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Abstract: Predictive information on plant diseases could help to reduce and optimize the usage of

pesticides in agriculture. This research presents classification procedures with linear discriminant

analysis to predict three possible severity levels of net blotch in spring barley in Finland. The

weather data utilized for classification included mathematical transformations, namely features of

outdoor temperature and air humidity with calculated dew point temperature values. Historical field

observations of net blotch density were utilized as a target class for the identification of classifiers.

The performance of classifiers was analyzed in sliding data windows of two weeks with selected,

cumulative, summed feature values. According to classification results from 36 yearly data sets,

the prediction of net blotch occurrence in spring barley in Finland can be considered as a linearly

separable classification task. Furthermore, this can be achieved with linear discriminant analysis by

combining the output probabilities of separate binary classifiers identified for each severity level of

net blotch disease. In this case, perfect classification with a resolution of three different net blotch

severity levels was achieved during the first 50 days from the beginning of the growing season. This

strongly suggests that real-time classification based on a few weather variables measured on a daily

basis can be applied to estimate the severity of net blotch in advance. This allows application of

the principles of integrated pest management (IPM) and usage of pesticides only when there is a

proven need.

Keywords: barley; net blotch; classification model; decision support system

1. Introduction

The growing global demand for nutrition and the need for a sustainable and robust
food chain set increasing requirements on modern agriculture. The European agriculture
and food system must follow the Green Deal principles that oblige EU members to find
sustainable solutions for farming. One of the targets is for farmers to optimize chemical
crop protection and minimize the use of pesticides, with the aim of reducing the use and
risk of chemical pesticides by 50% by 2030 [1]. The early detection of plant diseases has
an important role in crop protection. This research presents a data-based classification
approach for predicting the severity of net blotch (Pyrenophora teres), which is one of the
main foliar diseases [2] in spring barley (Hordeum vulgare), limiting its yield.

Progress in computing capacity has enabled the use of complex plant disease detection
systems. Some automated approaches for solving the plant disease detection problem are
presented in [3–6]. In the presented cases, plant diseases are identified based on images
of infected and healthy plants with the utilization of neural networks or deep learning.
Plant disease detection using hyperspectral data and neural networks has been reviewed
by Golhani et al. [7], while Whetton et al. [8,9] have utilized hyperspectral data to measure
yellow rust and fusarium head blight in wheat and barley. The research and data collection
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were performed first in a laboratory [8], after which on-line field measurements were
implemented [9]. In an article by Kamilaris and Prenafeta-Boldú [10], a survey of deep
learning in agriculture was performed and documented with several examples. The authors
discuss that most of the deep learning studies they reviewed were related to computer
vision and image analysis [10]. Deep learning has also been utilized in plant disease and
species detection systems as presented by Keceli et al. [11]. The authors apply a multi-input
network that uses raw images and transferred deep features extracted from a pre-trained
deep model to predict plant type and disease, employing a so-called multi-task prediction
system [11]. Plant disease identification and classification by combining the red deer
optimization algorithm and a deep learning convolutional neural network (ResNet-50)
have been presented by Reddy et al. [12]. The authors used a CNN classifier model to build
a classification model to predict plant diseases from a plant image [12]. Studies on plant leaf
disease detection based on image analysis are also presented in [13–16]. However, these
sophisticated plant disease detection systems may require extensive new measurements
and real-time data transfer facilities. In contrast, this research on plant disease prediction
relies on public weather information and available spatial reference data.

Earlier studies have shown that weather conditions and especially leaf wetness dura-
tion are often considered when estimating the risk of plant diseases. In [17,18], a weather
data-based prediction system for net blotch occurrence in spring barley together with the
most commonly used variables for prediction is discussed in detail. The classification
of two different net blotch severity levels (values of 0.5% and 0.6–5%) has been studied
by Ruusunen et al. [18,19]. In these articles, the selection of variables and classification
potential of different weather variables were also studied. Also, in [20], an analysis was
performed in sliding data windows to identify the most informative length of time window
for the classification task.

In this study, over 26 years of historical net blotch data and weather measurements are
combined, pre-processed and applied to selected classifiers as predictors (model inputs).
Linear discriminant analysis (LDA) is utilized here as a model structure for the classifiers.
LDA has been used earlier in agricultural classification cases, for example, in grain quality
traits in rice [21], a potato diversity study [22] and authentication of food products [23].
Here, the input variables for classifiers were selected based on earlier studies by the
authors [17–20]. The most suitable feature and the most accurate classification method
for three different net blotch severity levels were identified. It was assumed that the most
suitable weather variables identified earlier could be adopted because the phenomenon
(barley net blotch) was the same; however, the most suitable feature may now differ
because the research frame was extended from a two-level classification to a three-level
classification. The main hypothesis was that feasible classification results for net blotch
severity can be achieved by applying linear discrimination analysis. This hypothesis was
tested by building an ensemble of three binary classifiers and one multiclass classifier. As
a potential outcome, when the estimation of net blotch severity can be made early in the
growing season, it will ensure the need and time for planning plant protection measures.

2. Materials and Methods

2.1. Data

Two different data sets were employed in this study, i.e., weather measurements and
field observations of net blotch density. Weather data are available from the open database
of the Finnish Meteorological Institute (FMI) and net blotch observations are from the
database of Natural Resources Institute Finland (Luke). Historical net blotch data collected
by Luke (1991–2017) was utilized in this research. The data set includes information on the
observation year, field location, barley genotype and net blotch severity. Field trials had
been conducted by Luke in various locations across Finland’s different hardiness zones,
with data collection methods following standard Official Variety Trials procedures [24].
The trials included 30 barley cultivars per year, with replicates to ensure robust statistical
analysis. Disease pressure was quantified using a statistical model, accounting for environ-
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mental effects and genotype variability. For this study, net blotch data was scaled into three
categories indicating the amount of net blotch in each data set. In category 1, the maximum
net blotch value was 0.5%, and in categories 2 and 3, the net blotch values were 0.6–5% and
over 5.1%, respectively. One example of the scale for appraising plant disease severity in
cereals is presented in [25]. More about the field experiments and data collection can be
found in [18].

The weather measurements were downloaded from the open database and the closest
weather stations to the fields were selected from the FMI weather station list [26]. It is
worth noting that the net blotch observation data consisted of one value per year while the
weather data consisted of daily observations. Information and locations of the weather
stations related to the source of meteorological measurements can be found in Appendix A.

The data sets were grouped according to the location of the test fields, observation
year and net blotch category (1–3). Data sets with missing information were removed from
this study. The beginning of the growing season varies spatially and temporally in Finland,
and, therefore, the data sets were pre-processed to set the starting day of each data set as
the beginning of the growing season. The beginning of the growing season is determined
here as the time when the mean outdoor temperature remains over +5 ◦C for 10 consecutive
days. A detailed description of the weather data and its pre-processing is presented in [18].
All the data analysis and result evaluation were performed with MATLAB® version R2022a.

The locations of the test fields and the years of the selected weather data by net blotch
severity categories are presented in Table 1. It also shows the division of overall data into
randomly selected (by year) training and test data.

Table 1. Description of the randomly selected training and test data sets, including names of the
Finnish municipalities where the test fields are located, together with the net blotch severity categories
and years corresponding to weather data sets.

Net Blotch Category Training Data Test Data
Location Year Location Year

1

Hämeenlinna
Siikajoki
Siikajoki
Jokioinen
Jokioinen

Mynämäki

1991
1992
1993
2006
2007
2010

Seinäjoki
Seinäjoki

2000
2007

2

Siikajoki
Inkoo
Inkoo

Siikajoki
Mynämäki
Seinäjoki
Seinäjoki
Jokioinen

Inkoo

1991
2002
2005
2010
2011
2011
2013
2013
2017

Siikajoki
Jokioinen
Jokioinen
Jokioinen

2006
2009
2010
2011

3

Siikajoki
Mynämäki
Mynämäki
Jokioinen
Jokioinen
Jokioinen

Mynämäki
Seinäjoki

2012
2013
2014
2014
2015
2016
2016
2016

Inkoo
Mynämäki

Inkoo
Loviisa

Siikajoki
Siikajoki

Inkoo

2003
2009
2012
2014
2014
2015
2015

The downloaded weather data included hourly measured values of the following variables:

• Atmospheric pressure (kPa);
• Relative humidity (RH%);
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• Outdoor temperature (◦C);
• Dew point temperature (◦C).

For this research, the statistical information considered for classification were the daily
maximum values of relative humidity, daily minimum of dew point temperatures and daily
minimum of outdoor temperatures that have been shown to be significantly related to the
occurrence of net blotch severity [19]. The statistical characteristics of these values by each
category are presented in Table 2.

Table 2. General statistics of the considered weather data quantities calculated for each net blotch
category. Data sources for statistical calculations per category, including both training and test data
sets, are presented in Table 1.

Category 1

Mean
Standard
Deviation

Minimum Maximum

Daily maximum relative humidity
(max RH%)

83.4 16.3 33 100

Daily minimum outdoor temperature
(min ◦C outdoor)

6.2 4.2 −4.6 17.2

Daily minimum dew point temperature
(min ◦C dew point)

3.4 4.7 −11.9 14.3

Category 2

Mean
Standard
Deviation

Minimum Maximum

Daily maximum relative humidity
(max RH%)

91.5 9.5 51 100

Daily minimum outdoor temperature
(min ◦C outdoor)

7.5 4.4 −3.7 18.2

Daily minimum dew point temperature
(min ◦C dew point)

4.5 5.0 −13.6 18.2

Category 3

Mean
Standard
Deviation

Minimum Maximum

Daily maximum relative humidity
(max RH%)

95.3 6.0 65 100

Daily minimum outdoor temperature
(min ◦C outdoor)

7.5 4.0 −4.5 19

Daily minimum dew point temperature
(min ◦C dew point)

4.9 4.7 −12.9 16.2

The resulting number of training data points in the following analysis for each consid-
ered weather variable was 16,100 and for the tests was 9100 data points, respectively. In
total, 75,600 data points were then available for feature generation with the meteorological
data and 36 datapoints were available for the target class, namely historical information on
net blotch occurrence per year.

2.2. Classification Procedure

Classification with an ensemble consisting of three linear discriminant (LD) binary
classifiers and with one LD multiclass classifier was analyzed in this study. Firstly, the
data sets of the net blotch and weather measurements were pre-processed and generated
into the features as presented in detail in [18,19]. Then, the cumulative sums of the feature
values were computed in a 14-day sliding data window and applied to the classifiers as
predictors (inputs). This was repeated in 50 consecutive time windows, with the first data
window starting day being the beginning of the growing season as shown in Figure 1. The
14-day time window was chosen based on earlier research [20] as it consistently offers
enough information to robustly classify different net blotch severities.

The performance of each constructed classifier (in each 14-day time window) and
the most suitable predictors (cumulative summed value of features during days 1–14)
was evaluated by accuracy, precision and recall metrics for training and test data. The
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classification procedure was applied with the three binary classifiers forming an ensemble
classifier and with one multiclass classifier in every 50 data windows. The binary classifiers
used were ‘Category 1 vs. rest’, ‘Category 2 vs. rest’ and ‘Category 3 vs. rest’. The ensemble
classifier was generated by aggregating the outputs of those three binary classifiers with
arithmetic and geometric averages. The tested classification procedure is presented in
Figure 2. This workflow was applied to identify the structure and parameters of the three
binary LD-classifiers and one LD-multiclass classifier.

ff
ff

x

t0 = 1 t = 14 t0 = 50 t = 63

1 5 10 15 50 55 60 64

Time [days from the beginning of the growing season]

x

Cumulative sum of the feature 
values (marked as ’x’) used as 
inputs (predictors) of the
classifiers

x

x

x x
x

x
x

xx
x x

x
x

x

Cumulative sum of the feature 
values (marked as ’x’) used as 
inputs (predictors) of the
classifiers

x

x

x x
x

x
x
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x

x x

Time window t0 = 1 Time window t0 = 50

Training data 
pre-processing

Feature 
generation

Performance 
assessment

Selection of the
best classifier

For each net blotch category

For each feature subset and
for each predictor combination

For each trained classifier:
Calculate accuracy precision and recall of
5-fold cross-validation for training and test data

For each variable subset

Starting
day = 
50?

Set next 
starting day

Training 
LD-classifiers

Net blotch dataWeather data

No Yes Save the best classification results 
and related classifier’s structure for each 
time window

For current time window

Figure 1. Illustration of data analysis in 50 successive sliding time windows through the growing season.
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Figure 2. Analysis procedure for the tested classifiers.

2.2.1. Feature Generation

In [18], it has been presented that the separation ability of the original weather variables
is insufficient to predict the appearance of net blotch, and, therefore, feature generation must
be performed. In practice, this means that new computational variables were generated
from the original data by mathematical operations to reveal the information content of
the data. The same feature generation procedure as described in previous studies [18–20]
was utilized here for the above-listed variables. The features were generated for the
selected variables with different mathematical operations, such as addition, subtraction,
multiplication, division, involution, logarithm, square root and combinations of the above.
More information about the feature generation methods in general can be found, for
example, in [27–31]. The feature generation method used in this study is presented by
Ruusunen [32]; the applied feature basis functions for this study are listed in Appendix B.
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2.2.2. Linear Discriminant Classifiers

Linear discriminant analysis (LDA), which is a supervised learning algorithm and
can be used for classification tasks, was utilized for data classification in this research.
LDA is a statistical technique based on Fisher’s linear discriminant. Details of Fisher’s
discriminant can be found in [33,34]. LDA can be used to find a linear combination of
predictor variables that separates the classes in a data set. With LDA, the data is projected
onto a lower-dimensional space that maximizes the between-class distance and minimizes
the within-class distance.

Linear discriminant analysis presupposes that each class (Equation (1)) generates data
following a Gaussian distribution. Also, it is assumed that each of the classes has the same
co-variance matrix. To develop a classifier, the fitting function calculates the parameters of
these Gaussian distributions for each class. Once trained, the classifier predicts the classes
of new data by identifying the class with the lowest misclassification cost [35]:

ŷ = argminy=1...K∑
K

k=1 P̂(k|x)C(y|k), (1)

where ŷ is the predicted class; K is the number of classes; P̂(k|x) is the posterior probability
of class k for observation x; and Ĉ(y|k) is the cost of classifying an observation as y when
its true class is k.

For this study, the cost is zero for correct classification and one for incorrect classification.
The posterior probability [35] that data point x belongs to class k is calculated as the

product of the prior probability of class k and the value of the multivariate normal density
function, namely with the posterior probability presented in Equation (2):

P̂(k|x) =





1

((2π)d|Σk|)
1/2





(− 1
2 (x−µk)Σ

−1
k (x−µk)

T

(2)

where |Σk| is the determinant of Σk and Σ−1
k is the inverse matrix.

If P(k) is the prior probability of class k, then the posterior probability of an observation
x (of class k) is as follows:

P̂(k|x) =
P(x|k)P(k)

P(x)
(3)

where P(x) is the normalization constant, namely, the sum over k of P(x|k) P(k).

2.2.3. Classification Model Structures

Two different classification structures, namely an ensemble classifier and multiclass
classification, were tested in this study. The ensemble classifier comprises usage of the three
binary classifiers for each net blotch category as presented in Figure 3. Particularly, each of
the three binary LD classifiers are trained to classify between the net blotch category and
the two other categories. These binary classifiers then perform the one-vs.-rest classification
task. In the case of the ensemble model, the tested aggregation operations for soft voting
with posterior probabilities for each category were the arithmetic mean and geometric
mean. Finally, the argmax of the sums of the predicted post probabilities determines the
output of the ensemble classifier. The binary classifiers were trained with 23 years of
measured data and tested with 13 years of data (see Table 1).

For the multiclass classification, a single classifier was identified for all three classes,
namely, the net blotch categories. Here, the function fitcdiscr in MATLAB® was utilized
in its default mode. Predictions, namely the posterior probabilities of both classifiers,
were achieved using the predict function. In the case of the multiclass classifier, the class
exhibiting the highest posterior probability was selected as the output of the classifier.
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  TPTP + FP

𝑅𝑒𝑐𝑎𝑙𝑙 =  TPTP + FN  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = TP + TNTP + TN + FP + FN

ff

Weather data

Net blotch data

Binary classifiers

1 vs. rest 2 vs. rest 3 vs. rest

Combination of predictions

Multiclass classifier

Prediction of net blotch severity

Figure 3. Tested classifier structures.

2.2.4. Performance Assessment

Classification performance was assessed with metrics related to precision, recall and
accuracy. Precision is the proportion of classifications that are truly correct. It can be
computed as the number of positive hits divided by the total number of positively predicted
observations [36]:

Precision =
TP

TP + FP
(4)

where TP = True Positives and FP = False Positives (observations that are classified as
positive but are truly negative).

Recall is the proportion of truly positive identifications divided by the total number of
observations belonging to the class. Recall can be computed as [36] follows:

Recall =
TP

TP + FN
(5)

where TP = True Positive elements and FN = False Negative (observations that are classified
as negative but are truly positive).

Accuracy is a common metric in classification. It presents the proportion of correctly
estimated classifications from the total number of classified objects. The equation for
accuracy can be presented as [36]

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP = True Positive elements; TN = True Negative elements; FP = False Posi-
tive (observations that are classified as positive but are truly negative); and FN = False
Negative elements.

3. Results

The identified, best-performing features and the optimal number of predictors accord-
ing to the analysis (Figure 2) are presented in Table 3 when starting day 13 is applied. It is
important to notice that the features utilized vary across different data windows in these
results. In this study, starting day 13 resulted in the best classification results in general.

Table 3. Final model structures and identified predictors (feature values during selected days in a data
window between 1–14) when starting day 13 (from the beginning of the growing season) was applied.

Model Structure Binary, Category 1 Binary, Category 2 Binary, Category 3 Multiclass

Selected feature ln(min ◦C outdoor) ln(min ◦C outdoor)
(min ◦C

outdoor–min
◦C dewpoint)

ln(min ◦C outdoor)

Selected running
numbers of days
from the start of a

data window

11–14 6–14 1–11 11–14

Number of
selected predictors

4 9 11 4
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Precision, recall and accuracy were calculated across various time windows for both a
multiclass classifier and two distinct ensemble classifiers. The ensemble classifiers differ
in their aggregation operation, utilizing both arithmetic and geometric means. The classi-
fication results for every time window are presented in Appendices C–E. As an example,
the accuracy of the time window with starting day 13 is presented in Figure 4 (multiclass
classifier) and Figure 5 (ensemble classifier). The ensemble classifiers with the arithmetic
mean and geometric mean as an aggregation method had the same accuracy in the selected
time window and, therefore, only one confusion matrix is presented for the ensemble
classifiers. In confusion matrices, the classification result (predicted category) is named
“Output class” and the real category is named “Target Class”.

ff

 
 

 
 

1 2 3 1 2 3

Figure 4. Confusion matrix (green for correct, red for incorrect) and accuracy of the multiclass
classifier starting on day 13 from the beginning of the growing season.

1 2 3

Ou
tp

ut
 C

la
ss

1 2 3

Ou
tp

ut
 C

la
ss

0 5 10 15 20 25 30 35 40 45 50
0

50

100
Training data

0 5 10 15 20 25 30 35 40 45 50
Time [days]

0

50

100
Test data

Figure 5. Confusion matrix (green for correct, red for incorrect) and overall accuracy of the ensemble
classifier with the geometric mean as the aggregation method starting on day 13 from the beginning
of the growing season.

The confusion matrix for the multiclass classifier indicates that 21 correct classifications
out of a total of 23 instances in the training data were achieved. The matrix reveals two
misclassifications where the predicted category was 2, whereas the correct category should
have been 3. In the test data, the multiclass classifier achieved 10 correct classifications out
of a total of 13. Three misclassifications occurred, with one instance where the predicted
class was 2 instead of 3, and two instances where the predicted classes should have been
categories 1 and 2, respectively. The overall accuracy of the multiclass classifier was 91.3%
on the training data and 76.9% on the test data. The precision and recall for categories
1, 2 and 3 were as follows:

• 100%, 82% and 100% (precision);
• 100%, 100% and 75% (recall).

The precision and recall for the training data and test data were as follows:
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• 100%, 75% and 75% (precision);
• 50%, 75% and 85.7% (recall).

The confusion matrix for the ensemble classifier (Figure 4) shows 100% overall accuracy
in both training and test data, indicating perfect classification with the available data.
During the sliding window starting on day 13, both ensemble classifiers achieved 100%
precision and recall in both training and test data.

The overall accuracy of the best-performing classifiers for the whole analyzed time
period is presented in Figure 6. The multiclass classifier is denoted by ‘x’ and a red line,
while the ensemble classifiers using the arithmetic mean and geometric mean for the
aggregation of binary classifications are represented by ‘o’ with a black line and ‘*’ with a
blue line, respectively.

1 2 3

Ou
tp

ut
 C

la
ss

1 2 3

Ou
tp

ut
 C

la
ss

0 5 10 15 20 25 30 35 40 45 50
0

50

100
Training data

0 5 10 15 20 25 30 35 40 45 50
Time [days]

0

50

100
Test data

Figure 6. Overall accuracy of the best-performing ensemble (blue and black o-lines) and multiclass
classifiers (red x-line).

4. Discussion

While the ensemble classifier utilizing the geometric mean as the aggregation method
consistently exhibits strong performance across almost all considered time windows, the
accuracy of the multiclass classifier is comparatively the lowest. Notably, the ensemble clas-
sifier with the arithmetic mean achieves 100% overall accuracy for several days. However,
it is worth noticing that the prediction results obtained with the geometric mean as the
aggregation method in the ensemble classifier are generally better (mostly 100% in overall
accuracy with test data) than those with the arithmetic mean. Accuracy of the multiclass
classifier reaches its maximum with test data at starting day 14.

According to the results presented in Table 3, the identified final model structures indicate
that similar features have been independently found through the analysis procedure. Notably,
in every constructed classifier, the optimal feature includes the daily minimum temperature. In
three out of four model structures, the mathematical operation used to generate this feature is
the natural logarithm (ln). Generally, outdoor temperature is related to dew point temperature
and thus to weather conditions affecting the occurrence of net blotch. Additionally, the
optimal predictors selected for these classification models are mainly from the end of the
two-week period. This result is logical since calculating cumulative sums of time series tends
to maximize variation between the resulting data vectors at the end.

A potential uncertainty related to the performance of the classifiers is the distance
between weather stations and the fields. Future research aims to quantify this uncertainty
by analyzing the effects of location on meteorological measurements concerning barley
field measurements. Furthermore, research on the transferability of the presented data-
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based methodology to other climate areas is of interest and requires ensuring accurate
reference measurements related to the occurrence of net blotch. Additionally, generalizing
the presented data-based methodology for predicting other plant diseases that depend on
meteorological phenomena is a future interest.

While this research focused on applying variations of linear discriminant classifiers to
the problem, many other advanced data-based classification model structures are available,
including neural networks (NN), support vector machines (SVM), decision trees, k-nearest
neighbors and quadratic discriminant analysis. However, a recent study in [19] has strongly
indicated the existence of linear separability for this classification task when utilizing
mathematical transformations of meteorological data. Therefore, linear classifiers seem to
provide the high accuracy and robustness that are key properties together with applicable
model complexity to enable the development of predictive and real-time plant disease
warning systems for the future.

Based on the results presented on the prediction of net blotch in spring barley in
Finland utilizing meteorological data, the following conclusions can be derived:

1. The results strongly suggest that meteorological data contain sufficient information
for the classification of net blotch occurrence in advance during the two weeks from
the start of the growing season in Finland.

2. It can be further supposed that the three severity levels of net blotch studied here are
linearly separable when the classification is based on mathematical features derived
from meteorological data applying linear discriminant analysis.

3. Based on the analyzed data, the ensemble of discriminant classifiers generally outper-
formed the single multiclass classifier in terms of overall accuracy.

4. In ensemble classification and with the considered predictors, the suggested aggrega-
tion method for this purpose is the geometric mean.

5. By utilizing linear discriminant analysis, an early warning system for barley net blotch
severity can be implemented using public weather data as the input.

Future research will focus on further validation of the resulting predictive modelling
approach with new measurements. This will also involve research on the easy applicability
and automatic calibration of the proposed methodology.
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Appendix A

Data Sources

The weather data used was downloaded from the FMI open database: https://www.
ilmatieteenlaitos.fi/havaintojen-lataus#!/ accessed on 2 October 2022

Weather stations nearby test fields are located as follows:
Hämeenlinna: “Hämeenlinna Lammi Pappila” FMI weather station

Location: Latitude 61.05408, Longitude. 25.03844
Inkoo: “Inkoo Bågaskär” FMI weather station

Location: Latitude 59.93114, Longitude 24.01408
Loviisa: “Porvoo Emäsalo” FMI weather station

Location: Latitude 60.20382, Longitude 25.62546

https://www.ilmatieteenlaitos.fi/havaintojen-lataus#!/
https://www.ilmatieteenlaitos.fi/havaintojen-lataus#!/


Agriculture 2024, 14, 1779 11 of 18

Mynämäki: “Turku airport” FMI weather station until 2011 and “Kaarina, Yltöinen” FMI
weather station 2012–2017.

Location: Latitude 60.51565, Longitude 22.27916
Jokioinen: “Jokioinen” FMI weather station.

Location: Latitude 60.81397, Longitude 23.49825
Seinäjoki: “Seinäjoki, Pelmaa” FMI weather station.

Location: Latitude 62.93808, Longitude 22.48878
Siikajoki: “Siikajoki, Revonlahti” FMI weather station.

Location: Latitude 64.68421, Longitude 25.08919
Please see the selected data sets and years in Table 1

Appendix B

Feature Basis Functions

features (1) = x − y;
features (2) = x − z;
features (3) = y − z;
features (4) = (x − y) × y;
features (5) = (y − x) × z;
features (6) = (z − x) × z;
features (7) = (y − z) × z;
features (8) = (z − y) × x;
features (9) = (x − z) × y;
features (10) = ln(x);
features (11) = ln(y);
features (12) = ln(z);
features (13) = x × y;
features (14) = x × z;
features (15) = x × y × z;
features (16) = y × z;
features (17) = ln(x) − ln(y);
features (18) = ln(x) − ln(z);
features (19) = ln(y) − ln(z);
features (20) = ln(x) − ln(y) × ln(z);
features (21) = ln(y) − ln(x) × ln(y);
features (22) = ln(z) − ln(x) × ln(z);
features (23) = ln(y) − ln(z) × ln(z);
features (24) = ln(z) − ln(y) × ln(x);
features (25) = ln(x)/ln(y);
features (26) = ln(x) × ln(y);
features (27) = ln(x) × ln(z);
features (28) = ln(x) × ln(y) × ln(z);
features (29) = ln(y) × ln(z);
features (30) = sqrt(x);
features (31) = sqrt(y);
features (32) = sqrt(z);
features (33) = sqrt(x) − sqrt(y);
features (34) = sqrt(x) − sqrt(z);
features (35) = sqrt(y) − sqrt(z);
features (36) = sqrt(ln(x));
features (37) = sqrt(ln(y));
features (38) = sqrt(ln(z));
features (39) = sqrt(x)/y;
features (40) = x/z;
features (41) = y/z;
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features (42) = (x × y)/z;
features (43) = (x × z)/y;
features (44) = (y × z)/x;
features (45) = sqrt(x)/sqrt(y);
features (46) = sqrt(x)/z;
features (47) = (y/x)2;
features (48) = (sqrt(x) × y)/z;
features (49) = (sqrt(x) × z)/y;
features (50) = (y. × z)/sqrt(x);
features (51) = x2;
features (52) = y2;
features (53) = z2;
features (54) = x2 − y2;
features (55) = x2 − z2;
features (56) = x;
features (57) = y;
features (58) = z;
features (59) = x + y + z;
features (60) = x + y − z;
features (61) = ln(x) + ln(y) + ln(z);
features (62) = sqrt(y) + sqrt(z) + sqrt(x);
features (63) = (x − y)/x;
features (64) = (x/y)3;
features (65) = (y0.7 − 1)/(0.7);
features (66) = (y − z)/y;
features (67) = (z − y)/x;
features (68) = (y(−1) − 1)/(−1);
features (69) = x + y;
features (70) = x + z;
features (71) = y + z;
features (72) = (x + y)/y;
features (73) = (y + x)/z;
features (74) = (y(0.5) − 1)/(0.5);
features (75) = (z(2.5) − 1)/(2.5);
features (76) = (z+y)./x;
features (77) = (y (1.5) − 1)/(1.5);
features (78) = (x + z)./x;
features (79) = (y (−2) − 1)/(−2);
features (80) = (x + z)/y;
features (81) = ln(x) + ln(y);
features (82) = ln(x) + ln(z);
features (83) = ln(y) + ln(z);
features (84) = (ln(x) + ln(y)) × ln(z);
features (85) = (ln(y) + ln(x)) × ln(y);
features (86) = (ln(z) + ln(x)) × ln(z);
features (87) = (ln(y) + ln(z)) × ln(z);
features (88) = (ln(z) + ln(y)) × ln(x);
features (89) = (ln(x) + ln(z)) × ln(y);
features (90) = sqrt(x) + sqrt(y);
features (91) = sqrt(x) + sqrt(z);
features (92) = sqrt(y) + sqrt(z);
features (93) = (x + y) × y;
features (94) = (y + x) × z;
features (95) = (z + x) × z;
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features (96) = (y + z) × z;
features (97) = (z + y) × x;
features (98) = (x + z) × y;
features (99) = (x + z) × x;
features (100) = (x − y) × x;
features (101) = x + (y. × y);
features (102) = y + (x. × z);
features (103) = z + (x. × z);
features (104) = y + (z. × z);
features (105) = z + (y. × x);
features (106) = x + (z. × y);
features (107) = x + (z. × x);
features (108) = x − (y × x);
features (109) = y2 − z.2;
features (110) = x2. × y.2;
features (111) = (x − y) × z;
features (112) = (x + y) × z;
features (113) = (x./y) × z;
features (114) = (x./y) + z;
features (115) = ln(x)/ln(y) × ln(z);
where x, y and z are the three selected weather quantities for each tested variable combination.

Appendix C

Table A1. Results of the Multiclass classifier.

Training Data Test Data

Precision Recall Precision Recall

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

0.80 0.60 0.38 0.67 0.67 0.38 1.00 0.29 0.40 0.50 0.50 0.29

0.83 0.78 0.63 0.83 0.78 0.63 1.00 0.00 0.44 0.50 0.00 0.57

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.63 1.00 0.25 0.71

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.36 1.00 0.50 1.00 0.14

0.60 0.90 0.75 0.50 1.00 0.75 1.00 0.50 0.71 1.00 0.50 0.71

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.86 1.00 0.75 0.86

1.00 0.90 1.00 1.00 1.00 0.88 1.00 0.33 0.56 0.50 0.25 0.71

1.00 0.90 1.00 1.00 1.00 0.88 1.00 0.25 0.63 0.50 0.25 0.71

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.38 0.50 0.50 0.75 0.29

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.29 0.60 0.50 0.50 0.43

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.64 0.50 0.25 1.00

1.00 0.90 1.00 1.00 1.00 0.88 1.00 0.40 1.00 0.50 1.00 0.29

1.00 0.82 1.00 1.00 1.00 0.75 1.00 0.75 0.75 0.50 0.75 0.86

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 0.50 1.00 1.00

1.00 1.00 0.80 1.00 0.78 1.00 1.00 0.33 0.67 0.50 0.50 0.57

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.67 0.50 0.25 0.86

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.71 0.50 0.75 0.71

1.00 0.80 0.86 1.00 0.89 0.75 1.00 0.40 1.00 1.00 1.00 0.14

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 1.00 0.00 0.57

0.83 0.71 0.50 0.83 0.56 0.63 1.00 0.38 0.75 0.50 0.75 0.43

1.00 0.71 0.55 0.83 0.56 0.75 1.00 0.22 0.33 0.50 0.50 0.14

1.00 0.78 0.67 0.83 0.78 0.75 1.00 0.40 0.67 1.00 0.50 0.57
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Table A1. Cont.

Training Data Test Data

Precision Recall Precision Recall

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.17 0.40 1.00 0.25 0.29

1.00 1.00 0.89 1.00 0.89 1.00 1.00 0.33 0.67 0.50 0.25 0.86

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.36 1.00 0.50 1.00 0.14

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.44 1.00 0.50 1.00 0.43

0.86 0.71 0.67 1.00 0.56 0.75 1.00 0.36 1.00 0.50 1.00 0.14

0.33 0.50 0.60 0.17 0.56 0.75 1.00 0.33 0.33 0.50 0.75 0.14

1.00 1.00 0.89 1.00 0.89 1.00 1.00 0.25 0.25 0.50 0.50 0.14

1.00 1.00 0.80 1.00 0.78 1.00 1.00 0.36 1.00 0.50 1.00 0.14

1.00 1.00 0.89 1.00 0.89 1.00 1.00 0.33 0.67 0.50 0.75 0.29

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.50 0.00 0.71

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.60 0.50 0.00 0.86

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.55 0.50 0.00 0.86

0.80 1.00 0.78 0.67 1.00 0.88 1.00 0.00 0.55 0.50 0.00 0.86

0.80 1.00 0.78 0.67 1.00 0.88 1.00 0.00 0.50 0.50 0.00 0.71

0.75 1.00 0.70 0.50 1.00 0.88 1.00 0.00 0.44 0.50 0.00 0.57

0.71 1.00 0.75 0.83 0.89 0.75 1.00 0.29 0.60 0.50 0.50 0.43

1.00 1.00 0.89 1.00 0.89 1.00 1.00 0.00 0.33 0.50 0.00 0.29

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.50 0.50 0.00 0.71

0.80 0.75 0.83 0.67 1.00 0.63 1.00 1.00 0.78 0.50 0.75 1.00

0.25 0.64 0.25 0.17 0.78 0.25 1.00 0.50 0.67 0.50 0.75 0.57

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.67 0.50 0.75 0.57

1.00 0.64 0.57 0.83 0.78 0.50 1.00 0.00 0.17 0.50 0.00 0.14

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.33 0.50 0.75 0.14

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.22 0.00 1.00 0.50 0.00

0.83 0.90 1.00 0.83 1.00 0.88 1.00 0.00 0.50 1.00 0.00 0.57

1.00 0.90 1.00 0.83 1.00 1.00 1.00 0.29 0.40 0.50 0.50 0.29

0.83 0.88 0.67 0.83 0.78 0.75 1.00 0.22 0.00 0.50 0.50 0.00

1.00 0.90 1.00 1.00 1.00 0.88 1.00 0.11 0.00 0.50 0.25 0.00

Appendix D

Table A2. Results of the Ensemble classifier, aggregation with arithmetic mean.

Training Data Test Data

Precision Recall Precision Recall

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 0.89 0.83 1.00 1.00 1.00 0.80 1.00 1.00 1.00 0.86

1.00 1.00 0.73 0.67 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A2. Cont.

Training Data Test Data

Precision Recall Precision Recall

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

1.00 0.90 0.89 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 1.00 1.00 1.00 0.88 1.00 0.80 0.86 0.50 1.00 0.86

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 0.86

1.00 0.90 1.00 1.00 1.00 0.88 1.00 0.80 1.00 0.50 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 0.86

1.00 0.90 1.00 0.83 1.00 1.00 1.00 0.75 0.88 0.50 0.75 1.00

1.00 1.00 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 1.00 0.89 1.00 1.00 0.80 1.00 1.00 1.00 0.86

1.00 0.89 0.88 1.00 0.89 0.88 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 0.83 1.00 1.00 1.00 0.57 1.00 1.00 1.00 0.57

0.80 0.80 0.88 0.67 0.89 0.88 1.00 0.80 1.00 1.00 1.00 0.86

1.00 0.90 1.00 0.83 1.00 1.00 1.00 1.00 0.88 1.00 0.75 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.82 1.00 0.83 1.00 0.88 1.00 0.75 0.88 0.50 0.75 1.00

1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.40 0.83 0.50 0.50 0.71

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.75 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.71

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.88 0.50 0.75 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 1.00 0.75 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 1.00 0.89 1.00 1.00 0.75 0.86 1.00 0.75 0.86

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 0.86

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.80 0.83 0.89 1.00 0.67 0.75 0.83 1.00 0.75 0.71

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 0.89 0.67 1.00 1.00 0.00 0.50 1.00 0.00 0.50 0.86

1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.80 1.00 0.50 1.00 0.86

1.00 1.00 0.73 0.67 0.89 1.00 1.00 1.00 0.88 1.00 0.75 1.00
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Table A2. Cont.

Training Data Test Data

Precision Recall Precision Recall

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Appendix E

Table A3. Results of the Ensemble classifier, aggregation with geometric mean.

Training Data Test Data

Precision Recall Precision Recall

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 0.89 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.73 0.67 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 0.89 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 1.00 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.89 0.88 1.00 0.89 0.88 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.80 0.89 0.89 0.67 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 1.00 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 1.00 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.82 1.00 0.83 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00
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Table A3. Cont.

Training Data Test Data

Precision Recall Precision Recall

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

Category
1

Category
2

Category
3

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.89 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.90 1.00 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 0.73 0.67 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 0.80 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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