHbix b 03epax 3a nocjie/iHee Ha coßpeMeHHbix BbicoTax 375, 365 n 355 MeTpoß Haa ypoBHeM Mops. Изменения линии сосны лесной (Pinus Sylvestris) в северо-западной Лапландии, полученные на основе дендрохронологического датиро вания ископаемых остатков. Самули Хелама, М. Линдхольм, М. Тимонен и М. Эронен CM. Te3HCbi Защита и восстановление лесов в Финляндии Микко Хиппонен и Мартти Вармола (Ehhckhh jiecHOH aKT onpeaejiaeT caMyio ceßepHyio HacTb Ohhckoh JlannaH jxwu KaK jiecooxpaHHbiH paftoH. 3aflana oxpaHbi Jiecoß - npe/jOTBpaTHTb ot- CTynaHHe rpaHHHbi Jieca. Hcnonb3oßaHHe oxpaHaeMbix Jiecoß pa3pemeHO, ho oho öojiee CTporo peryjinpyeTca, neM Ha HeoxpaHfleMbix TeppHTopnax. Oxpa- HaeMbie jieca cymecTßOßajra c Hanajia 20-ro crane™». BoccraHOßjieHHe 3thx jrecoß ocHOBaHo Ha ecTecTßeHHbix npoueccax pereHepanHH h HMeeT yMepeH- Hbifi ycnex. Jieca TaK>Ke BOCCTaHaBjiHBaiOTCH ecTecTßeHHbiM oöpa3oM 3a cieT ycKopeHHoro pocTa. B mojioahx xbohhmx Jiecax pernoHa He Haöjno/iajiocb KpynHOMacuiTaÖHbix BcnbimeK 6ojie3Hefi Jieca. 3to 03HanaeT, hto jieca xopo rno aaanTHpoßajiHCb k »ecTKHM ycjioBHHM. KjiHMaT 6bui fIOBOJibHO ÖJiaro npHHTeH fljia BOCCTaHOBJieHHa b 1990-x roflax, h b ÖJimKafimeM öyaymeM He O)KHfIaeTCH 3HaHHTejIbHbIX H3MeHeHHH. MoHHTOpHHr BOCCTaHOBJieHHH JieCOB Ha oxpaHHeMbix TeppHTopnax flOjmeH ocHOßbißaTbca Ha aojiroßpeMeHHbix HCCJieAOBaHHHX. 259 Сравнительная ценность деревьев: саамское восприятие деревьев и леса (действующий проект) Анна Ярпе CM. Te3Hcti flOKJia^oß Выпас оленей и угрожаемые виды растений в заповеднике Малла Стрикт, северо-западная Финляндия. Хейкки Кауханен B 3tom paccMaTpHßaeTca Bbinaca ojieHen Ha pacTH- TejibHOCTb h yrpo>KaeMbie BH/j,bi pacTeHHH b 3anoBeAHHKe Mamia Ctpmkt. OneHeBOfICTBO b 3tom paäoHe öbijio 3anpemeHO b 1981 rojiy. B nocjieflHne roflbi 3;iccb nacjiHCb jmiiib cjiynaHHo 3auieaiiine «HBOTHbie. CHe>KHbie nojia 3HMOO, a öyHHaa pacTHTejibHOCTb jieTOM npHßJieicaiOT ojieHeii. KapTHpoßaHHe 3anoße/uiMKa noKa3ajio, h io anbnHHCKHe THnbi MecTOOÖHTaHHH, qyBCTBHTejib- Hbie k Bbinacy, 3aHHMaiOT o/uiy TpeTb TeppHTopnH. Bcero jßazmarb TpH yr po>KaeMbix BHfla cocynHCTbix pacTeHHH nporopacTaioT b 3anoßeflHHKe. BcjieACTßHe pa3JiHHHbix Moptj)OJiorHHecKHx npn3HaKOB h xapaKTepa Bocnpo- M3BOfICTBa cymecTßyiOT öojibiUHe pa3JiHHHH b peaKUHH pacTeHHH Ha Bbinac. KapjlHKOßbie KyCTapHHKH H BbICOKOTpaBbe HyBCTBHTCJIbIIbI K Bbinacy H Bbl- TanTbißaHHK) ojiciimmh. HeKOTopbie MejiKne BH/jbi pacTeimii, ohcbhaho, Bbinr pbißaiOT ot Bbinaca, nocKOJibKy H3-3a cjiaooii KOHKypeHTOcnocoÖHocra ohh He MOryT BbI)KHTb CpC/IH HeilOßpOK/ieHHOH paCTHTejIbHOCTH. Изучение пространственно-временной изменчивости 22-х летней хронологии годовых колец на 3-В трансекте через северную Финлян дию и её связи с температурой, увлажнением и H АО-индексами. Марк Масиас ripocTpaHCTßeHHo-BpeMeHHoe cpaßHeHHe 22-x neTHeft xpoHOJiorHH KOJien, npoßoaHjiocb b ceßepHon b OeHOCKaHAHHaBCKHx Ajib nax. CpaßHeHHe npoßOflHJiocb c ncnonb3oßaHHeM xpoHOJionraecKOH CTaTH CTHKH H npHMeHeHHeM MHOrOMepHbIX aHajIHTHHeCKHX MeTOfIOB. TaK>Ke ÖblJlH npoaHaJiH3HpoßaHbi 33bhchmocth Me>ic;iy ninpnHOH roflOßbix KOJieu h TeMne paTypoö, yß.ia/KHCHHeM h HAO-HHfleKcaMH n H3MeHeHHe 3thx 3aBHCHMOCTeH co BpeMeHeM (b nepno,a e 1880 no 1991 r.r.). MccjieflOßaHHa noKa3ajiH, hto cymecTßyiOT pa3JiHHHSi MOK/iy /jByMH CTopoHa- MH OeHHOCKaHfIHHaBCKHX Ajlbn, H 3TH pa3JIHHHSI H3MeHHJIHCb b TeneHHe ne- 260 puolia H3ynajiHCb HeKOTopbie nepTbi 3aBHCHMOCTH HAO HHaeKCOB h pocTa aepeßbeß. Холодная акклиматизация берёзы: физиологические изменения в подросте и коре взрослого дерева. Ф. Марц, С. Кивиниеми и M-JI. Сутинен TonepaHTHOCTb MHoroneTHHx pacTeHHH k npoMep3aHHK) H3MeHSieTCH b Tene- HHe rofla. OöbiMHO OHa HH3Kaa bcchoh, 3aTeM yßejiHHHßaercH oceHbio h aoc- THraeT MaKCHMyMa K CCpejHHe 3HMbI. IIpOLICCC yBC-TIMHCHMH TOJiepaHTHOCTH K npoMep3aHHK) nocjie nepHO.ua hh3khx nojio>KHTCJibHbix TeMnepaTyp, Ha3bi- BaeMblH XOJIOfIHOH aKKJ!HMaTH3aUHeH, BKJIIOHaeT MHOrOHHCJieHHbie KJieTOH- Hbie n MeTa6ojiHMecKne H3MeHeHHa, ho cHHTaeica, hto nna3MeHHafl MeMÖpaHa - 3to nepßoe MecTO noßpe>KfleHHH. MHoroHHCJieHHbie MexaHH3Mbi oKa3bißa iotch BOBjieneHHbiMH b npouecc cTaÖHHH3auHH MeMÖpaH, h oöiuee cjie,acTßne Bo3fleficTßHsi HH3KHX TeMnepaTyp - 3to noßbimeHHe ypoßHa jinnnaHOH HeHa- CbimeHHOCTH fIJIH KOMneHCaUHH yMeHbUieHHH JIHnHfIHOH TeKyMeCTH MeMÖpaH, Bbi3BaHHofi enaflOM TeMnepaTypbi. Показано, что Linoleic (18:2) и его оксиды (18:3) являются наиболее ко леблющимися FAs под воздействием низких температур для нескольких видов растений. Для понимания механизма увеличения FA ненасыщенно сти был проведен анализ зависимости между сопротивляемостью промер занию (FSR), мембранными липидами и выражением генов, вовлеченных в процесс ненасыщения от 18:2 до 18:3, ген ю-З жирный оксид десатуразы (со -3 fad), в тканях берёзы, промерзающего вида. Были проведены две сери анализов: подрост берёзы, взятый из трех мест на севере Финляндии подвергался воздействию низких температур (LT) или «короткого дня» (SD) в теплице; покрытые корой экземпляры взрос лой берёзы были взяты с тех же участков в течение года. /(aHHbm nocTep flCMOHCTpupyei pe3yjibTaTbi, OTHOcamweca k HeicoTopbiM (Jjh -3HOJIOrHHeCKHM H3MeHeHHHM, H3MepeHHbIM Ha BblllieOnHCaHHOM MaTepHaJie. TeMnepaTypHbifi cnaA npHßeji k Bo3pacTaHHio FSR b jiHCTbax h CTeöJiax 3-x MecaHHoro noapocTa b TeneHHe nepßbix flßyx Heaejib 3KcnepnMeHTa, a cno coÖHOCTb k (j)OTOCHHTe3y pe3KO ynajia b TeneHHe Tpex flHen c hh3khmh TeM nepaTypaMH. OxneJibHoe BO3AeHCTBHe KopoTKoro /jhh (8 hjih 12 nacoß hohh cpaßHHTejibHO c 4 nacaMH b HopManbHbix ycjiOßHHx pocTa) TaK>Ke npHße.no k noßbiineHHK) FSR b JiHCTbax n ereöjiflx b TeneHHe nepßbix flßyx 3kc nepHMeHTa. H3MeHeHHH cnocoÖHocTH k cJ)OTOCHHTe3y He Haöjnoflanocb. B Ka- HecTße k hh3khx TeMnepaTyp, o;ina ne;iejia Bo3flen- CTBHH KopoTKoro fIHH nO3BOJiaeT fIOCTHHb ÖOJIbIUeH COnpOTHBJiaeMOCTH npo- Mep3aHHK) b JiHCTbax nocjie aßyx Heflenb npn +s° C no cpaßHeHHio co cxoa- HbIMH yCJIOBHSMH H 4-X HaCOBOH HOHbK). OpeflßapHTeJlbHaH nO/irOTOBKa B yc- JIOBHHX KopoTKoro flHfl TaK'/KC HMeeT iaUIHTHbIH 3(j)(j)eKT Ha ijiyilKUHH (j)OTO CHHTe3a, nocKOJibKy cnocoÖHOCTb k (|>o iocHHTe3y ociaeTca öonee craÖHJibHOH 261 nocjie BO3,zieHCTBHfI HH3KHX TeMnepaTyp, h yMeHbinaeTCfl mnbKO b TeneHHe 10 flHeii c HH3KHMH TeMnepaTypaMH. Ce3oHHbrä aHanH3 Kopti noKa3aji, hto /je-aKKjiHMaTH3aunH b ceßep hoh (pHHJiaHfIHH HaHHHaeTCH b anpejie, a ocHOBHoe noHH>KeHHe FSR nponc xoaht b Mae. XojioflHaa aKKJiHMairoauHH HanHHaeTca b cepeAHHe aßrycxa, c ochobhbim yBejiHHeHHeM FSR b ceHTaöpe. Coflep>KaHHe Bjiarn bo (J)jro3Me h (J)ejiJioreHe, coflep>KaHHe xjiopo(J)njijia h (J)OTOCHHTeTHHecKaa cnocoÖHocTb 4)ejiJioreHa H3MeHaeTca OAHOBpeivieHHO c FSR: coaep>KaHHe BJiara h xnopo (j)njijia öbiJiH Han6ojibiiiHMH, FSR 6biJia HaMMeHbmefl, a cjjOTOCHHTeTH necKaa cnocoÖHocTb cooTBeTCTBOBajia FSR, yMeHbiuaHCb b ceHTaöpe h cHOBa yßejiHMHßaacb c anpejia /jo Maa b 3aBHCHMocra ot uinpoTHoro npo- HCXO>KfIeHHfI paCTeHHH. riocjie oflHOJieTHero aHajiH3a OKa3ajTocb, hto H3MeHeHHe (})OTOCHHTeTHHecKOH CnOCOÖHOCTH CTeÖJieH MO)KeT CJiy>KHTb HHfIHKaTOpOM npoueccoß xojioähoh aKKJIHMaTH3aUHH H Ae-aKKJIHMaTH3aHHH. 06pa3Ubi BbimeonHcaHHoro MaTepHana TaioKe ömjih npoaHajiH3HpoßaHbi Ha jiHnHAHbiH cocTaß FA h co -3 fad reH. AAanTauHH jiHnH/mofi HeHacbimeHHOcra MeMÖpaHbi HBJiaeTCfl Ba>KHbiM Mexa- HH3MOM conpoTHBjraeMOCTH npoMep33HHK). HaiiiH pe3yjibTaTbi no jiHnHflHOMy cocTaßy h reHaM b noapocTe h TKaHax Kopbi 6epe3bi npeACTaBJiaiOT coöoh Ba>KHbie flaHHbie /yia noHHMaHHH 3thx npoueccoß Ha MOJieKynapHOM ypoßHe. Последние оставшиеся на европейском Севере ненарушенные леса Йорма Маттсон FlocjiejiHHe ocTaßLUHeca b EBpone KopeHHbie Jieca BCTpenaiOTca b CTpaHax CKaHfIHHaBHH, ho b ochobhom pacnpocTpaHeHbi Ha Ceßepe Poccmh. FlocTep- Haa KapTa noKpbißaeT perHOH ot 3anaflHofi LIIBeuHH flo ApxaHrejibCKa b Poc chh. IO>KHbiH yroji KapTbi jie>KHT Ha jihhhh niHpoTbi, npoxoflameii wepe3 3pe6py (IIlBeuHfl) - XejibCHHKH - CaHKT-fleTepöypr (Pocchh). Pe3yjibTaTbi, npe,acTaß.neHHbie Ha KapTe fIeMOHCTpHpyioT 3HaMHTejibHbie Kyjib- TypHbie h HauHOHajibHbie pa3JiHHHH CTpaHaMH. CaMbie oöuinpHbie MaccHßbi KopeHHOH TaHrH pacnojio>KeHbi b h HenpoxoflHMbix m >Ke Ha Be3flexoae TeppHTopHHX. KpynHeHuiHe ynacTKH cTapbix jiecoß pacno- B CKaH/IHHaBCKOM 3ejieHoM noflce B liIBeUHH H B (j)eHHOCKaHflHHaB ckom 3eneHOM noace (])hhcko-pocchhckoh rpaHHHbi. 3th 3ejieHbie noa- Ca SIBJTSHOTCSI B3>KHbIMH 3KOJIOrH4eCKHMH KOpHAOpaMH. CerOAHfl HaCTOHHtafl Taiira cymecTßyeT TOJTbKO b Pocchh: Ojia Hra, Tae>KHbiH perHOH BneHaHcajio, KocTaMyKiua, loro-BOCTOHHaa nacTb KojibCKoro n-OBa, OHera y Benoro Mopsi, 03epo 80/yia h MHorne flpyrne nacra ApxaHrejibCKOH oönacTH. FIo KpynHefi uine Tae)KHbie pernoHbi Hauiero KOHTHHeHTa Haxo/iHTCfI Me>K/iy pexaMH Ce- BepHaa fI,BHHa h YpaubCKHMH ropaMH, 3a jiaHHOH KapTbi. KapTH pOBaHHe CJIO>KHbIX H OÖUIHpHbIX npHpOflHblX OÖteKTOB, TaKHX KaK KopeHHbie 262 jieca, CTajiKHBaeTCH co mho>kcctbom hhcto TexHimecKiix npoÖJieM. KapTorpa (J)HHeCKHe HCTOMHHKH HHcJ)OpMaU,HH, B OCHOBHOM, OHeHb pa3HHHaK)TCa. Tep- MHHOJIOrHfI TaK>Ke MeHHeTCH. CnyTHHKOBbie CHHMKH OÖbIHHO OXBaTbIBaiOT juiHTejibHbie nepHOAbi BpeMeHH h noicpbißaiOT oGumpHbie KOHTHHeHTajibHbie TeppHTOpHH. lIO3TOMy OHH HMeK)T HenOCpefICTBCHHOe 3HaMeHHe JIHIHb AJia HeKOTopwx He3HaHHTejibHbix TeppnTopHH. CnjiouiHbie pyÖKH jiecoß pacnpo- CTpaHflioTCfl CTpeMHTejibHO. Hau,HOHajibHbie 6a3bi rMC-gaHHbix He b 6lOfl>KeT KOHTHHeHTajIbHOrO KapTOrpacj)HpOßaHHfl, H T.fl. Отступание границы леса на крайнем севере Европы. Норма Маттсон CaMbie ceßepHbie eßponeficKHe jieca b eHHOCKaHAHH aßjiaioTca TaioKe ca- MbIMH CeBepHbIMH B MHpe JieCaMH, HaXO/jaiHHMHCa B npOMbILLIJieHHOM HC nOJIb3OBaHHH C npHMeHeHHeM BbICOKOMeXaHH3HpOBaHHbIX JieCo3aroToßoK. 3th neca TaioKe yHHKajibHbi c ÖHoreorpacJ)HHecKOH tohkh 3peHHH. Iloac rop hoh 6epe3bi (Betula pubescens subsp. czerepanovii) paciio.iaracrcH B.io.ib njiaTO OenHocKaH/iHH. Jieca H 3 hhctoh cocHbi (Pinus sylvestris) cymecxßyioi b paöoHe liHapn, ceßepHaa OnnnaH/iHa. HacToamne Tae>KHbie Jieca pacnojio )KeHbi k K>ry ot 3tmx 30h. CaMbie ceßepHbie Jieca OeHHOCKaHfIHH nc nojib3oßajiHCb HenoßeKOM. FlpocToe ncnojib3oßaHHe jyia .noMaiuHHx Hy>Kfl Bbi 3Bano OTCTynjieHne apKTHnecKon rpaHHUbi Jieca k lory c Hanajia 19-ro BeKa. B KOHiie kohhob, cnjioiuHbie pyÖKH pacnpocTpaHMJiHCb no Bceö TeppnTopnn CKaHfIHHaBCKMx CTpaH. CaMbiti öojibUJOH npoMe>KyTOK (80 km) o6pa3oßajica k rory ot HopßeaccKoro ropoja TpoMce. TaKHM oöpasoM, coßpeMeHHaa rpaHHua jieca pyKaMH nejiOßeKa. M3yHaeMaa TeppnTopna npoTaHyjiacb ot Ma jiaHreH(})bopfla (Hopßerna) Ha 3anaae ao peKH BopoHba (Poccna) Ha BOCTOKe. MH(J)opMaHHOHHaa ocHOBa - onncaHna 59 jiecHbix ywacTKOB, ynoMHHaeMbix b jiMTepaType, ho 6e3JiecHbix ceroziHa; oT/jejibHbie /jepeßba hjih hx rpynnbi He yMHTbißaioTCfl. Hcnojib3oßajiocb 18 nenaTHbix hctohhmkob. Eojibiuaa nacTb jiecoß no öeperaM (})bopaoß öbiJia BbipyÖJieHa 4>hhckhmh HMMHrpaHTaMH b ce- BepHyio Hopßenno (t.h. «KeenaMu»). CyöapKTHnecKne Jieca ropHon 6epe3bi TaioKe öbijin h ocTanyrca noa yrpo3on: ojieHn h oßnbi 6epe3oßbie po ctkh; HHB33HH TpaBOHfIHOH ryceHHHbi pa3pymaiOT Jiec Ha orpoMHbix TeppnTO pnax (nocjieAHHn cjiynan hmcji mccto b 1965-1966 r.r.); jiecHbie no>Kapbi n HeKOHTpojinpyeMbin 3KOnorn4ecKnn Typn3M MoryT ncnopTMTb oöinnpHbie TeppMTopnn; b cyxne jieTHne ce3oHbi hhcto jinmanHHKOßbie nycTomn MoryT nerKO 3aropeTbCH, ocoöeHHo Ha Pocchhckoh TeppnTopHH. KopeHHbie Jieca cennac Haxo,naTca nepe/i BbiöopoM: cnaceHne hjih pa3pymeHne. Jlnuib Manaa nacTb 3thx TeppHTopnii Haxo/inTca noa 3amnToH b HaHHOHajibHbix napKax n flpyrnx oxpaHaeMbix TeppnTopnax. BojibuiHHCTßO CTapbix Tae>KHbix Jiecoß nc 4e3HeT. Ha hx MecTe BO3HHKHyT cyKHeccnoHHbie MOJiOAbie Jieca, bo3mo>kho COCTOHHine H3 3K3OTHMeCKHX H KHOHHpOBaHHbIX BHfIOB. ByfleT Bce öojibuie h öojibuie kbkhhx, uinpoKo pacnpocTpaHeHHbix bhaob. HacToamaa «TeMHaa Tanra» coxpaHHTca TOJibKo Ha oxpaHaeMbix 33kohom i eppH iopnax. 263 Использование самых северных редколесий на Европейском Севере саамами в Утсйоки, Финляндия. Йорма Маттсон KaKOßbi iiiaHCbi jtoach b cjiywae cepbräHoro 3HepreTnnecKoro KpH3Hca b cy poßbix ycjioßHHx KpaHHero Ceßepa? npHMepa BO3bMeM panoH Ytchokh m ero HacejieHne Ha caMOM ceßepe Ohhjisih/ihh. EojibiHHHCTBo MecTHoro Hace jieHHa - caaMbi. CeroAHa ohh >KHByT b coßpeMeHHbix AOMax co BceMH yAoö- CTBaMH. B 1980 rofly b Ytchokh öbino Bcero 1487 >khtcjich h 507 AOMOBJia aeHHH. OflHO H 3 Tpex fIOMOBJiajieHHH HcnojTb3oßajio (Hcnonb3yeT) apoßa KaK HCTOHHHK 3HeprHH B OCHOBHOM AJlfl OÖOrpeßa B 3HMHee BpeMH. OflHO H 3 Tpex Hcnojib3yeT Apoßa KaK pe3epßHbiH hctohhhk 3Hepran, h ocTaßmneca hmciot TOjrbKO 3JieKTpoo6orpeßaTejiH hjth viacmibie CHCTeMbi otoiijichhji. CpeAHaa noTpeÖHocTb b apoßax Ha mccthmx (jjepMax paHbiue cocTaßjrajia 16.4 m 3 Ha fIOMOBJia/jeHHe b toa. CoßpeMeHHbie AOMOBjraAeHHa noTpe6jraioT 9.5 m 3 apob b toa. B pafloHe Ytchokh 1430 km 2 njioTHbix Jiecoß ropHOH 6epe3bi h TOJibKO 78 km 2 cocHOßbix Jiecoß. 06iu,He 3anacbi 6epe3oßbix apob öbijih noACHHTaHbi 3 3 MeTOfIOM HHTepnOJTHUHH H COCTaBHJIH 43000 M B TOA (hjih 0.3 M C reKTapa B toa). OfIHH reKTap (ra) cooTBeTCTByeT njiomaAH 100 m x 100 m hjih 2 771 aK poB. B öojibiiiHHCTße nocejiKOß b panoHe Ytchokh (HyopraM, Hyßßyc h uemp - Ytchokh) HeAOCTaTOHHO apob AJia OTonjieHHa. Ohh AOJi>KHbi 3aBO3HTb Apoßa H 3 öojiee io>KHbix fIOJiHH. rocyAapcTßeHHoe npeAnpnaTHe JlecHoe YnpaßJie- HHe Ohhuhhahh 6epe3oßbie Apoßa no hh3khm ueHaM. TaKaa »e chc- TeMa npHMeHaeTCfl h b Hopßernn. ITpn cepbe3HOM 3HepreraHecKOM KpH3Hce, ocoöeHHO ecjiH ecTb npo6jieMbi c TpaHcnoprapoßKOH, MecTHbie peAKOJiecba ropHOH 6epe3bi noAßeprHyTca iHHpoKOMacmTaÖHOH yrpo3e. CoßpeMeHHbie HaCejieHHbie TeppHTOpHH C ÖOJIbLUHMH AOMaMH BCKOpe HCTOmaT MecTHbie yHHKajibHbie 6epe3oßbie Jieca. Hoßaa nceBAO-TyHApa mo>kct BO3HHKHyTb, KaK nocne HHBa3MH ryceHHUbi, ho Tenepb h b AOJiHHax. Восстановление лесов горной березы, разоренных Epirrata Autumnata в северной Лапландии Пекка Сулкава, Юха Сихво, Юрьё Норокорпи и Матти Мела lOpiicisr 6epe3a (Betula pubescens subsp. Czerepanovii) pacTeT y3KHM bmcot- HbiM noacoM HaA rpaHHuefi xbohhhx jrecoß h oöpa3yeT oöuinpHbie jreca h KycTapHHKOßwe MaccHßbi b cyöapKTHHecKOM pernoHe ceßepHoir OeHHocKaH- Ahh. B cepeAHHe 1960-x ryceHHijM mojth (Epirrata autumnata) HaHecjiH or poMHbiH ymepö, ocoöeHHo b 6epe3oßbix Jiecax Ytchokh, ocTaßJiaa Aepeßba 6e3 jiHCTbeB b TeneHHe paAa jieT. Bbi3AopoßJieHHe sthx ÖHOTonoB bo mhothx MecTax npoHcxoAHJio MeAJieHHO bcjicactbhc paAa npHHHH, cpeAH hhx - hh- TeHCHBHoe ojieHeBOACTBO. CeroAHa okojio nojioßHHbi (2 354 km ) Been nopa >KeHHOH TeppHTOpHH (5000 km 2) KJiaccH(j)Hu,HpyeTca KaK Bo3BbiuieHHaa nyc- TOLUb HJIH ÖHOTOn KCepOtftHJlbHblX KyCTapHHKOB (CKfjÖ) CO CTOaiUHMH HJIH noßajieHHbiMH thhjimmh 6epe3aMH. OÖJieceHHe 3thx btophmhmx nycTomeft h 264 BOCCTaHOBHTejibHbie MeponpuHTHH b pacTymHx 6epe3oßbix jiecbax b Ytchokh paccMaipHßaeTca h njiaHHpyexca JlecHbiM YnpaßjieHHeM coBMecTHO c npe/icTaßHTeji>iMH MyHHumiajiMTeTa Ytchokm h accoHHaijHHMH. KjiiOHeßbie cjjOßa: ropHaa 6epe3a, TpaßoaflHbiH, Epirrata autumnata, yiyepö, o6jieceHHe, ojieHeBO^CTBO Наблюдается ли потепление климата вдоль границы сосновых ле сов? Маури Тимонен HcKjiKDHHTejibHoe KJiHMaTHHecKoe noTenjieHHe HaÖJHoaajiocb b 30He rpaHHUbi jieca b cepeflHHe 1990-x r.r.: TeMnepaiypa aeicaöpa-MapTa Bo3pocjia Ha 1-2° C, a cpeAHeroaoßaa - Ha O.5°C no cpaßHeHHio co cpefIHHMH 3HaHeHHHMH 3a CTOneTHe. Tenjibrä nepnoa nocjiy>KHJi /jjih Hanana OTCKyccHH o CTaTyce iciMMaTa Ohhjimh;ihm h 3anycKa KJiHMaTHnecKoro cyö-npoeKTa b paMKax HCCJie/jOßaTeiibCKoro npoeKTa «rpa- HHua xieca», ocymecTßJiaeMoro HaynHo-HCCJie/iOBaTejibCKHM HHCTHTyroM jie- Ca OHHJISIHAHH. Pe3yjibTaTbi HCCJie/iOBaHHH noKa3aj™, mto Hanajio 1990-x r.r. 6biJio hckjhohh- TejibHO TenjibiM nepnoflOM, ho Bee >Ke b npe.qe.nax HopMajibHbix KjiHMaTHMe ckhx BapHauHH. MfOHbCKne - HiojibCKHe TeMnepaTypbi flßyx npoineAUJHx qe caTHJieTHH öbiJiH HH>Ke cpe/jHHx /yia 1900-x r.r. C 1970-x r.r. Hoaöpb 6biJi cpeqHero, a qeKaöpb h «HBapb b 1980-x r.r. ömjih caMbiMH xo- JlOflHblMH 3a BCe CTOJieTHe. B nponecce aHajima npHHHH 6bi.no oÖHapy>KeHo aBJieHHe, H33BaHHoe Ceßepo- ATjiaHTHnecKHMH KojieöaHHHMH (HAO). 3to rjiaßHbiH raoöajibHbrä (JjaKTop, KOHTpojTHpyromHH KjiHMaT Ha rpaHHiie Jieca. noTenjieHHe, Bbi3BaHHoe napHH KOBbiM 3(J)(j)eKTOM He MO»:eT öbiTb npH3HaHO (no KpaHHen Mepe, noKa) cjjaKTO poM, npHßefliiiHM k noßbiuieHHK) TeMnepaTypbi h ycnjieHHOMy pociy qepeßb eß. Динамика регенерации доисторической растительности после нару шений в зоне границы леса. Анне Толванен, Oymn Маннинен и Анне Тёрн Cm. Te3HCbi fIOKJiaAOB 265 Реакция саженцев сосны и березы на солнечную УФ-радиацию в Субарктике M. Турунен, М-Л. Сутгшен, К. Дером , Ю. Норокорпи, К. Лаккала PeaKUHH Betulapubescens Ehr., B. pendula Roth, h Pinus sylvestris L. Ha zißyx Ha cojiHeHHyio yjibTpatj)HOJieTOßyio paanauHio (UV < 400 nm) H3yHajiacb b nojießbix 3KcnepHMeHTax c HCKjnoneHHeM b Te- HeHHe BereiauHOHHbix nepnoflOß 1997-1999 r.r. b Ohhckoh (68° N). Ca>KeHUbi BbipamHßanHCb H 3 CCMHH C HCKJnoneHHeM UV-B (HHCTMH nOJIH3CTep-(J)HJIbTp) H UV-B/UV-A (HHCTbIH aKpHJIOBbIH (J)HJIbTp) H cpaBHH- BaJIHCb C KOHTpOJIbHbIMH OÖpa3UaMH (nOJIH3THJieHOBbIH (})HJIbTp) H paCTCHHfI mh b ecrecTBeHHOH cpc;ie (6e3 njiacTHKOßoro (|)Hj7bxpa). CpeflHHH /uießHon MaKCHMyM coJiHeHHoro ÖHOJiorHHecKH 3(j)cJ)eKTHBHoro UV-B oÖJiyneHHa (UV- Bbe) cocTaBHJi 88 mßt m" 2 , 68 mßt mh2 91 mßt m" 2 3a 1997, 1998 h 1999 ro abi. Pää noKa3aTejien pocTa h ÖHOMaccw, 4>OTOCHHTe3a PSII (Photosystem II) h oömaa KOHueHTpauHH a3OTa perHCTpnpoßanHCb b TeneHHe h/hjih b KOHue 3KcnepHMeHTa. OöjiyqeHHe (191 d) cojihchhoh YO-paanauHen b TeneHHe Tpex BereTaunoH- Hbix nepnoflOß He AaJio CTaTHCTHiecKH 3HanHMoro 3<})(jDeKTa b pocTe hjih 6ho- Macce caaceHueß. E/iHHCTBeHHoe 3HanHMoe BjimiHHe HCKjnoneHHK YKeHO b P. sylvestris Ha b Shohtckhc. B Tenonne nepßoro BereTauHOHHoro HCKjnoneHHe UV-B/UV-A 3HaHHTejibHO ycKopHJio pocT P. sylvestris (Ha 18-20 %), h b Tex »e caxeHuax HCKjnoneHHe UV-B npHßejio k 3HaHHTejibHOMy yßejiHneHHK) cyxoro Beea ofIHOJieTHHX htojiok (Ha 45-57 %) noejie BToporo BereTauHOHHoro nepno/ia. 3th BO3fIeHCTBHa Y(t> He npocMaTpHßajiHCb b kohhc 3KcnepHMeHTa hjih B apyrHX Hn3Kaa KOH- HeHTpauna a3OTa b jihctbc öbina CBH3aHa e yBejiHHeHHeM cyxoro Beca, a He c cojiHeiHOH (EbimeynoMflHyrae KonrpojibHbie oopa3Hbi). /(aH- Hoe HccJieaoßaHHe noKa3ajio, hto cojineniiaH yjibTpacjjHOneTOßaa pa;iHanna HMeeT orpaHHneHHoe, a HecTOHKoe BJiHHHHe Ha pocT jjepeßbeß b cy6- apKTHKe. TeM He MeHee, neooxo;iHMbi aonroßpeMeHHbie nojießbie nccjieaoßa- HHH flJia BblflßJieHHH COBOKynHbIX XapaKTepHCTHK BJIHSHHa y. 266 Приложение В Северная линия лесов: положение линии лесов и его значение для жизни людей. Отчет рабочей группы, организованной Научно-Управленческим Офисом программы «Человек и Арктические Системы» (HARC SMO) 26-30 ноября, 2001 « Hmo 6ydem onpedemmb nojiootcenue apKmunecKou jiuhuu necoe e 2100 zody, u nmo öydem 03Hcmamb djix Jiwdeu ee nojiootcenue? » Генри Хантингтон (Хантингтон Консалтинг, США), Гленн Джуди (Университет Аляски, Фэрбанкс, США), Франс Велголаски (Универси тет Осло, Норвегия), Сакари Канкаанпяа (Научно-исследовательский Институт Леса Финляндии). Обоснование MccjieflOßaHHH no nporpaMMe HaunoHajibHoro HaynHoro (NSF) «Lte jiOßeK n ApKTHHecKHe CncTeMbi» (HARC) HaHanHCb b 1997 C Tex nop b paMKax HecKOJibKHx npoeKTOB 6biJin H3yneHbi pa3JiHHHbie acneKTbi Bo3aencT bhh nejioßeKa Ha ApKTHHecKHe CHCTeMbi n hx bjimhhhh Ha Hero. CTpeMacb pacujHpHTb HHTepec k nporpaMMe, NSF cnoHcwpoßan co3flaHHe HaynHO- YnpaßJieHHecKoro OcJ)Hca (SMO) nporpaMMbi «MejioßeK n ApKTHHecKHe Chc- TeMbi» fljia pac n p o erp ahc h h h HH(|)opMauHH o nporpaMMe b HayHHbix Kpyrax. Paöonaa rpynna no ApKranecKofi jihhhh Jiecoß - BTopaa b cepHH paöonnx rpynn, npH3BaHHbix aKTHBH3HpoBaTb oöcyacjieHHe npoÖJieM, Kacaiomnxca «HeuoßeKa h ApKTHnecKHX CncTeM», n yneHbix Ha BbiflßH>KeHHe npeflJio>KeHHH no npoeKTy. Введен иe riojioxeHne jihhhh Jiecoß b ApKTMKe onpeaenaeTCH paflOM (JiaKTopoß, TaKnx KaK KjiHMaT, h 3TH (|)aKTopbi lor b pai.iHMHbix MacniTaöax, OT IVlO oajibiioro ;io jioKanbHoro. Bjihahhc HejiOßeica TaKnx p,esi- TenbHOCTH, KaK CTpoHTejibCTBO, 3CMJie/iejine, peKpeauHM, no>Kapbi, pa3pa6oTKa none3Hbix HCKonaeMbix h Bbinac ckotb movkci 3Ha i iHTe.nbHo npeoöpa3oßaTb jian/niia(|)T. B3anMo;ieHCTBHe Bcex 3thx ijmKTopoß aojdkho TaioKe npnHHMaTb 267 ca bo BHHMaHHe. rioHHMaHHe nojio>KeHHH jihhhh necoß h nporHo3 ee 6yay mHx nepeMemeHHH, TaKHM oöpa3oM, BKjnonaeT cjioähhh Ha6op nepeMeHHbix, MHOrwe H 3 KOTOpbIX TeCHO CBH3aHbI C HejlOßeneCKOH fIeKTeJIbHOCTbK) B ApKTH- Ke. ,H,Jia H3yneHHsi srax hjch HARC SMO opraHH3oßan paooL iyio rpynny, HTOÖbi cnocoöcTßOßaTb fIHCKyccHH cpe/iH HCCJie/iOßaxejieii h acHTejieii ApKTH kh c npHßueneHHeM pa3Hooöpa3Hbix 3Kcneprabix ouchok h onbiTa. TeKCT 06- cy>K;iciinH pa3MemeH Ha caiiTC http://arcus.zeroforum.com. Ciihcok ynacTHH kob h 6onee noapoÖHyK) HH(J>opMauHK) o paöoneH rpynne Bw Ha caiire http://www.arcus. rgharc/treeline.html. /lamibiH OTHeT ocBeTHTb nccjle; [o is are;i bc kh e H/ien h bo3mo>khocth, BO3HHKiiiHe b pe3ynbTaTe /ics-itcjibhocth paooneH rpynnw. 3th hjch HCJibia Ha3BaTb HH HCHepnbIBaiOIHHMH, HH 3KCKJHO3HBHbIMH. Mbl HaaeeMCH, HTO HH- TaTejiH h yLiäciHHKH öyayr Hcnojib3oßaTb stot othct KaK CTapTOßyio TOHKy ana BbipaöoTKH [ipe;ijTO>KenHH no nporpaMMe «HejiOßeK h ApKTHHecKHe Chc- TeMbi» (HARC). HeKOTopbie H 3 onncaHHbix /jocTOHHbi BHHMaHHa, ho He BnojiHe noAxoAHT k o6jiac™ HCCJiefIOBaHHH «HejiOßeK h ApKTHHecKHe Chc- TeMbi» (HARC). >KejiaK)mHe BHecra cboh npe,o,jio>KeHHa b nporpaMMy MoryT noceTHTb Beö-caiiT (http://www.arcus.org/harc). paöoMHe rpynnbi öy/tyr cjiy>KHTb toh >Ke itejra, HayHHO-Ynpaß-rieHHecKHH o(J)hc (SMO) npHBeTCTByeT Haen fljia AonojiHHTenbHbix paöoHHX rpynn h apyrax nyTen paCIHHpeHHH COBMeCTHbIX fIHCKyCCHH O HeJlOßeKe B ApKTHHeCKHX CHCTeMaX. Географическое положение лини лесов OiipeACJieiiHe jihhh Jiecoß - He npocTaa 'sahana. h Te »e Bn;ibi jjepeßbeß MoryT nocTeneHHO HiMCHMibCH ot npaMbix a o crejiiomHXca opM. XBoirabie npome oiipeaeJiaioTca Ha mccthocth npw aHCTaHUHOHHbix MCio;tax MCCJie;io- BaHHÖ, neM jiHCTBeHHbie ;iepcßbH, TaKHe KaK ropHaa 6epe3a, KOTopaa o6pa3yeT jiecHyio jihhhk) Ha öojibiuen nacra ApKTHnecKoro Ceßepa. TaKHM o6pa3oM, jiHHHa Jiecoß - 3to He TOHHaa rpaHHua, hto ycno>KHaeT ee KapTorpa(J)Hpoßa- HHe H MOHHTOpHHT. /Jjia jioKajibHoro MOHHTopHHra 3Ta npoöjieivia He TaK Ba>KHa. OxqejibHbie ae peßbH mo)kho OTMeTHTb h yßHfleTb, a H3MeHeHHH b naHfliHa(})Te co BpeMeHeM kohkpcihbimh HccjieflOßaTenaMH. Ho Jta»ce HaeHiH(|)HKauHOn- Hbie nccjie;ioßare;ibCKHe ynacTKH, TaKHe KaK ejibHHK Boöa Mapmajuia b Bopo- Tax ApKTHnecKoro HaunoHajibHoro napKa Ha AjiacKe, mo>kho c TpyztoM pac no3HaTb HecKOJibKo aecHTKOB jieT cnyera. MoHHTopHHr jihhh Jiecoß b öojie KpynHOM MacujTaöe TpeöyeT jiynmero TexHHnecKoro ocHameHHa j\jia UHOHHbix MccjieaoßaHHH h KapTorpa(J)HpoßaHna, HToöbi TOHHO 3aperHCTpnpo- BaTb ee nojioaceHHe. Mcnojib3oßaHHe THC-TexHOJiorHH nepcneKTHßHo juia co3/iaHHe TOHHOH reorpacj)HHecKOH 6a3bi ziaHHbix, npn ycjioßHH, hto sth aaH- Hbie fIOCTOBepHbI. Bonpoc pa3peiueHHa ra k/Ke Ba>Ken npn oueHKe nojie3HOCTH ;tannbix Mo;iejin poßaHHa h naxieoreorpa(j)H L iecKnx HCCJie;iOBaiiHH. KaK TaKHe ;iaiiiibie MoryT öbiTb Hpeißbi'iaHHO nojie3Hbi ana aHajiH3a uiHpoKOMacuiTaÖHbix npo- 268 ueccoß h ycnoBHH, cneuH(J)HMecKHe MecTHbie ycjiOBHH He MoryT öbiTb OTpa >KeHbl C iIOCiaiOHHOH TOHHOCTbK) fljia AOCTOBCpHOrO npOrHO'iHpOBaHHH co- CTOaHHH JIHHHH JICCOB. C HOMOIHbK) HSyHCHHM OTKJIOHCHHH OT pe3yJlbTaTOß nporHo3a mo>kho H,aeHTH(j)HHHpoBaTb cj)aKTopbi, iieyHieHHbie b nojiHOH Mepe cymecTßyiomHMH peTpocneKTHBHbiMH h npocneKTHbiMH MoaenaMH. AHauo- THHHO, BblfleJieHHe TeppHTOpHH C nOXO>KHM KJIHM3TOM /m» H3yHeHHH HaHÖO jiee HenocpeflCTßeHHbix h apKO Bbipa>KeHHbix BO3fIeHCTBHH mo>kct CTaTb nep- BblM UiarOM B CO3,UaHHH npOeKTOB MOHHTOpHHra JIHHHH JieCOB. Физические воздействия на линию лесов TeMnepaTypa - 3to KJHoneßon 4>aKTop, Bo3fleHCTßyiouj,HH Ha jihhhk) jiecoß, ho TOHHaa pojib jieTHHx h 3HMHHX TeMnepaTyp h hx cooTHOuieHHH HyacaaeTca b flonojiHHTejibHOM H3yneHHH, ocoöeHHO ecnH mm coönpaeMca nporHo3HpoßaTb BJiHHHHe ce3oHHbix H3MeHeHHH TeMnepaTypbi. PerHCTpanna TeKymnx H3MeHe hhh jihhh jiecoß b TeneHHe, HanpHMep, Manoro JleflHHKOßoro nepnoaa hjih noTenjieHHH /ißa/maroro Bexa noMoaceT b onpe;iejienHH KpaTKO- h cpe;ine cpoHHOH pojin TeMnepaTypbi. I lomhmo TeMnepaTypbi ecTb HeKOTopbie apyrne 3HanHMbie (JjaKTopbi fljia jihhh Jiecoß. Bjia>KHOCTb HMeeT pe uiaiome snaienne ÄJia pocTa jiepeßbeß h KoppennpyeT c TCMnepaiypoH. He aOCTaTOK BJiarH npHBOAHT K (j)OpMHpOBaHHK) 00.10'ia, ee H3ÖMTOK K 06pa30- BaHHio nycTbiHH, rae He MoryT pacTH aepeßba. 3(|)(|)eKT BO3pacTaHHH ypoßHa CO2 b aTMOC(j)epe Ha jihhhio Jiecoß Hen3BecTeH. Bo3mo>kho, pa3JiH4Hbie BHflbi AcpeßbCß öyayT no-pa3HOMy pearnpoßarb Ha H3MeHeHHe coaepacaHna aTMO ctj)epHoro CO2. Pojib Mep3JioTbi h ee oöpaTHaa CB»3b c apeßecHbiM noKpoBOM Hsyneiia nuoxo. EjiH3Kaa k noBepxHOCTH McpsjioTa He jaeT onopbi kopiimm, ocoöeHHO fljia c CTep>KHeßbiM KopHeM. Ho apeßecHbin nOKpOB MO>KeT npHBeCTH K OXJia>KAeHHK) nOHBbI H nOßblllieHHlO ypOBHH Mep3- jiOTbi, KOTopaa b KOHeHHOM CHeTe y6beT flepeßba. flajibHenuiee H3yneHHe B3aHMOCBSi3eH MOK,ny TeMnepaTypoH, BJia>KHocTbio, Mep3JiOTOH, cocToaHneM cjioh, pacraTejibHOCTbio h ypoBHeM CO2 ajih noHH- MaHHH peaKUHH jihhhh Jiecoß Ha H3MeHeHHH 3THX nepeMeHHbix. CHer 3amHiyaeT 3hmoh, ho ecun CHeroTaaHne bcchoh to BereTauHOHHbiH nepnofl 6yo,eT cjihihkom kopotok fljia pa3BHTHa aepcfibCß. XapaKTep HaKonjieHHa cHera HMeeT 3H3HeHHe b MejiKOM Macurraöe. BeTep TaK »e noaaßjiaeT /lepeßbJi, ocoöeHHO b ajibnHHCKon 30He, ryie TypöyjieHTHOCTb MO>KeT öbiTb BecbMa 3H3HHTejibHa. IToacapbi, HaßepHoe, OKa3bißaior MaKCH- ManbHoe Bo3aencTßne Ha jihhhk» Jiecoß Ha orpoMHbix TeppHTOpnax. Bepxo- Bbie noacapbi p33pymaioT noHßbi, ocTaßJiaa nycTouiH, BoccTaHOßJieHHe koto pbix npoaojmaeTca BeKaMH. Eojiee CKopoTenHbie HH3oßbie no>Kapbi, KOTopbie JIHUIb BbISKHraiOT HanO'IBCHHy KI paCTHTejIbHOCTb, MoryT npHBCCTH K ÖblCTpO- My pocTy h 3aMem,eHHio pacTHTejibHocTH, hto MO>Ker npenaTCTBOBaTb 3a6o naHHBaHHK), oÖHaacaa ynacTKH BJia>KHOH noHßbi ;ijih bo3;ichctbhh h COHHUa. Pojib BJiHHHHe MOpa Ha JIHHHK) JieCOB He flO KOHUa nOHSTHa. XoJlOfl- Hbin, BJiaacHbiH c OKeaHa, kohch ho, b.thhct Ha TeMnepaTypy h BJiaac- HOCTb b cocejiiHx MaTepHKOßbix cHCTeMax, ho jiojiroßpeMemioe BJiHHHHe OKeaHa h xapaKTepa unpKyjiauHH 803/iyxa movkci OKa3bißaTb 3na LiHTejibnoe 269 BO3fIeHCTBHe Ha MeCTHbIH H perHOHaJIbHbIH KJIHMaT, Mep3JloTy, 3aÖOJiaHHBa- Hne h apyrae <})aKTopbi, OTHOCflmneca k jihhhh Jiecoß. Bo3fleficTßHe nejiOßeKa Ha cpe/iy mojkct SbiTb cymecTßeHHbiM. HapyuieHHe noHßeHHoro noKpoßa bjihhct Ha pacTHTejibHOCTb h Mep3JiOTy h, TaKHM OÖpa3OM, Ha BO3MO>KHOCTb 3aCejieHHfl HOBbIX TeppHTopHH flepeßbflMH. Cjieflbi HapymeHHH ocraiOTCH Haaojiro nocne OKOHHaHHa aeaTejibHOCTH nejio- BeKa. OcoöeHHo xoporno ohh 3aMeTHbi c oopra HH3KOJieT?imero caMOJieTa. rioHHMaHHe pojiH TaKHX HapymeHHH fljia jiaH/jmatJjTOß h pacraTejibHbix co- OOmeCTB HBJiaeTCH Ba>KHbIM 3JieMeHTOM MOHHTOpHHra BO3fIeHCTBHH HejlOßeKa Ha OKpy>KaiomyK) cpeay. Экологическое воздействие на линию лесов Bhjoboh cocTaß norpaHHMHoro perHOna, ocoöchho BapnauHH bmaob, koto pbie oöpa3yioT jihhhio Jiecoß, npojiHßaiOT CBeT Ha pa3JiHHHbie SKOJiorHnecKHe npoueccbi, npoHCXOAHujHe b 3tom pernoHe. HeKOTopbie BHflbi OTcyTCTByiOT Ha onpeaejieHHbix TeppHTopnax, HanpHMep, rojiyöaa ejib Ha 3ana;ie Ajihckh h b CKaHfIHHaBHH. IIyTH pacceHßaHHH ceMHH onpe/iejunoT xapaKTep pacnpocTpa- HeHHa aepeßbeß. OneßHflHO, hto pacceHßaHHe MoaceT pacnpocTpaHaTbca ro paijo aajibuie, 4eM npeanonarajiocb paHee, xotsi tohhbic MexaHH3Mbi h xa paKTepHCTHKH TpeöyioT flajibHenmero H3yneHHsi. CnocoÖHOCTb paCTHTeJIbHOCTH, BKJHOHan MXH H JIHIUaHHHKH, npenHTCTBOBaTb 3aCeJieHHK> flepeßbHMH HOBbIX TeppHTopHH HBJIHGTCfI flpyrHM OrpaHHHHTeJieM JJBH/KCHHH JIHHHH JieCOB. Bh/lOBOH COCTaB npHTyHfIpOBOH H fIOHCTOpHHeCKOH paCTHTCJIb- HOCTH MO>KeT 6blTb Ba>KCH B 3TOM OTHOHieHHH. KjIHMaTHHeCKHe H3MeHeHHH MOryT BJIHHTb Ha paenpOCTpaHeHHe MHKOpH3bI H BcnbiuiKH HHCueHHOCTH HaceKOMbix. I hco6xo;ihmo fljia pocTa ;ic peßbeß bo MHorHX peraoHax h bjihhhhio KJiHMaTHHecKHx H3Me- HeHHH, HejroßenecKOH acjnejibHOCTH, a TaK »e jibjichhh. HaceKO- Mbie, TaKHe KaK occhhmm MOJib (Epirrita autumnatä) h ejioßbiH KopoBOH >Ky- HOK, MOryT yHHHTO>KHTb flepeßbH Ha ÖOJIbHIHX TeppHTOpHHX, a KJIHMaT MO>KeT cnocoöcTßOßaTb hx pa3BHTHK) h pacnpocTpaHeHHfo. no>Kapbi TaK >Ke MoryT OKa3bißaTb MHoroo6pa3Hoe bjihmiimc Ha SKOJiorHnecKyio CHTyauHio pernoHa. Heo6xo;inMO CHHTaTb hx KaK SKOJiormecKHM, TaK h cJjaKiopo.M. HapyinaioiHHe (jjaKTopbi, TaKHe KaK noacapbi, oöhhho oÖHapyacHßaioT hcjih- HeHHyK) 3aBHCHMOCTb OT KJIHMai HHCCKHX H3MeHeHHH H XapaKTepa 3eMJienOJlb 30BaHHa, hto ,toji>kho yMMTbißai bCH npH hx noTeHUHajibHoro BJIHSHHSI. PacnpeaeneHHe ähbothbix, CB»3aHHbix c jiecoM h JiHHHen jrecoß, MO>KeT cjiy- MCHTb HHfIHKaTOpOM H3MCHeHHH, OflHaKO flpyTHe {J)aKTOpbI, BJIHfIIOIHHe Ha fIH- HaMHKy nonyjiHHHH, ,zioji>KHbi SbiTb ynTeHbi. )KHBOTHbie, TaKHe KaK apeßecHaa jiaryuiKa, HaHfleHHaa b jjojiHHe peKH KoöyK Ha ceßepo-3anaae Ajihckh, öhct pee pearnpyioT Ha KJiHMaTHnecKHe H3MeHeHHH cpaßHHTejibHO ko pOTKOH npOAOJDKHTejIbHOCTH >KH3HH, HeM fIOJirTOKHByiHHe M MeflJieHHO pa3- MHO>KaiomHecH /lepeßb». XapaKTepHCTHKH jihhhh Jiecoß MoryT BjiHHTb Ha >kh- 270 BOTHbIX, BKJIKHiatf MHipaHTOB, TaKHX KaK KapHÖy H [ITHHbI, BO3MOSKHO C 06- paTHbIM 3(|)(|)€KTOM AJIH HeJlOßeKa, KOTOpbIH Ha HHX OXOTHTCfI. Человеческий фактор OTHomeHHH nejiOßeKa h jihhhh jiecoß pa3BHBaK)TCH b oöohx HanpaßjieHHax. HejiOßeK OKa3bmaeT Henocpe/iCTBeHHoe 803/ieHCTBHe Ha nojioaceHHe jihhhh Jiecoß, no KpaiiHeH Mepe, b mccthom MacuiTaöe, nocpe/icTBOM cTpoHTejibCTßa aaMÖ, Jibi>KHbix Tpacc, KeMnHHroB, BbipyÖKH aepeßbeß Ha apoßa h CTpoHMaTepnajibi, a TaK 5Ke Bbinac ähbothmx, KOTopbie MoryT 3aTop- MO3HTb pOCT I lojlO/KCHHC H [ipO/lOJI/KHTG-IbHOCTb TaKOH fleflTejlbHO cth MeHaeTca co BpeMeHeM, h jimiihm Jiecoß b ceßepHbix perHOHax npo;ißHia erc« Bnepea no Mepe coKpameiiHH stoh fleaTejibHOCTH. Ho Bo3pocniHH HHTe pec k peKpeaqHH b panonax jihhhh Jiecoß MO/Ker ocTaHOBHTb ee npoflßHace- HHe, h HyamaeTCH b /jonojiHHTejibHOM H3yneHHH. B Bpevta HMejiH MecTO HeoflHOKparabie HapymeHHH b6jih3h flopor, hto oöecnenHJio öecnpeue- flocTyn b paöoHbi jihhh Jiecoß. HanpaßjieHH» nejiOßeHecKOH aea- TejIbHOCTH, B H3CTHOCTH HOBbie BHflbl HCnOJIb3OBaHHH paHOHOB JIHHHH JieCOB, rpy/nio npe/ißMAeib. IToflteM b Hcnojib3oßaHHH Bne;iopo>KiiHKOß ;ijih peicpea- Hhh o/i h h H 3 npHMepoß reH/iennHH, KOTopyio c TpyflOM mo>kho 6buio npe/i- CKa3aTb Bcero HecKOJibKO /icchtkob jieT viaiaji. TeM He MeHee, TaKHe bo3mo»c- HOCTH fIOJI>KHbI yHHTbIBaTbCH, eCJTH Mbl XOTHM HOHHTb fIeHGTBHe pa3JIHHHbIX KOMnoHeHTOB, BOBjieneHHbix b flßH>KeHne jihhh jiecoß b HacejieHHbix JiaHfl inatjjxax. 3HaneHHe jihhh Jiecoß fljia nejiOßeKa HeflocTaTOHHO xopouio o6ocHOBaHO. He- KOTOpbie 3THHHeCKHe rpaHHHbl CBOÖOfIHO CJieflyiOT JIHHHH JieCOB, HO B ÖOJIb uiHHCTBe cjiynaeß Hapoflbi nepeceKaioT jihhhio Jiecoß b xo/ie roaoßoro uHKJia >kh3hh Ha 3eMJie. B öojibuiHHCTße perHOHOB HeacHO, ciHTajiacb jih jihhhh jie cob Ba>KHOH rpaHHueii. 3tot Bonpoc H3ynaeTCH cjiaöo, b ochobhom c Hcnojib 30BaHHeM (J)oJlbKJlopa H APyrHX yCTHbIX HCTOpHieCKHX HCTOHHHKOB, KOTOpbie ipaflHHHOHHbie B3rjiaflbi, pacnpocTpaHeHHbie Ha TeppHTopnax, npHMbiKaiouiHx k jihhhh Jiecoß, hjih, no KpaiiHeH Mepe, b TyHflpoßbix h Jiec- Hbix JiaHfliuaijDTax, KOTopbie payiejiHer jihhhh Jiecoß. ripHßJieKaTejibHOCTb jih hhh Jiecoß ajih peKpeaHHH h TypH3Ma cero/ma TaioKe njioxo H3BecTHa h Tpe- ÖyeT H3yHeHHM, eCJIH Mbl XOTHM OIICHHTb BepOHTHbie 803/ieHCTBHa HCJIOBCMC ckoh aeHTejibHOCTH Ha 3KOCHCTeMbi jihhhh Jiecoß b nocjie/iyiomHe roabi h ae- CHTHJieTHH. Выводы Jlhhhm jiecoß npeflCTaßJiaeT BaxHbie HCCJieao Bare ji bc kh e bo3mo>khocth h fljia H3yneHHH nejiOßeKa b Apkthhcckhx SKOCHCTeMax, h /ijih nporpaMM HauHO- HajibHoro HaynHoro H3ynaiomHx acneKTbi KJiHMaTHnecKHx chctcm ApKTHKH. fl,aHHblH OTHeT 0603HaHHJI HeKOTOpbie 833HM0C833H MOKfly nepe- MeHHbIMH, BJIHSHOIHHMH Ha JIHHHIO JieCOB, H KaKHM OÖpa3OM HeJIOBeK MO)KeT öbiTb BOBjieneH b ee .UHHSMMKy. flpe/inojiarajiocb, hto 3tot omeT cTaHeT 271 CTapTOBOH TOHKOH fIJIS 3aHHTepeCOBaHHbIX B HCCJie/lOBaiIHHX pofla yncHbix. hto oh Toptie pacuiHpflT Harne noHHMaHne ceBepHOH jihhhh jiecoß. Благодарности HayHHO-ynpaßJieHnecKHH o(})hc HARC ÖJiaro/japnT OpaHca BejirojiacKH h CaKapH KaHKaannna 3a upcxiccaarejihcißO Ha paöoneH rpynne no ApKrane ckoh jihhhh Jiecoß, h DieHHa 3a paöoTy onnoHeHTOM Ha paöonen rpynne. Mbi TaioKe xothm noÖJiaroaapHTb ocramiiHxcH «3a KaapoM» Pshh Kp3HH h BopHHK H3 ARCUS, 6e3 KOTopbix npoße/ieHHe 3toh paöoneii rpynnw 6biJio 6bi neno3MO>Kno. Mbi 6jiaro,ziapHbi HauHOHanbHOMy HaynHOMy cE>OH,ny 3a (|)HHaHCHpoBaHHe HaynHO-ynpaßJieHHecKoro o(j)nca HARC n ero fleaTenbHOCTb no npoßeaeHHio paooinx rpynn. B saKjuoneHHe mm xoTejiH 6bi CKa3aTb cnacnöo BceM ynacraHKaM 3a to, hto npncoe,HHHHJiHCb k Harnefi .zihc- KyCCHH H npHBHeCJIH CBOH KJXQM. 272 С: List of Participant and Addresses / Список Участников и Адресы Aikio, Maria Sofia Finnish Saami Association, A 777 Suohpajävri, 99800 Ivalo, Finland ms.aikio@pp.inet.fi Allen, Thomas R. Old Dominion University, Dept. of Political Science & Geography BAL 700, ODU, Norfolk, Virginia 23529-0099,U5A tallen@odu.edu Autio, Jyrki University of Oulu, Dept. of Geography P.O. Box 3000, 90014 University of Oulu, Finland jautio@oulu.fi Barber, Valerie University of Alaska Fairbanks Forestry Sciences, Box 757140, Fairbanks, AK 99775-7140, USA barber@ims.uaf.edu Berninger, Frank University of Helsinki, Dept. of Forest Ecology P.O. Box 27, 00014 University of Helsinki, Finland frank, berninger@helsinki.fi Forbes, Bruce Arctic Centre University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland bruce.forbes@urova.fi Gunslay, Nicolas Arctic Centre University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland ngunslay@urova. fi Hallikainen, Ville Finnish Forest Research Institute Rovaniemi Research Station, P.O. Box 16 96301, Rovaniemi, Finland ville. hallikainen@metla.fi Heikkinen, Hannu Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland hannu.heikkinen@metla.fi 273 Helama, Samuli University of Helsinki Department of Geology, Division of Geology and Paleontology, P.O. Box 64, 00014 University of Helsinki, Finland samuli. helama@helsinki.fi Helle, Timo Finnish Forest Research Institute Rovaniemi Research Station, P.O. Box 16, 96301 Rovaniemi, Finland timo.helle@metla.fi Henttonen, Heikki Finnish Forest Research Institute Vantaa Reseach Centre, P.O. Box 18, 01301 Vantaa, Finland heikki.henttonen@metla.fi Holtmeier, Friedrich-Karl Wilhelms-Universität, Institut för Landschaftsökologie Robert-Koch-Str. 26, D-48149 Mtinster, Germany holtmei@uni-muenster.de Hyppönen, Mikko Finnish Forest Research Institute Rovaniemi Research Station, P.O. Box 16, 96301 Rovaniemi, Finland mikko . hypponen@metla. fi Jaakkola, Lotta Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland lotta.j aakkola@metla. fi Juntunen, Vesa Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland vesa.juntunen@metla.fi Järpe, Anna University of Aberdeen University of Aberdeen, Dept. of Sociology and Anthropology Edward Wright Building, A 824 3Q4, Scotland a.j arpe@abdn .ac .uk Kankaanpää, Paula Arctic Centre University of Lapland, Box 122, 96101 Rovaniemi, Finland paula.kankaanpaa@urova.fi 274 Kankaanpää, Sakari Finnish Forest Research Institute Rovaniemi Research Station, P.O. Box 16, 96301 Rovaniemi, Finland sakari.kankaanpaa@metla.fi Karpov, Nikolay Institute for Biological, Problems of Cryolithozone SD RAS, Lenin Aveniu 41, 677891 Yakutsk, Russia n.s.karpov@ibpc.ysn.ru Kauhanen, Heikki Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland heikki.kauhanen@metla.fi Kirchhefer, Andreas University of Tromsö Department of Biology, N-9037 Tromsö, Norway andreas@npolar.no Kitti, Heidi Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland heidi.kitti@metla.fi Kolström, Taneli University of Joensuu Mekrijärvi Research Station, Yliopistontie 4, 82900 Ilomantsi, Finland taneli.kolstrom@joensuu.fi Lewis, John E. McGill University, Department of Geography, 805, rue Sherbrooke Ouest, Montreal (Quebec) НЗА 2K6, Canada lewis@felix-geog.mcgill.ca Macias, Marc Universitat de Barcelona, (University of Helsinki) Facultat Biologia, Dept. of Ecologia Augda Diagonal 645, 08028-Barcelona, Catalunya, Spain macias.marc@hotmail.com Magga Juha Association of World Reindeer Herders, 99400 Enontekiö, Finland juha.magga@pp.inet.fi Manninen, Outi University of Oulu Department of Biology, P.O. Box 3000, 90014 University of Oulu, Finland outi.manninen@pp.inet.fi 275 Martz, Francoise Finnish Forest Research Institute Rovaniemi Reseach Station, P.O. Box 16, 96301 Rovaniemi, Finland francoise.martz@metla.fi Mattsson, Jorma Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland Mikkola, Kari Finnish Forest Research Institute Rovaniemi Research Station, P.O. Box 16, 96301 Rovaniemi, Finland kari.mikkola@metla.fi Miiller-Wille, Ludger McGill University Department of Geography, 805, rue Sherbrooke Ouest, Montreal, (Quebec), НЗА 2K6, Canada ludger.muller-wille@mcgill.ca Mähönen, Outi Ministry of the Environment P.O. Box 8060, 96101 Rovaniemi, Finland outi ,mahonen@ymparisto. fi Neuvonen, Seppo University of Turku Kevo Subarctic Research Institute, 20014 University of Turku, Finland seppo.neuvonen@utu.fi Norokorpi, Yrjö Metsähallitus Natural Heritage Services, Leppätie 3, 96190 Rovaniemi, Finland yrjo.norokorpi@metsa.fi Poikki, Sini Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland sini.polkki@helsinki.fi Raspopov, Oleg SPbF IZMIRAN Munchnoy per. 2, P.O. Box 188, 191023 St.-Petersburg, Russia oleg@or6o74.spb.edu Rouhinen, Sauli Arctic Council, Sustainable Development Working Group Ministry of the Environment, P.O. Box 35, 00023 Government, Finland sauli.rouhinen@ymparisto.fi 276 Sara, Elna Association of World Reindeer Herders, P.O. Box 508, N-9255 Tromsö Norway wrh.es@online.no Senkevich, Ekaterina Association of Indigenous Peoples of the North of the Krasnoyarsk Territory Mira Str. 42, 660049 Krasnoyarsk, Russia server@krasmai 1. ru Sihvo, Juha Metsähallitus, P.O. Box 16, 99801 Ivalo, Finland juha.sihvo@metsa.fi Sippola, Anna-Liisa Arctic Centre, University of Lapland, P.O. Box 122, 96101 Rovaniemi Finland anna-liisa.sippola@urova.fi Skre, Oddvar Norwegian Forest Research Institute, Fanaflaten 4, 5244 Fana, Norway oddvar. skre@skogforsk. no Skulason, Brynjar Icelandic Forest Research, Mögilsä Bugartur, Öseyri 2, 603 Akureyri, Iceland brynj ar@skogur . is Sohlberg, Sune CAFF, Naturvärdsverket, 106 48 Stockholm, Sweden sune.sohlberg@naturvardsverket.se Solhaug, Astrid N-9144 Samuelsberg, Norway a-solhaug@sensewave.com Soppela, Päivi Arctic Centre University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland paivi.soppela@urova.fi Sulkava, Pekka Metsähallitus, Peuratie 15, 99400 Enontekiö, Finland pekka. sulkava@metsa. fi Susiluoto, Paulo Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland paulo . susiluoto@metla. fi 277 Sutinen, Marja-Liisa Finnish Forest Research Institute Kolari Research Station, Muoniontie 21, 95900 Kolari, Finland marja-liisa.sutinen@metla.fi Sutinen, Raimo Geological Survey of Finland, P.O. Box 77, 96101 Rovaniemi, Finland raimo.sutinen@gsf.fi Tikkanen, Eero Finnish Forest Park Service, Natural Heritage Services Northern Finland, Koskikatu 44-46, 96100 Rovaniemi, Finland eero.tikkanen@metsa.fi Timonen, Mauri Finnish Forest Research Institute Rovaniemi Research Station, P.O. Box 16, 96301 Rovaniemi, Finland mauri.timonen@metla.fi Tolvanen, Anne University of Oulu Department of Biology, P.O. Box 3000, 90014 University of Oulu Finland anne.tolvanen@oulu.fi Turi, Johan Mathis Association of World Reindeer Herders P.O. Box 508, N-9255 Tromsö, Norway wrh.jmt@online.no Turunen, Minna Arctic Centre, University of Lapland P.O. Box 122, 96101 Rovaniemi, Finland minna.turunen@urova.fi Wielgolaski, Frans-Emil University of Oslo, Dept. of Biology P.O. Box 1045 Blindern, N-0316 Oslo, Norway f.e.wielgolaski@bio.uio.no Viranto, Hannu Provincial Government of Lapland P.O. Box 8002, 96101 Rovaniemi, Finland hannu.viranto@llh.intermin.fi Virtanen, Tarmo Finnish Forest Research Institute Rovaniemi Research Station, P.O. Box 16, 96301 Rovaniemi Finland tarmo.virtanen@metla.fi 278 Vlassova, Tatiana Institute of Geography, Russian Academy of Science, Russia marianna@orc.ru Voropaev, Alexandre Institute of Geography RAS, Russia beach@igras.geon 279 D: Color Figures / Цветные рисунки Figure 1. Vegetation zones in northern Eurasia. (FAO 2000, 188) Published by the permission of FAO. (document A7B/2002). Рисунок 1. Зона растительности Северной Евразии (FAO 2000, 188) 280 Figure 2 Vegetation zones in northern America. (FAO 2000, 225) Published by the permission of FAO.(document A78/2002). Рисунок 2. Зоны растительности Северной Америки (FAO 2000, 225) 281 Figure 3: Niiles Antti Aikio demonstrating the use of birch twigs in preparing a ptarmigan snare for winter trapping, Ohcejohka, 13 August 2001. (Photo: Ludger Müller-Wille) Рис. 3 Нильс Анти Айкио демонстрирует использование березовых веток для изготовления ловушек для зимней ловли куропаток. Охседжохка, 13 августа 2001г. Фото: Лютгер Мюллер-Вилле Figure 4: Niiles Antti Aikio explaining decision-making for the thinning of birch copses, Ohcejohka, 13 August 2001.(Photo: Ludger Miiller-Wille) Рис. 3 Нильс Анти Айкио объясняет процесс принятия решений при прореживании березовых рощ.Охседжохка, 13 августа 2001г.Фото: Лютгер Мюллер-Вилле 282 Figure 5: Maria Sofia Aikio entering a birch forest lot with freshly harvested trunks for firewood piled in a "soahttu", Ohcejohka, 13 August 2001. (Photo: Ludger Miiller- Wille) Рис. 5 Мария София Айкио входит на участок березового леса со свежесрубленными стволами, предназначенными для распилки на «соахту», Охседжохка, 13 августа 2001г.Фото: Лютгер Мюллер-Вилле Figure 6: Maria Sofia Aikio with a gnarled birch trunk to be used for art and handicraft, Ohcejohka, 14 August 2001. (Photo: Ludger Miiller-Wille) Рис. 6 Мария София Айкио держит в руках сучковатый березовый ствол, предназначенный для изготовления предметов искусства и кустарного промысла. Охседжохка, 14 августа 2001г.Фото: Лютгер Мюллер-Вилле 283 Figure 7. Polycormic mountain birch tree under nutrient-poor conditions. (Photo F.E.Wielgolaski) Figure 8. Progress of spring in Fennoscandia during the period 1 982-1999 based on satellite data. (Karisen et ai, 2002). 284 Figure 9. The proportion of the forests within 1 km x 1 km grid cells in the Usa Basin as calculated from the original 30 m x 30 m data. The grid cells (21 km x 21 km) used in the landscape analysis are presented in grey and the grid cells omitted from the analysis (mountainous areas) are shown in black. The approximated timberline is also shown (orange) as is the location of the transect in Fig. 11 (red rectangle). Рисунок 9. Пропорция лесов в ячейках 1 км х 1 км в бассейне р. Уса, вычисленная по данным 30 м х 30 м. Ячейки (21 км х 21 км), использованные в ландшафтом анализе изображены серым, а ячейки, опушенные при анализе (горные территории)-черным. Приблизительное положение границы леса также показано (оранжевым) как положение трансекта на рис. 11 (красный прямоугольник). 285 Figure 10. The proportion of forest and tundra areas in relation to distance from the timberline (see Fig. 9.). The observations are mean values of the lowland grid cells in Fig 9. Рисунок 10. Пропорция тундровых и лесных участков по отношению к расстоянию от границы леса (см. рис. 9). Измеренные - средние величины низменных ячеек на рис. 9. 286 Willows / meadows Bog Figure 11. Grouped vegetation types coverage of our satellite image classification illustrating the mosaic nature of forest-tundra transition zone. The transect location is indicated in Fig 2. On the left is a transect 25 km wide and 160 km long from the central Usa Basin showing the main vegetation types in the area. On the right are seven more detailed (5 km x skm in size) views of the landscape (pixel size 30 m x 30m). These inside views, whose location is indicated in the figure on the left, are located at 20 km intervals directly to the north, and the SW corner of the southernmost view is at 66°00'N, 59°15''E. Рисунок И. Сгруппированные типы растительного покрова но нашей спутниковой классификации, иллюстрирующие мозаичность лесотундровой переходной зоны. Положение трансекта показано на рис. 2. Слева - трансект 25 км в ширину и 160 км в длину в центральной части бассейна р. Уса, показывающий основные типы растительности региона. Слева - ещё семь детальных снимков ландшафта (размер пикселей 30 м х 30 м). Положение этих снимков обозначено на рисунке слева, они расположены с 20 километровыми интервалами в направлении на север, а юго-западный угол самого южного снимка имеет координаты 66°00' с.ш., 59° 15' в.д. 287 Figure 12. Russian Main Producing Areas and Intensity of Harvesting Рисунок 12. Основные лесопроизводящие регионы России и интенсивность лесозаготовок Figure 13. Intact Forests and Pulp and Paper Mills of Northern European Russia Рисунок 13. Малонарушенные леса и целлюлозно-бумажные комбинаты севера европейской части России 288 Figure 14. White spruce radial growth and summer temperature at Fairbanks, Alaska. Рис. 14. Радиальный рост белой ели и летние температуры в Фэрбанксе, Аляска Figure 15. Historic and reconstructed relationship between white spruce growth and summer temperature and climate scenarios in central Alaska. Рис. 15. Историческая реконструкция зависимости роста белой ели от летних температур и климата в центральной Аляске. 289 Figure 16. Relationship of timing of climate stress to landscape-level tree mortality from outbreaks of spruce bark beetle on the southern Kenai Peninsula. Рис. 16. Зависимость синхронизации климатического стресса и смертности деревьев на ландшафтном уровне от вспышек корового жучка на юге п-ова Кенай ISBN 951-40-1844-3 ISSN 0358-4283