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A B S T R A C T   

Among the various challenges facing tropical tuna purse seine fleet are the need to reduce fuel consumption and 
carbon footprint, as well as minimising bycatch of vulnerable species. Tools designed for forecasting optimum 
tuna fishing grounds can contribute to adapting to changes in fish distribution due to climate change, by 
identifying the location of new suitable fishing grounds, and thus reducing the search time. While information 
about the high probability to find vulnerable species could result in a bycatch reduction. The present study aims 
at contributing to a more sustainable and cleaner fishing, i.e. catching the same amount of target tuna with less 
fuel consumption/emissions and lower bycatch. To achieve this, tropical tuna catches as target species, and silky 
shark accidental catches as bycatch species have been modelled by machine learning models in the Indian Ocean 
using as inputs historical catch data of these fleets and environmental data. The resulting models show an ac-
curacy of 0.718 and 0.728 for the SKJ and YFT, being the absences (TPR = 0.996 for SKJ and 0.993 for YFT, 
respectively) better predicted than the high or low catches. In the case of the BET, which is not the main target 
species of this fleet, the accuracy is lower than that of the previous species. Regarding the silky shark, the 
presence/absence model provides an accuracy of 0.842. Even though the model's performance has room for 
improvement, the present work lays the foundations of a process for forecasting fishing grounds avoiding 
vulnerable species, by only using as input data forecast environmental data provided in near real time by earth 
observation programs. In the future these models can be improved as more input data and knowledge about the 
main environmental conditions influencing these species becomes available.   

1. Introduction 

The Food and Agriculture Organization (FAO) statistics show that 
marine fish catches have remained stable in the last 20 years (FAO, 
2022). However, fuel consumption has increased 20%, resulting in the 
consequent greenhouse gas emissions (Bell et al., 2017; Parker et al., 
2018). For instance, although the European fishing fleet recorded a 
reduction in fuel consumption between 2009 and 2019 (STECF, 2021), 
the increase in fuel costs over recent years is one of the main challenges 
to the sector, since fuel consumption represents 60–70% of the total 
annual cost of vessel activity (Rojon and Smith, 2014; Suuronen et al., 
2012). Furthermore, fuel price increases are expected to affect every 
industry, including marine industries (Chrysafis et al., 2022; Roll et al., 

2022). Among the fisheries, those fleets targeting highly migratory large 
pelagic species have one of the highest and most variable fuel con-
sumption (Parker and Tyedmers, 2014). Since a total of 90% of the fuel 
consumption is dedicated to searching for tuna schools by purse seiners 
and reaching the fishing grounds (Basurko et al., 2022), reducing the 
search effort can contribute to save fuel by these fleets (Granado et al., 
2021). Furthermore, there is evidence that tropical tuna habitat distri-
bution has changed globally due to ocean warming (Erauskin-Extra-
miana et al., 2020, 2023) and that the shift will continue in the future 
(Nataniel et al., 2021). Purse seine skippers make day-to-day decisions 
on where to go fishing and thus they need to take adaption actions when 
looking for fishing grounds (Rubio et al., 2022). For instance, higher 
digitalization could aim at reducing fuel consumption and the time at 
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sea of purse seiners as an adaptation of the fishing industry to climate 
change (Erauskin-Extramiana et al., 2023). In addition, early informa-
tion on the probable distribution of target species could contribute to a 
more efficient localisation of fish schools. Indeed, Sun et al. (2022) 
highlighted the value of near-term ecological forecasting as a rapid and 
science-based decision-making tool. 

Tropical tuna purse seiners use two main fishing techniques: fishing 
on free-swimming tuna schools, and fishing on schools gathering under 
Fish Aggregating Devices (FADs). In this regard, Scott and Lopez (2014) 
estimated that 65% of all the purse seine sets are made on floating ob-
jects, either anchored or drifting devices. The target species of the 
tropical tuna purse seine fleet are mainly skipjack tuna (SKJ, Katsuwonus 
pelamis), yellowfin tuna (YFT, Thunnus albacares) and to a lesser extent, 
bigeye tuna (BET, Thunnus obesus). For instance, in 2019, SKJ accounted 
for 60% of world tuna catches, and YFT for 27.5% (ISSF, 2020). These 
species are widespread in all tropical waters and are highly migratory. 
They also have different migratory patterns in different oceans (Arregui 
et al., 2019; Hallier and Fonteneau, 2015): they appear to be less mobile 
in the Atlantic Ocean, with a higher proportion of regional-scale 
migration, whereas in the Indian Ocean long-range displacements are 
a more common feature (Fonteneau and Hallier, 2015). 

As in other fisheries, tropical tuna purse seine fishery produces 
incidental fishing of non-targeted species (bycatch), especially when 
fishing on FADs (Amandè et al., 2017; Hall and Roman, 2013). 
Bycatches can be categorized into three groups: minor tuna and tuna- 
like species such as neritic tunas, other teleost fishes, and sensitive 
species such as sharks and rays. Among these sensitive bycatch species, 
the most common species associated with purse seine fishery is the silky 
shark (FAL, Carcharhinus falciformis) (Amandè et al., 2010; Clavareau 
et al., 2020; Dagorn et al., 2012; López et al., 2020), which is listed as a 
vulnerable species by the International Union for Conservation of Nature 
(IUCN, 2021). 

To move towards more sustainable fisheries, fishing fleets are 
increasingly relying on the use of technological developments. This 
innovation was coined as ‘Smart Fishery’ (Honarmand Ebrahimi et al., 
2021). For instance, the fishing industry is augmenting its use of Earth 
Observation data to characterize environmental conditions of marine 
areas and geolocate fishing grounds with less effort based on their high 
level of digitalization (McCauley et al., 2016). Hence, this can reduce 
search times, fuel consumption and the operating cost of fishing vessels. 
However, owing to the large volume and diversity of sources and the 
quality of recorded data, they are underused for analysis, remain intact 
and unstructured, and require lots of resources for real-time analysis. Big 
data processing techniques enhanced by machine-learning (ML) 
methods can increase the value of such unexploited data and, as a result, 
enhance their applicability. ML has already started to prove its potential 
in marine sciences applied to fisheries (Fernandes et al., 2010; Groba 
et al., 2015, 2018), to feed Fisheries Route Optimization Decision Sup-
port Systems (Granado et al., 2021; Granado et al., 2024), forecast 
fishing grounds (Amandè et al., 2017) and plan which tuna species to 
fish according to allocated quotas (ISSF, 2020). Despite these de-
velopments, the use of artificial intelligence in the fishing industry lags 
behind other shipping sectors, both in state-of-the-art and day-to-day 
applications (Agra et al., 2015; Christiansen et al., 2004; Fernandes- 
Salvador et al., 2022). 

The objective of the present study is to predict fishing grounds to 
catch tropical tuna species (SKJ, YFT and BET), while simultaneously 
reducing the bycatch of vulnerable species (FAL) in the Indian Ocean, 
for thus help improve the fishing efficiency. This contribution for 
improving the fishing efficiency is to be achieved by applying ML to 
combined catches and environmental datasets. Here, efficiency is un-
derstood as fishing the same amount of target species while reducing the 
bycatch of silky shark and consuming less fuel by reducing the time 
spent searching for tuna schools. 

2. Material and methods 

In this study a ML-based approach has been applied to forecast the 
probability of high catch zones of different species of tropical tuna, by 
training models with environmental data and historical catch and 
bycatch data. 

2.1. Catch and bycatch data 

The target catch and bycatch data selected for the present study were 
collected by observers on-board the Spanish tropical tuna purse seine 
fleet operating in the Indian Ocean during the period 2014–2020. The 
sampling is part of the Spanish Fisheries Data Collection Program con-
ducted under the EU fisheries Data Collection Framework (Regulation 
EU 2017/1004). In this work, only catches on FADs were studied since 
they account for 95% of total catches. Furthermore, fishing on FADs 
showed a higher presence of bycatch (e.g. silky shark) when targeting 
tropical tuna in the Indian Ocean (Amandè et al., 2010; Dagorn et al., 
2012; López et al., 2020). 

In order to characterize a fishing set, observations can be distin-
guished between positive (the catch is hauled on-board) and null sets 
(the net is deployed but no catch is hauled on-board due to different 
reasons, such as high shear currents, broken gear, insufficient catch-
ability when tunas are located too deep or moving too fast). Hence, 
potential catch of tuna or bycatch information in weight was only 
available when there was a positive fishing set, while null sets have been 
discarded. In addition to fishing sets, the data collected by on-board 
observers also included information on other activities carried out by 
the vessels, such as searches or operations with a floating object (any 
natural or man-made object that can be found in the sea). These addi-
tional data have been used in this study to determine absences of tuna 
schools, that is, positions where the vessel sailed but the net was not 
deployed. 

2.2. Environmental, geographical, and temporal data 

Potential predictors of the distribution of the assessed species used in 
other mechanistic models (Fernandes et al., 2013a; Nielsen et al., 2018) 
were considered in the model building analysis of this study. The list of 
these potential predictors that include environmental, geographical, and 
temporal information (Table 1) was extracted for each catch position 
and date. 

With regard to the environmental variables daily physical and 
biogeochemical environmental data were obtained from the European 
Union's Earth Observation programme Copernicus. While, sea surface 
temperature (SST) data was obtained from NASA, since this database 
provides a higher spatial resolution for SST. In the case of the biogeo-
chemical data, some of the variables were integrated from the sea sur-
face to different depths (e.g. 10, 20, 50… m). The reason for this 
approach was the vertical mobility of the species considered (Sabarros 
et al., 2015), which implies considering the productivity of the entire 
water column they mainly inhabit. 

The relation between the presence of pelagic species such as tropical 
tunas and oceanographic processes like temperature and chlorophyll 
fronts have been widely studied (Fiedler and Bernard, 1987; Zainuddin 
et al., 2017). Primary and secondary production seems to increase in 
such fronts, causing the aggregation of pelagic species. Such water mass 
interfaces of different densities (Sund et al., 1981) are characterized by 
abrupt changes in temperature and/or chlorophyll concentration at 
minimum horizontal distances (Rivas and Pisoni, 2010). Furthermore, 
López et al. (2020) also highlighted the importance of including tem-
perature and chlorophyll fronts in future studies given the presence of 
certain sharks in areas with frequent front occurrences. Oceanic fronts 
for SST and chlorophyll concentration were estimated using the Belkin 
and O'Reilly (2009) algorithm implemented in the grec library (Lau- 
Medrano, 2020) in R (R Core Team, 2021). 
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In addition, thermocline depth and intensity were estimated from 
temperature values at different depths along the water column by 
approaching the gradient with the ratio of their finite differences. The 
thermocline depth has been identified as the depth at which the 
maximum temperature gradient is found, and it is considered herein as a 
predictor of vertical limitations in the distribution of tunas that show an 
overall preference for shallower waters (Sabarros et al., 2015) due to 
their physiological needs (Reilly and Fiedler, 1994). For example, the 
distribution of SKJ is restricted to the water column between the ocean 
surface and the thermocline (warm near cooler water masses with high 
oxygen concentration) as a result of its limitation in thermoregulation 
(Druon et al., 2017). Moreover, for silky sharks, SST and bathymetry 
were the main predictors for describing their distribution (Lezama- 
Ochoa et al., 2016) and, although they make diel vertical movements, 
they spend most of their time in waters below the thermocline (Curnick 
et al., 2020). In addition to this vertical gradient in temperature (i.e. the 
thermocline), consideration was also given to thermal gradients be-
tween the sea surface and different depths. Finally, the mixed layer 
depth, as the depth until which there is a near-homogeneity in the 
properties of the seawater, was also considered. 

Oceanic eddies are rotating water masses that influence the sur-
rounding ecosystems by regulating the horizontal and vertical dynamics 
of the water column (Bakun, 2006). As such, it has been observed that 
the increasing opportunities for foraging driven by certain eddies lead to 
an aggregation of pelagic predators (Arostegui et al., 2022). Therefore, 
this study considers sea level anomaly as a proxy of oceanic eddies to 
assess the potential influence of said structures in the distribution of 
these predators. 

Bathymetry at each catch observation was also considered. The 
estimation of depths was based on the ETOPO1 global relief model 
(Amante and Eakins, 2009) developed by the NOAA National Centers for 
Environmental Information (NCEI). The mean and standard deviation of 
the depths and the minimum and maximum depths in each half-grade 
rectangle in the highest-resolution ETOPO raster were estimated. 

Finally, latitude and longitude, as well as the month of the year, were 
also included in the models to take into account the geographical and 
temporal influence on the catches. 

2.3. Machine-learning pipeline 

A pipeline has been created to build supervised classification models 
for each of the species considered in this work (i.e. SKJ, YFT, BET and 
FAL). A diagram of the building process of the models is shown in Fig. 1. 
Different languages (Python, R) and the graphical interface of Weka 
have been used for different parts of the process. The resulting inde-
pendent models will be able to predict probabilities of encountering 
each species, based on the environmental conditions of the study area. 

The first step of the process is to merge the catch data with the 
environmental data described in Section 2.2. To do so, the values of each 
environmental variable in the positions of the entries of the catch data 
have been extracted. Since the resolution of the catch data is higher than 
the resolution of the environmental data, for each position of the catch 
dataset, the nearest environmental data available is considered. As 
stated before, in addition to the environmental data, the latitude, 
longitude and the month of each entry in the catch data have also been 
considered as explanatory variables in order to add spatial and temporal 
information. The Python package xcube (xcube.readthedocs.io/) has 
been used to extract the environmental data corresponding to each point 
in the catch data. 

Then, the catch data of each tuna species has been discretized, to 
differentiate between high and low captures. To do so, the quantiles of 
captured weights have been computed, and the median has been 
selected to set the threshold. Thus, taking the median as a threshold, 
both capture types (high and low) will have a similar number of in-
dividuals. Since a high number of absences of tuna are also available in 
the catch data, these absences have also been included in the data that is 
used to train the models. In the case of the SKJ and YFT, the number of 
absences was significantly higher than that of the high/low classes, 
therefore, a random subset of the absences has been selected, consid-
ering the number of elements of the high/low classes of each species. For 
both species, a model that is able to classify between high captures, low 
captures and absences is built. For BET, its importance is secondary 
compared to that of the SKJ and YFT which are the main target species. 
Consequently, BET absences have not been considered, and a model that 
only classifies high and low captures of BET is built. In the case of FAL, as 
it is a bycatch species that we want to avoid fishing, an absence/pres-
ence type model is built. To do so, all the FAL captures have been 
labelled as presences, and all the entries in the catch data where captures 
of tuna have happened with no FAL capture, have been labelled as 
absence. The number of instances of each class and species is shown in 
Table 2. 

The second step of the process is the feature selection, in which an 
analysis of the environmental data is performed to select the variables 
that provide more information about the type of catch (high, low or 
absence). To select the best environmental variables, two feature se-
lection methods have been combined; the Correlation-based Feature 
Subset selection algorithm (CFS; Hall, 2000) and the Symmetric Un-
certainty Score (SUS; Duda et al., 2001). SUS is a nonlinear correlation 
metric based on the information theory that measures the dependence 
between a predictor and the class label. CFS seeks to identify a set of 
predictors that are highly correlated with the type of capture but show 
low correlation among them. On the first step of the feature selection 
process, CFS is applied to each species' dataset, with a 10-fold cross- 
validation (Rodriguez et al., 2009), assuming that the number of folds 
in which a variable is selected (F) is an indicator of its robustness for 
describing the type of capture. Afterwards, all the variables that have 
been selected in more than five folds on the first step have been studied 
to find correlations between them. When a correlation score of more 
than 0.7 is found between two variables that have been selected in the 
same number of folds, only the one with the highest SUS value has been 

Table 1 
Summary of the variables considered in this study.  

Variable Depth (m) Integration depth (m) 

Sea water salinity 0, 10, 20, 50, 100, 125, 
150, 175, 200  

Silicate concentration 
0, 10, 20, 50, 100, 125, 
150, 175, 200  

Phosphate concentration 
0, 10, 20, 50, 100, 125, 
150, 175, 200  

Nitrate concentration 0, 10, 20, 50, 100, 125, 
150, 175, 200  

Current speed* 0, 10, 20, 50, 100, 125, 
150, 175, 200  

Temperature 
0, 10, 20, 50, 100, 125, 
150, 175, 200  

Sea level anomaly   
Mixed layer depth   
Bottom temperature   
SST   

Net primary production  0, 10, 20, 50, 100, 125, 
150, 175, 200 

Dissolved molecular oxygen 
concentration  

0, 10, 20, 50, 100, 125, 
150, 175, 200 

Chlorophyll concentration  
0, 10, 20, 50, 100, 125, 
150, 175, 200 

Chlorophyll fronts   
SST fronts   
Thermocline intensity   
Thermocline depth   

Temperature gradient 
10, 20, 50, 100, 125, 
150, 175, 200  

Bathymetry   
Latitude   
Longitude   
Month    
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kept. To apply both the CFS cross-validation and SUS, their imple-
mentation in Weka (Frank et al., 2016) has been used. 

In the third step, a supervised classification model is trained with the 
selected variables. Four different methods, widely used in species dis-
tribution modelling, have been tried to build the classification model:  

• Random Forest (Breiman, 2001): Classifier that combines the output 
of multiple decision trees to reach a single result. 

• SMO (SVM clone) (Platt, 1998): Kernel method that creates a hy-
perplane where the categories are divided by a clear gap that is as 
wide as possible. 

• Multilayer Perceptron (Haykin, 1994): A classifier that uses back-
propagation to learn a multi-layer perceptron to classify instances.  

• Naïve Bayes (John and Langley, 1995): Statistical learning algorithm 
based on Bayesian rules. Given that the value of the class is known, it 
assumes independence between the occurrence of feature values to 
predict the class. 

The implementation of these methods in Weka has been used to 
measure their performances in order to choose the best one for each 
species, using their standard configuration with a 5 × 10-fold cross- 
validation. The accuracies of each method (number of correct pre-
dictions divided by the total number of predictions made by each model) 
have been computed and compared to select the one that is the most 
suitable for the classification of each species' dataset. A final model has 
been trained for each species, with the Caret package of R (Kuhn, 2008). 

The forecast of the final distribution models for the study area can be 
represented in maps (as in Fig. 2). To create these maps, the environ-
mental variables selected for each species are gathered for each point of 
the study area for a period of time. The trained models are used to 
predict the probabilities of having high catches in each point of the study 
area depending on the environmental conditions of each day. 

3. Results 

3.1. Selected environmental predictors 

The selected cut-off point that discriminates between “high” and 

“low” catches is the highest for SKJ (14 t), followed by YFT (6 t) and BET 
(3 t). Considering these cut-off points, and by using the CFS method, the 
combinations of the variables that best discriminate among the different 
classes defined for each species are summarized in Table 3. The number 
of selected variables vary from 23 for SKJ to 10 for BET. Thermal and 
biogeochemical variables within the water column are the most 
frequently selected for the three tropical tunas and the shark species 
studied in this paper. With regard to the physical properties of the 
seawater, the importance of water temperature is highlighted as it is 
among the first variables selected by the CFS method for all the species 
at different depths. Salinity also contributes to the characterisation of 
SKJ, BET and FAL, albeit at both surface and subsurface depths. 
Regarding the biogeochemical parameters, the variables that contribute 
most to the characterisation of the four species studied are silicate, 
phosphate, and nitrate concentrations at different depths. A common 
predictor for the three tropical tunas is the oxygen concentration inte-
grated at the first 50 m. In addition, surface oxygen concentration is 
selected for SKJ, whereas for YFT oxygen concentration just below the 
surface (10 m) is selected. By contrast, for BET oxygen concentration in 
deeper layers (down to 175 m) is highlighted. Trophic variables related 
to food availability and energy transfer efficiency, such as chlorophyll 
concentration integrated at 20 m and 50 m are selected for YFT and SKJ. 
Similarly, chlorophyll fronts are selected in the case of SKJ. In the case of 
the oceanographic processes that have been analysed, thermocline (also 
related with the water temperature influence) intensity has been 
selected for SKJ and YFT, but not for BET. For the silky shark, the mixed 
layer, although with a lower F value, it is among the selected variables. 
The sea level anomaly has been selected for SKJ, YFT and for FAL. Lastly, 
as an indicator of geographic distribution, longitude seems to be 
important only for YFT, whereas latitude is the most important predictor 
for FAL. Finally, the month when the catches were registered is impor-
tant for the two target tropical tunas, SKJ and YFT. 

3.2. Performance of the models and forecast distribution 

The mean accuracies and standard deviations of the 5 × 10-fold 
cross-validations for each method and species are shown in Table 4. 
Random Forest is the method that achieves the highest accuracy for all 
the analysed species (0.718 for SKJ, 0.728 for YFT, 0.589 for BET and 
0.842 for FAL). Consequently, this is the method that has been used to 
build the prediction models. 

A model has been trained for each species, by using the selected 
variables in Table 3. Then, for each model, the probabilities of finding 
high and low catches and absences of each species in the study area have 
been predicted by using the corresponding predictors given in Table 3. 
The results of the validation of the trained models are shown in Table 5, 

Fig. 1. Diagram of the model building process.  

Table 2 
Number of instances of each species and class.   

SKJ YFT BET FAL 

HIGH 6307 5234 3395 
8929 LOW 6533 5831 3447 

ABS 6300 5200  6704  
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where, in addition to the accuracy of each model, the true positive rate 
(TPR) and false positive rate (FPR) of each class are also shown. The TPR 
represents the proportion of actual positive cases that were correctly 
identified or classified as positive by the model. On the other hand, the 
FPR is calculated as the ratio between the number of negative events 
wrongly categorized as positive (false positives) and the total number of 
actual negative events. 

The species forecast models show overall promising performances, 
where those trained for SKJ and YFT show the highest accuracies: 0.718 
and 0.728, respectively. Most of the errors made by these models may 
have occurred in the classification between high and low captures, while 
absences are very well classified with true positive rates of 0.996 and 
0.993 for SKJ and YFT, respectively. For BET an accuracy of 0.589 is 
achieved, which is significantly lower than accuracies of the other two 
species. This is probably related to the fact that, since BET is a less 
important target than SKJ or YFT, absences have not been considered for 
the model, and it is the species with the lowest catch number in the input 
catch data. The model built to discriminate between FAL presences and 
absences has achieved a high accuracy (84%), which is key in a model 
that will be used to avoid bycatch of this species. 

After validation of the models, forecasts of catch distribution have 

been estimated, taking as input forecast of oceanographic variables. 
These daily probability maps have been computed for each species. 
Since the training data does not cover the whole study area, only the 
probabilities of the positions that have been included in the training data 
have been included in these forecast maps. Fig. 2 shows an example of 
the output of these models in forecast mode, where the probability of 
finding high catches of SKJ and YFT for one specific day (21st May 2020) 
and for the study area is provided. In this particular example, overall, 
the probabilities of catching SKJ are higher than for YFT. The main 
fishing ground for YFT is found in front of the northern Somalian coast, 
whereas for SKJ tuna, the north and the east areas of Seychelles archi-
pelago are also described as probable fishing areas. 

4. Discussion 

A careful selection of the variables has been the cornerstone of this 
study, since for training accurate ML models, it is essential to use vari-
ables that are good predictors of the feature that is being modelled. The 
variables selected in this study have been shown in previous studies to 
have a significant influence on the species analysed. For instance, the 
importance of temperature has been highlighted in this study and 

Fig. 2. Distribution forecast maps for the 21st of May 2020 in the Indian Ocean for YFT (A) and SKJ (B). The scale in the legend refers to high catch probability. The 
areas that have been predicted to have no captures (absences) have been painted in grey. EEZ areas are shaded in white. 
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according to Arrizabalaga et al. (2015), each tuna species has its own 
temperature preference; thus, YFT prefers higher surface temperatures 
(above 25 ◦C) than BET and SKJ (between 20 and 28 ◦C). In the case of 

silky shark, its temperature preference in the Indian Ocean is between 28 
and 30 ◦C (Lezama-Ochoa et al., 2016). Regarding the salinity, it can 
influence the large-scale spatial distribution of tunas (Druon et al., 2017; 
Fromentin et al., 2014; Maury et al., 2001; Reygondeau et al., 2012; 
Vahabnezhad et al., 2023) and silky sharks (Lezama-Ochoa et al., 2016). 
Although the mechanisms through which salinity could affect the dis-
tribution of tuna and silky shark remain unclear, it could be a proxy of 
other underlying processes. In a study focused on the tropical Atlantic, 
Maury et al. (2001) suggested that low salinities induced by fluvial 
water supplies could indicate favourable trophic areas for juvenile tuna 
in the Gulf of Guinea, or that it could be related to osmotic regulation. 
Lopetegui-Eguren et al. (2022) suggested that the presence of a shark 
species in low-nitrogen waters could be explained by its foraging 
behaviour as a predator using vision for feeding. Tropical tunas, which 
are also visual predators, could prefer oligotrophic waters for easier 
localisation of prey aggregations when diving. This is again in 

Table 3 
Variables selected for each species in the Indian Ocean based on the CFS method together with the values of the F and SUS statistics. The variables were ranked 
according to F (the number of folds for which each variable was selected).  

SKJ YFT BET FAL 

Predictor F SUS Predictor F SUS Predictor F SUS Predictor F SUS 

SST 10 0.0078 
Oxygen concentration 
integrated at 10 m 10 0.0080 Silicate at 150 m 10 0.0068 Latitude 10 0.0080 

Temperature at 50 m 10 0.0078 Temperature at 50 m 10 0.0079 Salinity at 50 m 10 0.0067 Salinity at 100 m 10 0.0066 
Month 10 0.0075 Nitrate at 50 m 10 0.0078 Temperature at 50 m 10 0.0066 SST 10 0.0052 
Temperature gradient at 

200 m 
10 0.0071 Surface phosphate 10 0.0075 SST 10 0.0055 Bottom temperature 10 0.0037 

Chlorophyll concentration 
integrated at 20 m 

10 0.0069 Month 10 0.0069 Nitrate at 100 m 10 0.0048 Temperature 
gradient at 100 m 

10 0.0029 

Nitrate at 50 m 10 0.0067 Nitrate at 20 m 10 0.0056 Salinity at 200 m 10 0.0047 Phosphate at 50 m 10 0.0026 

Phosphate at 50 m 10 0.0064 SST 10 0.0055 
Oxygen concentration 
integrated at 50 m 10 0.0041 Surface nitrate 10 0.0025 

Nitrate at 20 m 10 0.0064 Temperature at 150 m 10 0.0051 Oxygen concentration 
integrated at 175 m 

9 0.0094 Salinity at 200 m 9 0.0040 

Temperature gradient at 
150 m 

10 0.0061 Phosphate at 175 m 10 0.0050 Phosphate at 10 m 7 0.0058 Silicate at 100 m 9 0.0026 

Sea level anomaly 10 0.0061 Longitude 10 0.0048 Phosphate at 150 m 5 0.0070 
Current speed at 
150 m 9 0.0026 

Phosphate at 200 m 10 0.0060 
Temperature gradient at 
100 m 10 0.0046    

Temperature 
gradient at 10 m 8 0.0023 

Nitrate at 200 m 10 0.0054 Temperature gradient at 
50 m 

10 0.0038    Mixed layer depth 8 0.0021 

Oxygen concentration 
integrated at 100 m 

10 0.0052 Temperature at 100 m 10 0.0038    Silicate at 200 m 7 0.0033 

Temperature gradient at 
50 m 10 0.0048 Bottom temperature 10 0.0037    Sea level anomaly 6 0.0029 

Temperature gradient at 
100 m 

10 0.0047 Silicate at 50 m 10 0.0032       

Silicate at 50 m 10 0.0047 Chlorophyll concentration 
integrated at 50 m 

9 0.0069       

Oxygen concentration 
integrated at 50 m 

10 0.0042 Oxygen concentration 
integrated at 50 m 

9 0.0055       

Salinity at 50 m 10 0.0038 
Oxygen concentration 
integrated at 125 m 9 0.0046       

Thermocline intensity 10 0.0028 Sea level anomaly 8 0.0056       
Surface oxygen 

concentration 
9 0.0059 Thermocline intensity 7 0.0019       

Temperature at 100 m 9 0.0051          
Silicate at 100 m 9 0.0051          
Chlorophyll fronts 7 0.0034           

Table 4 
Mean accuracies and their standard deviations after the 5 × 10-fold cross- 
validation of each model.   

SKJ YFT BET FAL 

Random Forest 0.718 
(±0.76) 

0.728 
(±0.7) 

0.589 
(±1.97) 

0.842 
(±0.77) 

SMO 0.463 
(±1.18) 

0.439 
(±1.13) 

0.535 
(±1.65) 

0.671 
(±0.01) 

Multilayer 
Perceptron 

0.714 
(±1.15) 

0.708 
(±1.73) 

0.546 
(±2.28) 

0.668 
(±1.66) 

Naïve Bayes 0.436 
(±1.16) 

0.415 
(±1.18) 

0.553 
(±1.99) 

0.655 
(±0.51)  

Table 5 
Cross-validation results for each tuna species and the silky shark with accuracy (acc.), TPR and FPR values for high and low catch and absence (abs.) classes. Note that n 
refers to the number of observations accounted for each species model and that the standard deviation is indicated in brackets.   

SKJ (n = 19,140) YFT (n = 16,265) BET (n = 6847) FAL (n = 15,338) 

Acc. 0.718 (±0.76) 0.728 (±0.7) 0.589 (±1.97) 0.842 (±0.77)  
TPR FPR TPR FPR TPR FPR TPR FPR 

HIGH 0.571 0.201 0.560 0.184 0.586 0.407 0.863 0172 
LOW 0.594 0.21 0.641 0.217 0.593 0.414   
ABS. 0.996 0.013 0.993 0.013   0.828 0.137  

N. Goikoetxea et al.                                                                                                                                                                                                                            



Ecological Informatics 81 (2024) 102577

7

accordance with their vertical distribution, and it highlights the 
importance of the oxygen concentration as a limiting factor for the 
three tropical tunas, as shown in the literature (Chan, 2023; Druon et al., 
2017). Oxygen affects important biological processes and thus de-
termines the spatial distribution of tunas (Bard et al., 1998; Barkley 
et al., 1978; Boyce et al., 2008; Brill, 1994; Stramma et al., 2012), 
particularly in tropical areas where it is considered a good predictor for 
vertical and horizontal limitations due to tunas' physiological needs 
(Reilly and Fiedler, 1994). The trophic variables related to food avail-
ability and energy transfer efficiency, such as chlorophyll concentra-
tion integrated at 20 m and 50 m (Druon et al., 2017; Fernandes et al., 
2013b; Heneghan et al., 2021; López et al., 2020), were selected for YFT 
and SKJ, respectively in accordance with the vertical distribution of 
these species. In accordance with Zainuddin et al. (2017) tunas show a 
preferential distribution near strong chlorophyll fronts. In the case of 
the thermocline, its intensity has been selected for SKJ and YFT, but not 
for BET. These results could be related with their respective vertical 
distributions patterns in tropical areas (Bard et al., 1998): the most 
frequent depth of BET is mainly below the thermocline (Hampton et al., 
1998) while the preferred depth of YFT and SKJ is near or above the 
thermocline (Schaefer et al., 2009; Song et al., 2008). Finally, the sea 
level, which has been also selected as a predictor for some species, has 
been related to the presence of tuna juveniles (López et al., 2020). The 
sea level anomaly can be considered as a proxy of the presence of 
mesoscale eddies. These rotating water masses influence the surround-
ing ecosystems by regulating the horizontal and vertical dynamics of the 
water column. As such, it has been observed that the increasing op-
portunities for foraging driven by certain eddies lead to an aggregation 
of pelagic predators (Arostegui et al., 2022). 

Regarding the performance of the models, the forecast maps previ-
ously analysed for both target tropical tunas identified the area off the 
Somalian coast as being a probable high catch area. This is a well-known 
fishery area for YFT tuna, either on free school (Vahabnezhad et al., 
2023) or with FADs (Fonteneau et al., 2002). Similarly, it has been 
described as a feeding area for migratory pelagic species such as SKJ 
(Druon et al., 2017) during the summer monsoon season, when the 
upwelling of the area reduces SST and increases biological productivity 
(Young et al., 2015). Moreover, the model seems to successfully predict 
SKJ catch areas off the south coast of Somalia (around 0◦-5◦N and 50◦- 
55◦E) in accordance with Orue et al. (2020), who also showed high 
probabilities of finding tropical tunas in this area in May. Even though 
the models built to forecast tropical tuna distribution in the Indian 
Ocean successfully predict the main catch areas of these target species, 
they fail to forecast other catch areas. However, they are very good at 
predicting areas with no presence of the studied species. This is desirable 
due to the high cost (fuel consumption and emissions) of sailing to 
anticipated fishing grounds in areas where there is no tuna or where are 
low biomasses (Basurko et al., 2022; Granado et al., 2024). 

The need to adapt to climate change and contribute to its mitigation 
was highlighted in a review by the FAO (Barange et al., 2018). The 
adaptation of the tuna fishing industry may be crucial, considering that 
changes in the distribution of fish species are already being observed 
(Baudron et al., 2020; Chust et al., 2019; Erauskin-Extramiana et al., 
2020) and may be exacerbated in the near future (Erauskin-Extramiana 
et al., 2023; Lezama-Ochoa et al., 2016). The models developed 
following the presented methodology might help to improve the fishing 
industry's capacity for adapting to climate change by regularly updating 
species distribution forecasts based on up-to-date data. The distribution 
forecast maps built in this study could be a step forward to identify 
probable fishing areas and could be useful for tracking changes in the 
spatio-temporal distribution of target tuna species. This change in the 
spatial distribution of tunas will also affect the distribution of fishing 
effort. Therefore, given the direct relationship between distances trav-
elled and fuel costs, any changes in the distance to fishing grounds 
would have a direct impact on the economic performance of the fishery 
(Chan, 2023). Indeed, despite political recognition of the need to 

address climate change adaptation, climate-adaptation targets in fish-
eries management have not been set (Bryndum-Buchholz et al., 2021). 

Our approach is in line with the three main fisheries adaptation 
strategies identified in the literature (Galappaththi et al., 2022): coping 
mechanisms (e.g. change of fishing grounds), adaptive strategies (e.g. 
incorporation of technology); and management responses (e.g. adapta-
tion planning). These adaptation strategies can help reduce fuel con-
sumption per landed tonne of fish and, therefore, the carbon footprint of 
fisheries to reduce the impact of the fishing fleets on climate change 
(Palomares et al., 2021; Vinuesa et al., 2020). Indeed, most of the fuel 
consumption of purse seiners targeting migratory pelagic species is 
related to time sailing to the fishing ground or finding fish (Bastardie 
et al., 2022). Hence, routing methods based on target species distribu-
tion models, such as the models built in this study, appear as the most 
suitable approach to reduce the distance and time at sea spent searching 
for fishing grounds as suggested in Granado et al. (2024). However, to 
the best of our knowledge, there are no tuna models in the literature that 
differentiate between the main three tuna species and bycatch, based 
solely on environmental data. Thus, the proposed ML models could 
enable the individual consideration of the main tuna species and the 
predominant bycatch species. This distinction provides additional flex-
ibility when defining routes, enabling the selection of optimal fishing 
grounds according to the commercial interest for each species while also 
mitigating bycatch. 

Similarly, habitat prediction of bycatch species could reduce un-
wanted catches of vulnerable species such as silky sharks. In addition, 
this type of predictions could aid in illegal fishing detection (Watson 
et al., 2023). Consequently, distribution forecast maps could be used as 
efficient spatial management strategies when planning fishing opera-
tions. This would maintain similar yields for target species while 
simultaneously reducing interactions with vulnerable species. Indeed, 
the efficacy of spatial management strategies remains a priority research 
area in tRFMOs (Hilborn et al., 2022; Kaplan et al., 2014; Lopetegui- 
Eguren et al., 2022; Tolotti et al., 2015). Having models for different 
target and bycatch species could help build a real-time decision-making 
system that bears allocated quotas in mind. The reduction of fuel con-
sumption due to less time spent searching for fishing grounds would help 
mitigate climate change caused by the fishing industry and reduce 
operating costs (Granado et al., 2021). Nevertheless, it must be 
considered that this kind of models learn from historical catch data, and 
if the data used to train them is not significant enough, the models will 
not be able to make good predictions. Considering this fact, performing 
periodic updates of the models with new catch data is desired to improve 
their performance. 

Nowadays, an increasing number of ML techniques are being applied 
in marine ecology (Rubbens et al., 2023) that could be interesting to be 
tested in future studies. Likewise, exploration of spatio-temporal 
modelling (e.g. geographical RF, eXtreme Gradient Boosting or Gau-
sian Process boosting) (Georganos and Kalogirou, 2022; Li, 2022; Sig-
rist, 2022), and performing spatial and temporal cross validation could 
help to better understand the predictive performance of the models in 
different fishing dates and positions. Further research on recent ap-
proaches to interpret model predictions could contribute to better un-
derstand the spatio-temporal changes and mechanisms of the studied 
species (Lundberg and Lee, 2017). While, exploring interpretable ML 
tools, such as Shapley additive feature explanations (SHAP) for assessing 
the predictor marginal effects (Aria et al., 2021; Lundberg and Lee, 
2017) could be useful to evaluate the importance of selected environ-
mental variables on the distribution of each species. Finally, a step 
forward in this research topic would be to evaluate whether the inclu-
sion of the proposed models when planning a fishing trip, result in the 
reduction of searching effort and bycatch, ultimately defining more 
efficient routes. This can be achieved by comparing the efficiency of 
suggested routes provided by some routing algorithm that use the pro-
posed models with i) those that do not utilize any ML model outputs 
(historical routes recorded by vessel monitoring systems); ii) those that 
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consider tuna distribution without distinguishing between species as 
suggested in Granado et al. (2024). 
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Arregui, I., Goñi, N., Chifflet, M., 2019. Migration patterns of yellowfin, skipjack and 
bigeye tunas in the tropical Atlantic, based on recent tagging and recapture data. 
Collect. Vol. Sci. Pap. ICCAT 76 (6), 903–950. 

Arrizabalaga, H., Dufour, F., Kell, L., Merino, G., Ibaibarriaga, L., Chust, G., Irigoien, X., 
Santiago, J., Murua, H., Fraile, I., Chifflet, M., Goikoetxea, N., Sagarminaga, Y., 
Aumont, O., Bopp, L., Herrera, M., Fromentin, J.M., Bonhomeau, S., 2015. Global 
habitat preferences of commercially valuable tuna. Deep-Sea Res. II Top. Stud. 
Oceanogr. 113, 102–112. https://doi.org/10.1016/j.dsr2.2014.07.001. 

Bakun, A., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: 
opportunity, adaptive response and competitive advantage. Sci Mar. 70 (S2), 
105–122. 

Barange, M., Bahri, T., Beveridge, M.C., Cochrane, K.L., Funge-Smith, S., Poulain, F., 
2018. Impacts of climate change on fisheries and aquaculture: synthesis of current 
knowledge, adaptation and mitigation options. FAO Fisheries and Aquaculture 
Technical Paper No. 627. Rome, FAO, 628 pp.  

Bard, F.X., Bach, P., Josse, E., 1998. Habitat, ecophysiologie des thons: Quoi de neuf 
depuis 15 ans? ICCAT Col Vol Sci Pap. 50, 319–342. 

Barkley, R.A., Neill, W.H., Gooding, R.M., 1978. Skipjack tuna, Katsuwomuns pelamis, 
habitat based on temperature and oxygen requirements. Fish. Bull. 76 (3), 653–662. 

Bastardie, F., Feary, D.A., Brunel, T., Kell, L.T., Döring, R., Metz, S., Eiqaard, O.R., 
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W.R., Brandt, P., Körtzinger, A., 2012. Expansion of oxygen minimum zones may 
reduce available habitat for tropical pelagic fishes. Nat. Clim. Chang. 2 (1), 33–37. 

Sun, C., Hobday, A.J., Condie, S.A., Baird, M.E., Eveson, J.P., Hartog, J.R., Richardson, A. 
J., Stevem, A.D.L., Wild-Allen, K., Babcock, R.C., Yang, D., Yu, R., Mongin, M., 2022. 
Ecological forecasting and operational information systems support sustainable 
ocean management. Forecasting 4, 1051–1079. https://doi.org/10.3390/ 
forecast4040057. 

Sund, P.N., Blackburn, M., Williams, F., 1981. Tunas and their environment in the Pacific 
Ocean: a review. Oceanogr. Mar. Biol. Annu. Rev. 19, 443–512. 

Suuronen, P., Chopin, F., Glass, C., Løkkeborg, S., Matsushita, Y., Queirolo, D., Rihan, D., 
2012. Low impact and fuel efficient fishing-looking beyond the horizon. Fish. Res. 
119-120, 135–146. 

Tolotti, M.T., Filmalter, J.D., Bach, P., Travassos, P., Seret, B., Dagorn, L., 2015. Banning 
is not enough: the complexities of oceanic shark management by tuna regional 
fisheries management organizations. Glob. Ecol. Conserv. 4, 1–7. https://doi.org/ 
10.1016/j.gecco.2015.05.003. 

Vahabnezhad, A., Taghavimothlagh, S.A., Salarpouri, A., Mohammadreza, M., 2023. 
Identifying the ecologically significant habitats of yellowfin tuna (Thunnus 
albacares, Bonnaterre, 1788) of Iranian purse seine fishery in the Gulf of Oman and 
Indian Ocean: an approach using satellite imagery and fishery data. Reg. Stud. Mar. 
Sci. 68, 103257 https://doi.org/10.1016/j.rsma.2023.103257. 

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., 
Langhans, S.D., Tegmark, M., Fuso Nerini, F., 2020. The role of artificial intelligence 
in achieving the Sustainable Development Goals. Nat. Commun. 11 (1), 1–10. 

Watson, J.T., Ames, R., Holycross, B., Suter, J., Somers, K., Kohler, C., Corrigan, B., 2023. 
Fishery catch records support machine learning-based prediction of illegal fishing off 
US west coast. PeerJ 11, e16215. https://doi.org/10.7717/peerj.16215. 

Young, J.W., Hunt, B.P.V., Cook, T.R., Llopiz, J.K., Hazen, E.L., Pethybridge, H.R., 
Ceccarelli, D., Lorrain, A., Olson, R.J., Allain, V., Menkes, C., Patterson, T., Nicol, S., 
Lehodey, P., Kloser, R.J., Arrizabalaga, H., Choy, C.A., 2015. The trophodynamics of 
marine top predators: current knowledge, recent advances and challenges. Deep-Sea 
Res. II 113, 170–187. https://doi.org/10.1016/j.dsr2.2014.05.015. 

Zainuddin, M., Farhum, A., Safruddin, S., Selamat, M.B., Sudirman, S., Nurdin, N., 
Syamsuddin, M., Ridwan, M., Saitoh, S.I., 2017. Detection of pelagic habitat hotspots 
for skipjack tuna in the Gulf of Bone-Flores Sea, southwestern Coral Triangle tuna, 
Indonesia. PLoS One 12 (10), e0185601. https://doi.org/10.1371/journal. 
pone.0185601. 

N. Goikoetxea et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0410
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0410
https://doi.org/10.1016/j.marpol.2021.104829
https://doi.org/10.1016/j.marpol.2021.104829
https://doi.org/10.1093/icesjms/fsad100
https://doi.org/10.1093/icesjms/fsad100
https://doi.org/10.1093/icesjms/fsab065
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0430
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0430
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0430
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0430
https://doi.org/10.1007/978-1-4020-9640-2
https://doi.org/10.1007/978-1-4020-9640-2
https://doi.org/10.2760/60996
https://doi.org/10.2760/60996
https://www.europarl.europa.eu/RegData/etudes/note/join/2014/514002/IPOL-PECH_NT(2014)514002_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/note/join/2014/514002/IPOL-PECH_NT(2014)514002_EN.pdf
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0450
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0450
https://doi.org/10.1111/j.1365-2419.2008.00476.x
https://doi.org/10.1111/j.1365-2419.2008.00476.x
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0460
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0460
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0460
https://doi.org/10.3390/forecast4040057
https://doi.org/10.3390/forecast4040057
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0470
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0470
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0475
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0475
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0475
https://doi.org/10.1016/j.gecco.2015.05.003
https://doi.org/10.1016/j.gecco.2015.05.003
https://doi.org/10.1016/j.rsma.2023.103257
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0490
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0490
http://refhub.elsevier.com/S1574-9541(24)00119-5/rf0490
https://doi.org/10.7717/peerj.16215
https://doi.org/10.1016/j.dsr2.2014.05.015
https://doi.org/10.1371/journal.pone.0185601
https://doi.org/10.1371/journal.pone.0185601

	Kansi_Goikoetxea_etal-2024-Machine-learning-aiding-sustainable
	1-s2.0-S1574954124001195-main
	Machine-learning aiding sustainable Indian Ocean tuna purse seine fishery
	1 Introduction
	2 Material and methods
	2.1 Catch and bycatch data
	2.2 Environmental, geographical, and temporal data
	2.3 Machine-learning pipeline

	3 Results
	3.1 Selected environmental predictors
	3.2 Performance of the models and forecast distribution

	4 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References



