R I I S T A - J A K A L A T A L O U S — T U T K I M U K S I A JULKAISIJA Riista- ja kalatalouden tutkimuslaitos Viikinkaari 4 PL 2 00791 Helsinki Puh. 0205 7511, faksi 0205 751 201 www.rktl.fi Net loading system for fi sh farming Trash fi sh reduction and internal loading 1 / 2 0 0 8 Zeynep Pekcan-Hekim and Jukka Horppila Net loading system for fish farming Trash fish reduction and internal loading Zeynep Pekcan-Hekim and Jukka Horppila T U T K I M U K S I A 1 / 2 0 0 8 RIISTA- JA KALATALOUS Finnish Game and Fisheries Research Institute, Helsinki Publisher: Finnish Game and Fisheries Research Institute Helsinki 2008 Cover photos: Mika Remes Orders: www.rktl.fi/julkaisut www.juvenes.fi/verkkokauppa Pdf publication: http://www.rktl.fi/julkaisut/ ISBN 978-951-776-606-7 (printed) ISBN 978-951-776-607-4 (pdf) ISSN 1796-8860 (printed) ISSN 1796-8879 (pdf) Place of printing: Tampereen Yliopistopaino Oy – Juvenes Print Contents Abstract ...................................................................................................................................5 Tiivistelmä ...............................................................................................................................6 Sammandrag ...........................................................................................................................7 1. Introduction ..................................................................................................................8 2. Internal nutrient loading by fish .................................................................................9 2.1. Nutrient release by fish ................................................................................................... 9 2.2. Factors affecting nutrient release rate by fish ............................................................... 9 2.2.1. Individual body mass ......................................................................................... 9 2.2.2. Nutrient composition of fish and their food ................................................. 10 2.2.3. Temperature ..................................................................................................... 10 2.2.4. Feeding habits of fish ...................................................................................... 10 2.3. Bioturbation by fish ....................................................................................................... 11 3. Methods for estimation of nutrient release rates by fish .......................................11 4. Quantitative estimation of the effects of fish biomass reduction ..........................12 4.1. Estimates on the effects of biomass reduction ............................................................ 12 4.2. Caution needed in interpreting the results .................................................................. 14 5. Possible other effects of fish stock manipulations ..................................................15 References .............................................................................................................................16 Net loading system for fish farming - trash fish reduction and internal loading 5 Abstract Trash fish removal as an environmental measure to establish a new type of environmental net load and permission system for Baltic Sea fish farming was evaluated in a preliminary study in 2007. This report is part of the project and presents the results from a literature survey. The aim of the survey was to determine whether any other positive consequences in addition to the effect of nutrient removal existed e.g., if internal loading or bioturbation by the fish would diminish. Although numeric estimation is very difficult and caution is needed in interpreting the re- sult, a very preliminary quantitative assessment of the effects is given. It was estimated that a reduction of 300 metric tons of fish biomass in the Archipelago Sea (this is not the amount of fish caught) would reduce the internal nitrogen load by an amount that equals 10% of the fish farming load in the area and 9% of the phosphorus load. Keywords: Fish farming, environment, nutrient load, trash fish removal Pekcan-Hekim, Z. & Horppila, J. 2008. Net loading system for fish farming: trash fish reduc- tion and internal loading. Riista- ja kalatalous – Tutkimuksia 1/2008. 19 p. R I I S T A - J A K A L A T A L O U S – T U T K I M U K S I A6 Tiivistelmä Tässä työssä arvioidaan julkaistujen tutkimusten perusteella, missä määrin tehokkaan ka- lastuksen avulla voisi olla mahdollista kompensoida kalankasvatuksen ravinnekuormitusta Saaristomerellä sen lisäksi, että kalastus poistaa ravinteita kalabiomassan mukana. Lähinnä tällä tarkoitetaan tehokkaan kalastuksen vaikutusta kalaston aiheuttamaan sisäiseen ravinne- kuormitukseen. Kalastuksen sisäisessä kuormituksessa aiheuttaman pienentymisen kvantitatiivinen arvi- ointi voidaan tehdä vain hyvin karkealla tasolla, sillä asiaan vaikuttavat monet seikat. Pohjara- vintoa käyttävät kalat aiheuttavat sisäistä ravinnekuormitusta, kun taas planktonia syövät kalat vain kierrättävät vedessä jo olevia ravinteita. Kalankasvatuksen ulkoinen kuormitus Saaristomerellä on n. 25 000 kg fosforia ja n. 200 000 kg typpeä vuodessa. Kalojen fosforin ja typen eritysnopeuksien perusteella voidaan laskea, että jos keskimäärin 50 g:n painoisten kalojen biomassa alueella vähenee 300 000 kg:lla (esim. 3 kg jokaiselta hehtaarilta 1 000 km2 alueella), vuotuinen kalojen aiheuttama sisäinen fosforikuormitus pienentyy n. 2 100 kg:lla. Tämä vastaisi n. 9:ää % kalankasvatuksen aiheut- tamasta ulkoisesta fosforikuormituksesta. Typen osalta vastaava biomassan pienentäminen vä- hentäisi vuotuista kalojen aiheuttamaa sisäistä kuormitusta n. 21 000 kg, mikä vastaisi n. 10 % kalankasvatuksen ulkoisesta kuormituksesta. Laskelmat sisältävät lukuisia olettamuksia ja epävarmuustekijöitä. Arviot perustuvat ka- lojen biomassan pienentymiseen tietyllä alueella, eivät kalansaaliin määrään. Edellä olevan esimerkin mukaiseen biomassan vähentymiseen pääsemiseksi voidaan tarvita moninkertainen saaliin määrä. Itämeren ravintoverkot ja vaikutusketjut ovat erilaisia kuin sisävesillä, joissa suurin osa tässä työssä referoiduista tutkimuksista on tehty. Niiden perusteella ei voi suoraan tehdä Itä- merta koskevia johtopäätöksiä. Asiasanat: hoitokalastus, kalankasvatus, kuormitus, ravinteet, tehokalastus, ympäristö, ympäristöluvat Pekcan-Hekim, Z. & Horppila, J. 2008. Kalankasvatuksen nettokuormitusjärjestelmä: sisäi- nen kuormitus ja vähäarvoisen kalan poisto. Riista- ja kalatalous – Tutkimuksia 1/2008. 19 s. Net loading system for fish farming - trash fish reduction and internal loading 7 Sammandrag På basen av publicerade undersökningar bedöms, i vilken utsträckning det med ett effektivt fiske skulle var möjligt att kompensera fiskodlingens näringsbelastning i Skärgårdshavet, bort- sett från att fisket avlägsnar näringsämnen med fiskbiomassan. Med det avses närmast den inverkan, som ett effektivt fiske har på fiskbeståndets inre belastning. Endast en grov bedömning kan göras av det kvantitativa värdet för den belastningsminsk- ning, som åstadkoms genom fisket, eftersom förhållandet påverkas av ett flertal faktorer. De fiskar, som utnyttjar föda från botten förorsakar en inre belastning, medan planktonätande fis- kar enbart cirkulerar de näringsämnen som redan finns i vattnet. Fiskodlingens yttre belastning i Skärgårdshavet är ca 25 000 kg fosfor och ca 200 000 kg kväve per år. På basen av den hastighet med vilken fiskarna utsöndrar fosfor och kväve kan man beräkna, att om biomassan för fiskar med medelvikten 50 g minskar i området med 300 000 kg (t.ex. 3 kg per hektar på ett 1 000 km2 stort område), minskar den inre fosforbe- lastning, som fiskarna förorsakar, med ca 2 100 kg. Detta skulle motsvara ca 9 % av den yttre belastning, som förorsakas av fiskodlingen. För kvävets del skulle en motsvarande minskning av biomassan reducera den årliga inre belastningen från fisken med ca 21 000 kg, vilket skulle motsvara ca 10 % av fiskodlingarnas yttre belastning. Kalkylerna innehåller ett stort antal antaganden och osäkra faktorer. Beräkningarna grun- dar sig på en minskning av biomassan inom ett visst område och inte på den totala fiskfång- sten. För att uppnå en minskning av biomassan i föregående exempel, kan man behöva en mångdubbling av fångstmängden. Näringsväv och orsakskedjor i Östersjön är andra än i insjöarna, där största delen av de refererade undersökningarna är gjorda. På basen av undersökningarna kan man inte dra slut- satser, som direkt gäller för Östersjön. Nyckelord: fiskodling, miljö, belastnings, näringsämnen, miljötillstånd, intensivfiske, fiskevårdande fiske Pekcan-Hekim, Z. & Horppila, J. 2008. Net loading system for fish farming: trash fish reduction and internal loading. Riista- ja kalatalous – Tutkimuksia 1/2008. 19 s. R I I S T A - J A K A L A T A L O U S – T U T K I M U K S I A8 1. Introduction Fish populations can have a substantial effect on water quality. Firstly, planktivorous fish can consume large amounts of zooplankton, thereby decreasing the consumption of phytoplank- ton and consequently increasing the biomass of phytoplankton (top-down control, Carpenter et al. 1985, Gulati et al. 1990). Thus, reduction of planktivorous fish stocks (biomanipulation) has been used as a restoration tool to improve the quality of water in lakes (Lammens et al. 1990, Meijer et al. 1990, Carpenter and Kitchell 1993, Horppila et al. 1998). Biomanipulation by removal of planktivorous fish aims to enhance water quality by increasing the grazing of phytoplankton by zooplankton, especially by cladocerans (Shapiro et al. 1975, Mehner et al. 2002). Secondly, benthivorous and omnivorous fish can affect nutrient availability for phyto- plankton growth (bottom-up control, McQueen et al. 1986), because these fish translocate nut- rients from the sediment to the water column, thus causing internal nutrient loading. Internal loading is an important mechanism that affects water quality in freshwater lakes and in the Baltic Sea (Søndergaard et al. 1999, Pitkänen et al. 2001). Despite the significant reduction in external loading, internal loading of nutrients from sediment can support the production of phytoplankton. For instance, despite the 30% decrease in external loading in the 1990s, the state of the Gulf of Finland did not improve. The primary reason for this was internal phospho- rus loading, which was triggered by poor oxygen conditions at the sediment-water interface of the eastern Gulf (Pitkänen et al.. 2001). In addition to oxygen conditions, the exchange of nut- rients between water and sediment is influenced by a large number of physical and chemical factors such as temperature, pH and wave disturbance (Mortimer 1941, Hamilton and Mitchell 1988, Zhu et al. 2005) and also by nutrient excretion and bioturbation by animals (Vanni 2002, with references). Several studies have shown that nutrient excretion and bioturbation by ben- thivorous fish can affect water quality without altering the zooplankton community (Drenner et al. 1984, Tatrai and Istvanovics 1986, Threlkeld and Drenner 1987, Horppila and Kairesalo 1990, Tatrai et al. 1990, van Donk et al. 1990, McQueen et al. 1992). Therefore, reduction of benthivorous fish may be used as a tool for water quality improvement. Opinions on the importance of fish-mediated internal nutrient loading are variable. Inter- nal nutrient loading caused by fish has been compared with zooplankton excretion, external nutrient loading, total internal loading and also nutrient demand by phytoplankton (Brabrand et al. 1990, Persson 1997, Horppila 1998, Mehner et al. 1998). In this report, based on the exis- ting literature, the main aim was to estimate, to what extent external nutrient loading by fish farming in the Archipelago Sea, Southwest Finland, could be compensated by mass removal of fish through reduction of fish-mediated internal loading. The present annual phosphorus load- ing from fish farms to the Archipelago Sea area is c. 25 000 kg and the annual nitrogen load- ing c. 200 000 kg (2002) (http://www.ymparisto.fi/default.asp?contentid= %2083544&lan=fi, 31.10.2007). Net loading system for fish farming - trash fish reduction and internal loading 9 2. Internal nutrient loading by fish 2.1. Nutrient release by fish Fish need nutrients for their growth, reproduction and metabolism (Kitchell et al. 1977). The nutrients that are not assimilated are released in faeces (egestion) while the assimilated nutri- ents are excreted through the kidneys or similar organs. Egested nutrients are available to pri- mary producers only after decomposition and mineralization by microbes. Nutrients such as phosphorus (P) and nitrogen (N) are excreted in inorganic form (phosphate and ammonia) and can be directly available for phytoplankton and primary producers (Brabrand et al. 1990). 2.2. Factors affecting nutrient release rate by fish 2.2.1. Individual body mass The amount of nutrients excreted per unit body mass per unit time decreases with increasing body mass. Adult fish have lower mass-specific excretion rates than underyearling fish as a re- sult of inverse allometric relationship between body size and respiration rate (Schindler et al. 1993). To obtain correct estimates of phosphorus release, it is thus important to consider the size structure of the fish population (Tarvainen et al. 2002). The relationship between nutrient release rate (μg g-1 h-1; NH 4 -N and PO 4 -P) and fish wet weight (g) from the literature with 95% confidence intervals can be found in Figure 1 (Tarvainen et al. 2005). Figure. 1. Relationship between nutrient release rate of dissolved PO 4 -P (μg g -1 h -1) and NH 4 -N (μg g-1 h-1) with fish wet weight (g) from the literature with 95% confidence intervals (Tarvainen et al. 2005). PO 4 -P: A: Mather et al. (1995), B: Lamarra (1975), C: Brabrand et al. (1990), D: Heino et al. (unpublis- hed). NH 4 -N: A: Forsberg and Summerfelt (1992), B: Zakes et al. (2001), C: Zakes and Demska-Zakes (2002), D: Mather et al. (1995), E: Yager and Summerfelt (1993). Wet weight (g) PO4–P R2 =0.66, t = –2.80, P = 0.049 10 5 1 0,1 1 5 10 50 100 500 1000 µg g -1 h -1 Wet weight (g) µg g -1 h -1 NH4–N R2 =0.63, t = –3.46, P = 0.011 10 5 1 0,1 1 5 10 50 100 500 1000 R I I S T A - J A K A L A T A L O U S – T U T K I M U K S I A10 2.2.2. Nutrient composition of fish and their food Nutrient excretion rates are functions of the nutrient composition of animals and their food. Animal species maintain relatively constant body nutrient contents per unit body mass (Vanni 2002). Thus, during growth an animal will incorporate nutrients at rates needed to maintain this nutrient composition and will excrete nutrients that are assimilated but not needed for growth. The amount of nutrients excreted will thus be dependent on the nutrient content of the food the animal is consuming. Fish feeding on nutrient-rich food resources will excrete more nutrients than fish feeding on nutrient-poor diets (Vanni 2002). On the other hand, an animal with a relatively low nutrient content in its body will allocate fewer nutrients for growth and will excrete more nutrients than an animal with high body nutrient composition. For instance, among vertebrate taxa from tropical streams, the mass-specific P excretion rate varied 10-fold and was negatively related to animal body P content (Vanni et al. 2002). 2.2.3. Temperature Nutrient excretion rates of fish increase with temperature (Lin et al. 2005), due to the increase in metabolic rates with increasing temperature (Vanni 2002). For instance, in Lake Balaton in Hungary excretion of total nitrogen by bream (Abramis brama) increased significantly with increasing water temperature, from 1.3 g N ind-1 at 6.2 °C to 7.4 g N ind-1 at 22.7 °C for age groups 0+ to 7+ (Tatrai 1987). 2.2.4. Feeding habit of fish The contribution of fish to internal loading is also dependent on the feeding habits of the fish. Fish can physically move nutrients between habitats or ecosystems (Vanni 1996). This pro- cess is usually accompanied by transformation of nutrients from one chemical form to another. For example, when benthivorous fish feed on benthic prey and excrete nutrients into the water column, they translocate nutrients from benthic to pelagic habitats and convert nutrients from particulate to dissolved forms. In this case, new P is added to the water column and internal loading occurs (Lamarra 1975, Andersson et al. 1978, Brabrand et al. 1990). Planktivorous fish recycle nutrients but do not add new nutrients to the water column. They feed on zooplankton in the water column and excrete nutrients back again into the wa- ter column, recycling nutrients within that habitat. Hence, planktivorous fish do not contribute to internal nutrient loading (e.g. Nakashima and Leggett 1980, Havens 1993). For instance in Lake Köyliönjärvi, P release of the dense roach (Rutilus rutilus) stock had only minor signifi- cance for internal phosphorus loading because roach fed mainly on zooplankton (Tarvainen et al. 2002). Similar results were obtained in experimental studies, in which access to the bottom was prevented in some experimental units and allowed in others. For instance, Havens (1993) showed that the total phosphorus concentration in the water did not increase in mesocosms where fish were not allowed to feed from the bottom, but remained at a levels similar to those in mesocosms with no fish (Figure 2). In mesocosms, where feeding from the bottom was pos- sible, phosphorus concentration was substantially elevated. Net loading system for fish farming - trash fish reduction and internal loading 11 Figure 2. Total phosphorus concentrations in the mesocosms and in the surrounding lake during the ex- periments by Havens (1993). The fish species used in the experiments were brown bullhead (Ictalurus nebulosus) shiner (Notropis sp.) and smallmouth bass (Micropterus dolomieui). In mesocosms with net, fish were not able to feed from the bottom. Redrawn from Havens (1993). 2.3. Bioturbation by fish Fish physically disturb the sediment by feeding and other activities. Bottom-feeding fish such as roach and bream can release nutrients by disturbing the surface sediments while searching for food (Persson and Hamrin 1994). Breukelaar et al. (1994) showed a positive relationship between bream and carp (Cyprinus carpio) biomass with both suspended solids and sediment found in traps in the experiments. These fish also contributed significantly to turbidity in the experimental set ups (Breukelaar et al. 1994). It is very difficult to distinguish internal nutrient loading caused by bioturbation from nutrient excretion by benthivorous fish (Lamarra 1975). 3. Methods for estimation of nutrient release rates by fish Excretion rates can be estimated using bioenergetics models or by direct measurement (Vanni 2002). Using bioenergetics, the excretion rate is estimated as nutrients ingested minus nut- rients allocated for egestion and growth (Kraft 1992, Horppila et al. 1998, Tarvainen et al. 2002). Direct measurements can be done by capturing animals in the field and placing them in containers in which the accumulation of nutrients is quantified (Persson 1997, Hood et al. 2005, Tarvainen et al. 2005). Both methods have advantages and disadvantages, but there are limited data suggesting that they yield similar excretion rates and ratios for fish (Vanni 2002). 0 5 10 15 20 25 30 150 120 90 60 30 0 Day To ta l P (µ g l - 1 ) Lake Fish Fish+net No fish R I I S T A - J A K A L A T A L O U S – T U T K I M U K S I A12 4. Quantitative estimation of the effects of fish biomass reduction 4.1. Estimates on the effects of biomass reduction As presented above, numerous factors affect nutrient release rate by fish. It is thus possible to make only very rough estimates of the effects of fish biomass reduction on internal nutrient loading. Therefore, the effects of biomass reduction were estimated with the different nutrient release rates presented in the literature. The literature review by Tarvainen et al. (2005) showed that the PO 4 -P release rate by fish having individual weights from 1 to 1000 g varies approximately from 10 to 1 μg g-1 h-1 (Figure 1). For NH 4 -N, the release rate varied from 5 to 50 μg g-1 h-1 for fish weights of 1-500 g (Fi- gure 1). These ranges of nutrient release rates form the x-axis of Figures 3 and 4. The estimated reduction of fish-induced internal nutrient loading was calculated by multiplying the mass-spe- cific nutrient release rates of fish by the biomass reduction of fish (y-axis). From the figures it is thus possible to read the estimated annual reduction in fish-induced internal nutrient loading with each combination of nutrient release rate by individual fish and biomass reduction caused by intensive fishing. The calculations were based on the assumption that nutrient release by fish occurs for 24 h per day during 150 days of the year (Tarvainen 2007). Figure 3. Estimated reduction of fish-induced internal P loading (kg) with different combinations of fish biomass reduction (kg x 104) and mass-specific PO 4 -P release rates of fish obtained in previous stu- dies, covering fish weights approximately from 1 g to 1000 g (Figure 1). 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 F h ed u on K 10 00 00 30 000 18 000 18 000 22 000 22 000 24 000 26 000 28 000 20 000 20 000 8 000 6 000 10 000 12 000 14 000 16 000 8 000 10 000 12 000 14 000 4 000 16 000 6 0004 000 16 000 12 000 8 000 8 000 2 000 4 000 6 000 10 000 14 000 4 000 6 000 1 2 3 4 5 6 7 8 9 1 0 1 0 9 8 7 6 5 4 3 2 1 Phosphorus excretion_g g –1 h –1 Fi sh re du ct io n Kg x 1 00 0 00 Large fish ------------------> Small fish Net loading system for fish farming - trash fish reduction and internal loading 13 For instance, a 300 000 kg biomass reduction of fish releasing 8 μg P g-1 h-1 would result ap- proximately in an 8 000 kg annual reduction in fish-induced internal P loading (Figure 3). It is necessary to consider, however, that the calculation is based on the assumption that fish bio- mass reduction is comprised exclusively of benthivorous fish. Since most fish species, inclu- ding cyprinids, are zooplanktivorous as juveniles and switch to benthic food when they grow in size (Persson 1983, Persson and Greenberg 1990), the highest values of individual nutrient release in the x-axis are probably not realistic. For an average size of 50 g for a benthivorous fish, a nutrient release rate of 2 μg P g-1 h-1 should be used (Figures 1 and 3). Using this value, a 300 000 kg biomass reduction would cause c. 2 100 kg annual reduction in fish-induced in- ternal P loading, corresponding to 9% of the external loading by fish farming. For nitrogen, similar calculations were made based on the published NH 4 -N release rates by fish (Figure 4). Figure 4. Estimated reduction in fish-induced internal N loading (kg) with different combinations of fish biomass reduction (kg x 104) and mass-specific NH 4 -N release rates of fish obtained in previous studies, covering fish weights approximately from 1 g to 500 g (Figure 1). Nitrogen excretion_g g –1 h –1 Fi sh re du ct io n Kg x 1 0 00 0 1 0 2 0 3 0 4 0 5 0 1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 10 20 30 40 50 0 0 0 0 0 0 0 0 0 0 140 000 70 000 100 000 80 000 110 000 90 000 120 000 130 000 60 000 50 000 60 000 70 000 30 000 50 000 40 000 30 000 80 000 90 000 40 000 10 000 20 000 Large fish ------------------> Small fish R I I S T A - J A K A L A T A L O U S – T U T K I M U K S I A14 Assuming an average fish size of 50 g for a benthivorous fish, a nutrient release rate of 20 μg N g-1 h-1 should be used (Figure 1). Using this value, for instance, a 300 000 kg biomass reduction of benthivorous fish would cause c. 21 000 kg annual reduction in fish-induced in- ternal N loading, corresponding to 10% of the external loading by fish farming. 4.2. Caution needed in interpreting the results In reading the figures, it is important to bear in mind that the calculations were based on the reduction in benthivorous fish biomass in a given area and not on the fish catch. The possible catch amounts of different fish species in the Archipelago Sea area are eva- luated to be about 250 tonnes (Mäkinen 2007). Additionally, use of some excretion period other than 24 h x 150 days would of course change the calculation results. However, outside the growing season the food intake and nutrient excretion rates are low, due to low water tem- peratures. The behaviour of fish may be affected by mass removal. A change in the abundance of benthivorous fish may, for instance, affect the biomass of the zoobenthos (Svensson et al. 1999, Leppä et al. 2003), with consequences for the feeding habits of the remaining fish and thus for their effect on nutrient dynamics. Several studies have shown that the effect of fish on internal nutrient loading may depend on the availability of benthic food (Horppila and Kaire- salo 1992, Zambrano et al. 2001, Tarvainen et al. 2005). It is also very important to consider that the studies cited have been mostly conducted in freshwater environments. In most aquatic ecosystems, attention has focused on the cycling of nitrogen (N) and phosphorus (P) because they are the nutrients most likely to limit primary producers. For internal loading, phosphorus is often taken into account because P usually li- mits the growth rates or maximum yields of phytoplankton during summer in temperate fresh- water lakes (Carpenter et al. 1985). However, this is not the case for the Baltic Sea since N is the limiting factor for phytoplankton growth in certain areas (Pitkänen and Tamminen 1995). In the Baltic Sea, the low N:P ratio of internal loading also partly explains the limiting role of N in primary production, despite the high N:P ratio of external inputs (Pitkänen and Tamminen 1995). The capacity of saline water sediments to permanently retain P is generally poorer than that of freshwater sediments because of the formation of insoluble Fe(II)S in anoxic saline wa- ter systems (Pitkänen and Tamminen 1995). This process reduces the number of potentially available adsorption sites for P (Caraco et al. 1990) Most top-down control studies have been conducted in lakes and those that have been conducted in the Baltic Sea have focused on the lower trophic levels (zooplankton and algae) (Rudstam et al. 1992, Kivi et al. 1993). A strong coupling between fish and lower trophic le- vels was suggested to be due to the higher fish yield per unit of primary production in coas- tal areas, including the Baltic Sea (Rudstam et al. 1994). However, in comparing freshwater lakes with brackish lakes, Jeppesen et al. (1994) concluded that in brackish lakes the effects of planktivorous fish stock manipulations on water quality are weak compared with the effects in freshwater lakes. Net loading system for fish farming - trash fish reduction and internal loading 15 5. Possible other effects of fish stock manipulations Planktivorous fish can alter the species composition and size structure of zooplankton com- munities (Hrbácek et al. 1961, Drenner et al. 1984, Attayde and Hansson 2001). The change in size structure of zooplankton can lead to a change in consumption rate of phytoplankton, since large-sized zooplankton can consume higher biomasses of phytoplankton. Consequently the nutrient excretion rates of zooplankton may increase and lead to enhanced phytoplankton production (Vanni 1987). Possible changes in the N:P ratio can also affect phytoplankton com- munities (Carpenter et al. 1992). Benthivorous fish can affect the biomass and density of zoo- benthos. Changes in the biomass of zoobenthos may have consequences for nutrient dynamics, because benthic invertebrates can play an important role in nutrient cycling by their burrowing activity that causes resuspension of the sediment and increases or decreases nutrient release from the bottom (Tátrai 1987, Philips et al. 1994). The presence of benthivorous fish may prevent sediment consolidation (Scheffer et al. 2003). When benthivorous fish feed from the sediment, they leave small pits in the sediment surface (Lammens and Hoogenboezem 1991). These pits increase the effects of wind-induced waves and disturbance of the bottom sediment. After removal of benthivorous fish, the sedi- ment may become more stable and firm, leading to reduction in sediment resuspension due to wind (Scheffer et al. 2003). R I I S T A - J A K A L A T A L O U S – T U T K I M U K S I A16 References Andersson, G., Berggren, H., Cronberg, G. & Gelin, C. 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in euthrophic lakes. Hydrobiologia 59: 9–15. Attayde, J.L. & Hansson, L.-A. 2001. Fish-mediated nutrient recycling and the trophic cascade in lakes. Cana- dian Journal of Fisheries and Aquatic Sciences 58: 1924– 1931. Brabrand, A., Faafeng, B.A. & Nilssen, J.P.M. 1990. Relative importance of phosphorus supply to phytoplank- ton production: fish excretion versus external loading. Canadian Journal of Fisheries and Aquatic Sci- ences 47: 364–372. Breukelaar, A.W., Lammens, E.H.R.R., Klein Breteler, J.G.P. & Tátrai, I. 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshwater Biology 32: 113–121. Caraco, N., Cole, J. & Likens, G. 1990. A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9: 277–290. Carpenter, S.R. & Kitchell, J.F. 1993. The trophic cascade in lakes. Cambridge University Press. Cambridge. 385 p. Carpenter, S.R., Kitchell, J.F. & Hodgson, J.R. 1985. Cascading trophic interactions and lake productivity. Bio- Science 35: 634–639. Carpenter, S.R., Cottingham, K.L. & Schindler, D.E. 1992. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology and Evolution 7: 332–336. Drenner, W.R., Mummert, J.R., deNoyelles, Jr. F. & Kettle, D. 1984. Selective particle ingestion by a filter- feeding fish and its impact on phytoplankton community structure. Limnology and Oceanography 29: 941–948. Forsberg, J.A. & Summerfelt, R.C. 1992. Effect of temperature on diel ammonia excretion of fingerling wall- eye. Aquaculture 102: 115–126. Gulati, R.D., Lammens, E.H.H.R., Meijer, M.-L. & van Donk, E. 1990. Biomanipulation tool for water man- agement. Hydrobiologia 200/201:1–628. Hamilton, D.P. & Mitchell, S.F. 1988. Effects of Wind on Nitrogen, Phosphorus, and Chlorophyll in a Shallow New Zealand Lake. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 23: 624–628. Havens, K.E. 1993. Response to experimental fish manipulations in a shallow, hypereutrophic lake: the relative importance of benthic nutrient recycling and trophic cascade. Hydrobiologia 254: 73–80. Hood, J.M., Vanni, M.J. & Flecker, A.F. 2005. Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Ecosystem Ecology 146: 247–257. Horppila, J. 1998. Effects of mass removal and variable recruitment on nutrient excretion by a planktivorous roach stock. Journal of Fish Biology 52: 951–961. Horppila, J. & Kairesalo, T. 1990. Impacts of bleak (Alburnus alburnus) and roach (Rutilus rutilus) on water quality, sedimentation and internal nutrient loading. Hydrobiologia 243/244: 323–331. Horppila, J. & Kairesalo, T. 1992. Impacts of bleak (Alburnus alburnus) and roach (Rutilus rutilus) on water quality, sedimentation and internal nutrient loading Hydrobiologia 243-244: 323–331. Horppila, J., Peltonen, H., Malinen, T., Luokkanen, E. & Kairesalo, T. 1998. Top-down or bottom-up effects by fish: Issues of concern in biomanipulation of lakes. Restoration Ecology 6: 20–28. Hrbácek, J., Dvorakova, M., Korínek, V. & Procházkóva, L. 1961. Demonstration of the effect of fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton asso- ciation. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 14: 192–195. Net loading system for fish farming - trash fish reduction and internal loading 17 Jeppesen, E., Søndergaard, M., Kanstrup, E., Petersen, B., Eriksen, R.B., Hammershøj, M., Mortensen, E., Jensen, J.P. & Have, A. 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275/276: 15–30. Kitchell, J.F., Stewart, D.J. & Weininger, D. 1977. Applications of a bioenergetics model to yellow perch (Per- ca flavescens) and walleye (Stizostedion vitreum vitreum). Journal of the Fisheries Research Board of Canada 34: 1922–1935. Kivi, K., Kaitala, S., Kuosa, H., Kuparinen, J., Leskinen, E., Lignell, R., Marcussen, B. & Tamminen, T. 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Lim- nology and Oceanography 38: 893–905. Kraft, C.E. 1992 Phosphorus regeneration by Lake Michigan alewives in the mid-1970s. Transactions of the American Fisheries Society 122: 749–755. Lamarra, V.A. Jr. 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Ver- handlungen Internationalen Vereinigung für Limnologie 19: 2461–2468. Lammens, E.H.R.R. & Hoogenboezem, W. 1991. In: Winfield, I.J. & Nelson, J.S. (eds.) Cyprinid fishes: sys- tematics, biology and exploitation. Chapman and Hall, pp 353–376. Lammens, E.H.R.R., Gulati, R.D., Meijer, M.-L. & van Donk, E. 1990. The first biomanipulation conference: a synthesis. 200/2001: 619–627. Leppä, M., Hämäläinen, H. & Karjalainen, J. 2003. The response of benthic macroinvertebrates to whole-lake biomanipulation. Hydrobiologia 498: 97–105. Lin, T.-S., Yang, S.-D., Liu, F.-K. 2005. The effect of temperature on the growth of juvenile Amur River stur- geon. Journal of the Fisheries Society of Taiwan 32: 86. Mather, M.E., Vanni, M.J., Wissing, T.E., Davis, S.A. & Schaus, M. H. 1995. Regeneration of nitrogen and phosphorus by bluegill and gizzard shad: effect of feeding history. Canadian Journal of Fisheries and Aquatic Sciences 52: 2327–2338. McQueen, D.J., Post, J.R. & Mills, E.L. 1986. Trophic relationships in freshwater pelagic ecosystems. Cana- dian Journal of Fisheries and Aquatic Sciences 43: 1571–1581. McQueen, D.J., France, R. & Kraft, C. 1992. Confounded impacts of planktivorous fish on freshwater bioma- nipulations. Archiv für Hydrobiologie 125: 1–24. Mehner, T., Mattukat, F., Bauer, D., Voigt, H. & Benndorf, J. 1998. Influence of diet shifts in underyearling fish on phosphorus recycling in a hypertrophic biomanipulated reservoir. Freshwater Biology 40: 759–769. Mehner, T., Benndorf, J., Kasprzak, P. & Koschel, R. 2002. Biomanipulation of lake ecosystems: Successful applications and expanding complexity in the underlying science. Freshwater Biology 47: 2453–2465. Meijer, M.L., de Haan, W., Breuklaar, A.W. & Buiteveld, H. 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in lakes? Hydrobiologia 200/201: 303–316. Mortimer, H. 1941. The exchange of dissolved substances between mud and water. I and II. Journal of Eco- logy 29: 280–329. Mäkinen, T. (toim.) 2007. Kalanviljelyn nettokuormitusjärjestelmän esiselvitys. Riista- ja kalatalous – Selvi- tyksiä 2/2008. 36 s. Nakashima, B.S. & Leggett, W.C. 1980. The role of fishes in the regulation of phosphorous ability in lakes. Canadian Journal of Fisheries and Aquatic Sciences 37, 1540–1549. Persson, L. 1983. Food consumption and the significance of detritus and algae to intraspecific competition in roach (Rutilus rutilus) in a shallow eutrophic lake. Oikos 41: 118–125. Persson, A. 1997. Phosphorus release by fish in relation to external and internal load in a eutrophic lake. Lim- nology and Oceanography 42: 577–583. Persson, L. & Greenberg, L.A. 1990. Juvenile competitive bottlenecks. The perch (Perca fluviatilis)-roach (Ru- tilus rutilus) interaction. Ecology 71: 44–56. R I I S T A - J A K A L A T A L O U S – T U T K I M U K S I A18 Persson, A. & Hamrin, S.F. 1994. Effects of cyprinids on the release of phosphorus from lake sediment. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 25: 2124–2127. Phillips, G., Jackson, R., Bennett, C. & Chilvers, A. 1994. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipula- tion. Hydrobiologia 275–276: 445–456. Pitkänen, H. & Tamminen, T. 1995. Nitrogen and phosphorus as production limiting factors in the estuarine waters of the eastern Gulf of Finland. Marine Ecology Progress Series 129: 283–294. Pitkänen, H., Lehtoranta, J., & Räike, A. 2001. Internal nutrient loading fluxes counteract decreases in external loading: The case of the Estuarial Eastern Gulf of Finland, Baltic Sea. Ambio 30: 195–201. Rudstam, L.G., Hansson, S., Johansson, S. & Larsson, U. 1992. Dynamics of planktivory in a coastal area of the northern Baltic Sea. Marine Ecology Progress Series 80: 159–173. Rudstam, L.G., Gunnar, A. & Hilden, M. 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10: 105–129. Scheffer, M., Portielje, R. & Zambrano, L. 2003. Fish facilitate wave resuspension of sediment. Limnology and Oceanography 48: 1920–1926. Schindler, D.E., Kitchell, J.F., He, X., Carpenter, S.R., Hodgson, J.R. & Cottingham, K.L. 1993. Food webs structure and phosphorus cycling in lakes. Transactions of the American Fisheries Society 122: 756– 772. Shapiro, J., Lamarra, V. & Lynch, M. 1975. Biomanipulation: An ecosystem approach to lake restoration. In: P.L. Brezonik and J.L. Fox (eds.): Water quality management through biological control. University of Florida. pp. 85–96. Søndergaard, M., Jensen, J.P. & Jeppesen, E. 1999. Internal phosphorus loading in shallow Danish lakes. Hyd- robiologia 408/409: 145–152. Svensson, J.M., Bergman, E. & Andersson, G. 1999. Impact of cyprinid reduction on the benthic macroinverte- brate community and implications for increased nitrogen retention. Hydrobiologia 404: 99–112. Tarvainen, M. 2007. Water quality effects of fish in shallow lakes. Turun Yliopiston Julkaisuja, Biologica- Geo- graphica- Geologica, Sarja – Ser. A II Osa –Tom. 211. 30 p. Tarvainen, M., Sarvala, J. & Helminen, H. 2002. The role of phosphorus release by roach (Rutilus rutilus (L.)) in the water quality changes of a biomanipulated lake. Freshwater Biology 47: 2325–2336. Tarvainen, M., Ventelä, A.-M., Helminen, H. & Sarvala, J. 2005. Nutrient release and resuspension generated by ruffe (Gymnocephalus cernuus) and chironomids. Freshwater Biology 50: 447–458. Tátrai, I. 1987. The role of fish and benthos in the nitrogen budget of Lake Balaton, Hungary. Archiv für Hyd- robiologie 110: 291–302. Tátrai, I. & Istvanovics, V. 1986. Role of fish in the regulation of nutrient cycling in Lake Balaton, Hungary. Freshwater Biology 16: 417–424. Tátrai, I., Tóth, G., Ponyi, J.E., Zlinskzky, J. & Istvánovics, V. 1990. Bottom-up effects of bream (Abramis brama L.) in Lake Balaton. Hydrobiologia 200/201: 167–175. Threlkeld, S.T. & Drenner, W.R. 1987. An experimental mesocosm study of residual and contemporary effects of an omnivorous, filter-feeding, clupeid fish on plankton community structure. Limnology and Ocea- nography 32: 1331–1341. van Donk, E., Grimm, M.P., Gulati, R.D. and Klein Breteler, J.P.G. 1990. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200-201: 275–289. Vanni, M.J. 1987. Effects of Nutrients and Zooplankton Size on the Structure of a Phytoplankton Community Ecology 68: 624–635. Vanni, M.J. 1996. Nutrient transport and recycling by consumers in lake food webs: implications for algal com- munities. In: Polis G.A. & Winemiller K.O. (eds.): Food Webs: Integration of Patterns and Dynamics. Chapman and Hall. pp. 81– 95. Net loading system for fish farming - trash fish reduction and internal loading 19 Vanni, M.J. 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Sys- tematics 33: 341–370. Vanni, M.J., Flecker, A.S., Hood, J.M. & Headworth, J.L. 2002. Stochiometry of nutrient recycling by ver- tebrates in a tropical stream: linking species identity and ecosystem processes. Ecology Letters 5: 285–293. Yager, T.K. & Summerfelt, R.C. 1993. Effects of fish size and feeding frequency on metabolism of juvenile walleye. Aquaculture Engineering 12: 19–36. Zakes, Z. & Demska-Zakes, K. 2002. The influence of feeding frequency on the metabolic rate of perch Perca fluviatilis L. Archives of Polish Fisheries 10: 23–39. Zakes, Z., Demska-Zakes, K., Karczewski, P. & Karpinski, A. 2001. Selected metabolic aspects of pike-perch (Stizostedion lucioperca (L.)) reared in a water recirculation system. Archives of Polish Fisheries 9: 25–37. Zambrano, L., Scheffer, M. & Martínez-Ramos, M. 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos 94: 344–350. Zhu, G., Qin, B., Zhang, L., Luo, L., Sun, X., Hong, D., Gao, Y. & Xie, R. 2005. Wave effects on nutrient re- lease of sediments from Lake Taihu by flume experiments. Journal of Lake Sciences 17: 61–68. R I I S T A - J A K A L A T A L O U S — T U T K I M U K S I A JULKAISIJA Riista- ja kalatalouden tutkimuslaitos Viikinkaari 4 PL 2 00791 Helsinki Puh. 0205 7511, faksi 0205 751 201 www.rktl.fi Net loading system for fi sh farming Trash fi sh reduction and internal loading 1 / 2 0 0 8 Zeynep Pekcan-Hekim and Jukka Horppila