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Abstract 

Background  Mastitis is a disease that incurs significant costs in the dairy industry. A promising approach to mitigate 
its negative effects is to genetically improve the resistance of dairy cattle to mastitis. A meta-analysis of genome-wide 
association studies (GWAS) across multiple breeds for clinical mastitis (CM) and its indicator trait, somatic cell score 
(SCS), is a powerful method to identify functional genetic variants that impact mastitis resistance.

Results  We conducted meta-analyses of eight and fourteen GWAS on CM and SCS, respectively, using 30,689 
and 119,438 animals from six dairy cattle breeds. Methods for the meta-analyses were selected to properly account 
for the multi-breed structure of the GWAS data. Our study revealed 58 lead markers that were associated with masti‑
tis incidence, including 16 loci that did not overlap with previously identified quantitative trait loci (QTL), as curated 
at the Animal QTLdb. Post-GWAS analysis techniques such as gene-based analysis and genomic feature enrichment 
analysis enabled prioritization of 31 candidate genes and 14 credible candidate causal variants that affect mastitis.

Conclusions  Our list of candidate genes can help to elucidate the genetic architecture underlying mastitis resist‑
ance and provide better tools for the prevention or treatment of mastitis, ultimately contributing to more sustainable 
animal production.
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Background
Mastitis is an inflammation of the mammary gland and 
udder tissue caused by trauma or infection. As an udder 
disease, mastitis can affect the production of dairy cows 
in many ways, including milk yield, milk composition, 
and milk properties [1–3]. Besides the negative effect on 
milk yield and quality, mastitis is painful to the animal 
and often requires antibiotic treatment and, if persistent, 
may lead to early culling [4]. Meanwhile, both prevention 
and treatment of mastitis are costly [5]. The outcome of a 
mastitis infection is influenced by many factors, includ-
ing the resistance of the host, the pathogen(s) in ques-
tion, the interaction between pathogen and host, and the 
environment [6, 7].

Clinical mastitis (CM) incidence and somatic cell count 
(SCC) are commonly used phenotypes for genetic studies 
on mastitis. CM is often defined as a binary trait, depend-
ing on whether or not a cow shows symptoms of mastitis 
(e.g., clots, flecks, and change of color and consistency of 
milk, udder swelling, pain, fever) within a specific lacta-
tion interval. SCC is the number of somatic cells, primar-
ily leukocytes, in milk. When infection occurs, leukocyte, 
and especially neutrophil count in milk strongly increases 
as an immune response to a mastitis-causing pathogen 
[8]. Because there is no routine direct measurement of 
pathogens nor of immune response, SCC is an indirect 
indicator of mastitis and can be used to detect mastitis 
before clinical symptoms develop (subclinical). However, 
SCC also varies depending on many factors other than 
mastitis, e.g., parity or lactation stage [9]. Somatic cell 
score (SCS) is the log-transformed SCC [10], which has 
been commonly used in genetic evaluation as an indica-
tor trait for mastitis [11]. The heritability of CM is low, 
ranging from 0.02 to 0.12 [6, 7] and its genetic correla-
tion with milk yield is unfavorable, ranging from 0.24 to 
0.55 in Nordic dairy cattle [11]  and 0.45 in first lactation 
French Holstein cattle [12]. Heritability of SCS is also low 
(0.10 to 0.15) [12] but somewhat higher than that of CM, 
and its genetic correlation with milk yield is less unfa-
vorable than for CM (0.1–0.2) [12–14].

Using single nucleotide polymorphism (SNP) array 
genotypes, many association studies have been con-
ducted to identify genetic factors affecting SCS, while 
CM has rarely been considered for such studies. For both 
traits, a high number of quantitative trait loci (QTL) 
have been reported in the animal QTL database (Ani-
malQTLdb, http://​www.​anima​lgeno​me.​org/​cgi-​bin/​
QTLdb/​BT/​index, accessed on February 2023) [15]. 
However, inconsistent findings among studies indicate 
the complexity of finding causal variants underlying mas-
titis resistance in dairy cattle.

The AnimalQTLdb [15] contains 1869 and 569 QTL for 
SCS and CM, respectively [15], with QTL reported on all 

Bos taurus autosomes (BTA) for CM and SCS, except on 
BTA29 for SCS. Some chromosomes are overrepresented 
for these traits (BTA6, BTA12, BTA24, BTA25, BTA28), 
especially for CM [15], however, only a handful of QTL 
are consistently reported across studies. In a systematic 
review on 39 selected mastitis QTL studies, Narayana 
et  al. [16] observed little overlap (0.02%) of candidate 
genes across studies. A QTL for CM and SCS at approxi-
mately 88–89  Mb on BTA6 (based on ARS_UCD1.2 
assembly [17]) has been reported in many studies, includ-
ing in Nordic dairy cattle breeds [18–23], in Nordic and 
Italian Holstein [24], US Holstein [25], German Holstein 
[26], Italian Valdostana Red Pied [27], and French Hol-
stein and Montbéliarde cows [28]. The best plausible can-
didate gene for this QTL is the GC gene, which encodes 
Vitamin D-binding protein [19, 22, 23], but earlier results 
indicate more than one potential causal gene in this QTL 
region, including the NPFFR2 gene [22, 23, 28]. In addi-
tion, a copy number variant (CNV) in GC has been pro-
posed as the potential causal mutation [29]. Information 
on candidate genes and candidate variants for most iden-
tified QTL is still incomplete, as well as knowledge about 
whether the same QTL segregates across breeds.

Lack of reproducibility of QTL identified for mastitis 
traits in AnimalQTLdb [15] between different studies 
and breeds may be due to the complex nature of mastitis 
resistance (low heritability, effects of environment, varia-
tion in the phenotype definition), the segregation of dif-
ferent variants in different breeds, and potential genotype 
by environment interaction effects. Furthermore, the 
specific details of separate studies, e.g., different marker 
densities and variable linkage disequilibrium (LD) struc-
ture between breeds, may lead to identification of differ-
ent QTL intervals, even if the underlying causal variants 
are the same. Finally, the limited power to identify vari-
ants with small effect size may have led to both false neg-
ative and false positive reports.

Recently, GWAS/QTL mapping studies have adopted 
whole genome sequence (WGS) level markers [19, 30], 
which could facilitate the fine mapping of QTL regions. 
However, when applied to a limited number of animals 
and within breeds, these studies have not always yielded 
great improvement in QTL detection and fine mapping, 
due to the limited power in the study design or exten-
sive LD in the population. Meta-analyses that combine 
GWAS summary statistics from multiple studies and 
breeds could increase both the power and precision to 
identify genetic variants affecting mastitis-related traits 
[31]. While GWAS identifies significant genetic mark-
ers, it is only the first step in the journey towards a com-
prehensive understanding of the underlying genetic 
mechanisms. In contrast to human GWAS, post-GWAS 
analysis in livestock studies is limited, primarily due to 

http://www.animalgenome.org/cgi-bin/QTLdb/BT/index
http://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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lack of comprehensive annotation information. How-
ever, a diverse array of post-GWAS methods and strate-
gies can be employed to connect genomic variants to 
trait variation in cattle. One such strategy is using phe-
notype related and tissue specific RNAseq dataset [19, 
32] to prioritize candidate genes. Annotation of variants 
by Variants Effect Predictor (VEP) [33] is another com-
mon option used. Gene analysis developed for human 
studies could also be applied to livestock, as they usually 
only require a GWAS dataset and gene location informa-
tion [34]. Recent projects have brought new annotation 
information of livestock genomes that is useful for post-
GWAS analysis, including cattleGTEx [35], FAANG [36], 
and Bovreg (https://​www.​bovreg.​eu/). However, all these 
resources and methods need to be fine-tuned together 
to maximize the chance to pinpoint the causal genes and 
mutations.

In this study, summary statistics of sequence-based 
GWAS for CM and SCS were combined with single- and 
multi-trait meta-analysis methods to identify sequence 
variants associated with CM, SCS, or both. The total 
number of animals with phenotypes was 30,689 and 
119,438 for CM and SCS, respectively. Various post-
GWAS analyses were conducted to prioritize candidate 
genes and reveal the genetic architecture of mastitis in 
dairy cattle.

Methods
Workflow used in the study
We collected GWAS summary statistics from seven 
partners, including 119,438 records for SCS and 30,689 
records for CM. The workflow of the study is illustrated 
in Fig.  1 and detailed methods are provided below. In 
summary, we performed quality control at the meta-level 
across studies using EasyQC [37]. With the clean data, we 
performed the meta-analysis using a trans-ethnic meta-
regression approach implemented in the software MR-
MEGA [38], a fixed effect model for meta-analysis using 
the software METAL [39], and a multi-trait analysis using 
MTAG [40]. These analyses yielded four outputs, named 
MR-MEGA_CM for meta-analysis of CM, MR-MEGA_
SCS for meta-analysis of SCS, MTAG_CM for multi-trait 
analysis of CM, and MTAG_SCS for multi-trait analysis 
of SCS. For post-GWAS, we applied a gene-based analy-
sis using MAGMA [34], annotation of significant variants 
using Variants Effect Predictor (VEP) [33], genomic fea-
ture enrichment using GARFIELD [41], called CNV using 
an additional dataset, validation with Animal QTLdb and 
other large-scale GWAS, and checked overlap with the 
CattleGTEx database [35]. Using all these results, puta-
tive causal genes and variants were called. Putative causal 
genes were called as genes found by nearest gene or gene-
analysis that are also supported by gene ontology (GO), 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway, or/and mammalian phenotype database (MPD). 
Putative causal variants were called as variants located in 
putative causal genes with support from VEP annotation 
or/and the key variants from the GARFIELD analysis.

Imputing sequence variant genotypes
The genotypes from SNP arrays were imputed to WGS 
level using a two-step imputation approach [42]: first, 
imputation from a medium density (50  k) SNP array 
genotypes to the high-density (HD) BovineHD array 
(approx.777 k) and, second, imputation from the imputed 
HD genotypes to whole genome sequence variants. All 
contributors used the same reference genome for impu-
tation, i.e. ARS-UCD1.2 [17] and the WGS reference 
from the 1000 bull genome project (BGP) Run 7 [43]. 
The number of animals imputed, size and composition of 
reference populations, and imputation software used are 
given (see Additional file 1: Table S1). The map positions 
of the variants were based on the ARS-UCD1.2-assembly 
of the Bos taurus genome [17].

The dataset included summary statistics from seven 
partners: Aarhus University (AU), Natural Resources 
Institute Finland (LUKE), French National Research 
Institute for Agriculture, Food and the Environment 
(INRAE), Federal Institute of Technology Zurich (ETH), 
Research Institute for Farm Animal Biology (FBN), Agri-
culture Victoria (AgVic), and Wageningen University and 
Research (WUR).

Mastitis‑related phenotypes
Both traits, SCS and CM, are biologically similar across 
countries, as shown by the high genetic correlations esti-
mated across countries by Interbull (https://​inter​bull.​
org/​static/​mace_​evalu​ations_​archi​ve/​udder/​uappen-​014.​
html). However, the traits are not recorded in the same 
way in every country and the methods used to define 
the phenotypes analyzed by GWAS also varied between 
countries: phenotypes of cows were either mean per-
formances adjusted for environmental effects, i.e., yield 
deviations (YD), or theoretical phenotypes derived from 
estimated breeding values and accuracy, i.e., deregressed 
proofs (DRP); phenotypes of bulls were progeny-based, 
either DRP or daughter yield deviations (DYD), i.e., mean 
performance of the progeny adjusted for environmental 
effects and breeding value of their dam.

In each country, SCC on each test-day was log-trans-
formed to SCS. Final phenotypes were standardized 
and expressed in genetic standard deviations. The data-
sets provided by each organization are described in the 
following.

https://www.bovreg.eu/
https://interbull.org/static/mace_evaluations_archive/udder/uappen-014.html
https://interbull.org/static/mace_evaluations_archive/udder/uappen-014.html
https://interbull.org/static/mace_evaluations_archive/udder/uappen-014.html
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AU/LUKE
Both SCS and CM were analysed in Holstein, Jersey, and 
Nordic Red breeds. The phenotypes analyzed for associa-
tion were DRPs of bulls [44]. In Denmark, Sweden and 
Finland, clinical mastitis was recorded as 0 = no disease 
or 1 = disease occurred. Records on CM and SCS from 
1st to 3rd lactation were used in the genetic evaluation. 
Separate genetic evaluations were made for Holstein, Red 
Dairy Cattle (RDC), and Jersey. The model for estimation 
of breeding values was a multi-trait random regression 
test-day animal model. See https://​www.​nordi​cebv.​info 
for the details.

INRAE
Both SCS and CM were analysed in Holstein, Mont-
béliarde, and Normande breeds. Data originated from 
the French national database hosted by CTIG at INRAE. 
Test-day SCS were preadjusted for days in milk and aver-
aged per lactation. Clinical mastitis was defined as 0 
(no case) or 1 (at least one case) in the interval between 
10 days before and 150 days after calving. For both traits, 
the genetic evaluation was carried out with an animal 
repeatability model, considering records from the first 
three lactations. Bulls DYD were used for association 
analysis.

Fig. 1  Study workflow. The rectangles show the input data or output result, the diamonds show the analyses performed

https://www.nordicebv.info
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ETH
DRPs of both SCS and CM were analyzed in Brown 
Swiss and Original Braunvieh. CM was assessed as a 
binary trait, i.e., did the cow have at least one masti-
tis in the interval between 10 days before and 150 days 
after calving. In addition to the clinical observation, 
the diagnosis “mastitis” was supported by considering 
the mean (and standard deviation) SCC until lacta-
tion day 150, and the occurrence of a milk sample with 
> 350,000 somatic cells. Observations from lactations 1 
to 5 were considered as repeated measurements. Esti-
mated Breeding Values (EBVs) were estimated using a 
multi-trait animal model. SCS genetic evaluation was 
carried out using a test-day animal model. Breeding 
values were estimated separately for lactations 1, 2, and 
3. Lactation-specific traits were weighed equally and 
aggregated to an average SCS EBV.

FBN
SCS from weekly milk samplings of Holstein were cor-
rected for fixed effects using a repeatability model and 
their means were used as phenotype.

AgVic
SCS from Holstein and Jersey phenotypes were DRP 
derived from a test-day evaluation model. This data 
was provided from the official DataGene processing of 
national dairy data in May 2020.

WUR​
Breeding values for Holstein cows were estimated sepa-
rately for lactations 1, 2, and 3 or higher using a repeat-
ability animal model on SCS test-day records corrected 
for fixed effect. Lactation-specific EBV were combined 
in an SCS index using the following weights: 0.4 EBV_
SCS1st lact * 0.3 EBV_SCS2nd lact * 0.3 EBV_SCS≥3rd lact.

Statistical analysis for association between sequence 
variants and the traits
Genome-wide association analysis was performed 
within each breed on the imputed whole-genome 
sequence variants using mixed linear models [31, 45]. 
Data on cows and bulls were analysed separately and 
considered as independent information, although they 
are related. The model included the fixed effect of the 
variant under examination and a random polygenic 
effect to account for breed stratification and familial 
relationships. The genomic relationship matrix (GRM) 
was constructed using markers from the 50  k chip or 
imputed HD genotypes [31]. The top principal com-
ponents (4–5) derived from GRM were included in 
the model as cofactors in some individual analyses. 

When de-regressed proofs, estimated breeding values, 
or DYD were used as phenotypes, weighted analysis 
based on accuracy was performed. In summary, each 
partner used GCTA-MLMA [46] to conduct an asso-
ciation study. This involved employing a mixed-model 
approach y = 1µ+ bx + g + e . In this equation, y rep-
resents the  vector of trait values, µ is the population 
mean, b is the fixed effect of the candidate SNP being 
tested for association, x is the vector of SNP genotype 
dosages, g represents the vector of  polygenic effects 
captured by the GRM with g ∼ N (0,Gσ 2

g ) , and e is the 
vector of residual errors with e ∼ N (0, Iσ 2

e ) , where G is 
the GRM by the default setting of GCTA, I is identity 
matrix, σ 2

g  is the genetic variance and σ 2
e  is the error 

variance. The SNP with the smallest p-value within a 
peak was assigned as the lead SNP.

Summary statistics quality control
Before meta-analysis, we performed the following qual-
ity control on summary statistics from each partner 
in order to check inconsistencies, for example, to iden-
tify problems with allele frequencies or strand, level 
of breed stratification (lambda values) etc. First, we 
removed imputed variants with minor allele frequency 
(MAF) < 0.5% and imputation accuracy < 0.4, as assessed 
by the R2 given by the different imputation software pro-
grams. Then, the variant effect estimates were standard-
ized by dividing them by the genetic standard deviation 
of the trait, as provided by each partner for each breed 
and trait. Variants with effect size estimates larger than 
three times the genetic standard deviation were removed. 
Lastly, we applied EasyQC on the filtered data following 
the protocol from EasyQC’s developer [37].

Meta‑analysis
We applied two meta-analysis methods to the clean 
summary statistics data, a fixed effect model for a meta-
analysis using the software METAL [39] and a trans-
ethnic meta-regression approach implemented in the 
software MR-MEGA [38]. For METAL, we followed 
recommendations from EasyQC’s protocol [37]. Briefly, 
we ran METAL with the fixed effects method using the 
STDERR command, which weights effect size estimates 
using the inverse of the corresponding standard errors 
and set parameter AVERAGEFREQ to report the average 
allele frequency and set parameter MINMAXFREQ to 
report the minimum allele frequency across all files. For 
MR-MEGA, we used the default setting to run the meta-
analysis but used PCs in the linear regression model to 
estimate the reference allele effect across GWAS. We 
used 4 PCs for CM and 12 PCs for SCS, based on the 
MR-MEGA guideline for the number of PCs to fit to 
equal the number of populations minus 2.
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Multi‑trait meta‑analysis
We used the MTAG software [40], which can take 
account of sample overlap, to perform the multi-trait 
analysis for each breed with summary statistics for both 
CM and SCS and then combined the output afterwards 
with MR-MEGA, which can account for heterogeneity 
in allelic effects. The same significance threshold applied 
for single trait analysis was also applied for the multi-trait 
meta-analysis as − log10(p) > 8.5.

Comparing the QTL
To identify novel QTL, we used two sets of comparison: 
(1) the lead SNPs of MR-MEGA_CM and MR-MEGA_
SCS were directly compared to the lead SNPs from single 
analysis and if the distance of two lead SNPs was less than 
2  Mb, we considered them as overlap QTL, otherwise, 
we defined them as different QTL; (2) the 1 Mb up and 
down-stream region of the lead SNPs from MR-MEGA_
CM, MR-MEGA_SCS, MTAG_CM, and MTAG_SCS 
were compared to the QTL intervals of the same trait in 
Animal QTLdb [15] and if there was not overlap, we con-
sider them as different QTL.

Gene‑based analysis
We ran two types of gene-based analyses: MAGMA [34] 
and eQTL [35]. To setup the database for MAGMA, we 
generated the gene location file using gene coordinate 
information from the bed file downloaded from Ensembl 
v104 [47]. To run MAGMA, we used --gene-model 
multi = snp-wise to test mean SNP associations, test top 
SNP associations, and to combine these two p-values into 
an aggregate p-value. We also used --gene-settings adap-
permp to enable adaptive permutation with a maximum 
of 1,000,000 permutations and a stopping criterion of 
10. In addition to the MAGMA analysis, the significant 
SNPs from single trait meta-analyses and the multi-trait 
meta-analysis were queried against the significant SNPs 
(FDR < 0.05) in a recently published eQTL analysis study 
(https://​cgtex.​roslin.​ed.​ac.​uk/) [35]. The SNPs which 
were significant both in the current study and eQTL 
dataset were retained as potential regulatory variants 
with effect on udder health. The significant genes were 
queried against GO [48], KEGG, and MPD [49].

Variant annotation
Functional consequences of variants were annotated by 
VEP with cache files (version 104) for combined annota-
tion of Ensembl and Refseq transcripts. To help interpret 
coding variants, SIFT scores were predicted. By default, 
the maximum distance to define an up-stream and down-
stream variant to a gene is 3 Kb. We extracted the anno-
tation of all significant SNPs within a 1 Mb region from 
the lead SNPs and looked for variants that were predicted 

by VEP to change the coding sequence or to be located 
within the regulatory elements.

Structure variant calling and estimation of linkage 
disequilibrium
We called structural variants (SV) on chromosome 6 with 
WGS data from 567 animals that were generated in a pre-
vious study [43], which included 123 Nordic Holstein, 60 
Jersey, 175 Nordic Red Dairy cattle, and 209 cattle from 
various other breeds, with approximately tenfold cover-
age. The raw reads were subjected to Trimmomatic 0.38 
[50] with recommended parameters to remove adapter 
sequence and to trim low-quality bases. Then, the clean 
reads were mapped to the cattle reference genome ARS-
UCD1.2 [17] using bwa mem [51] with parameter ‘M’ to 
mark shorter split hits as secondary. BaseRecalibrator 
was applied to the raw alignment bam files using GATK 
3.8 [52]. We applied the smoove (https://​github.​com/​
brentp/​smoove) pipeline to call SVs using the base recali-
brated bam files with default parameters by restricting 
the location to chromosome 6. Then we extracted the SVs 
of the 123 Nordic Holstein from the joint calls of vari-
ous breeds. Meanwhile, we extracted the short variants 
(SNPs and INDELs) of the same individuals from Run8 of 
1000 BGP and combined their genotypes with called SVs. 
To identify GC CNV that were found in a previous study 
[29], we compared the location and length of the CNV 
we found with the one from the previous study and iden-
tified a similar CNV with 3 bp difference and a length of 
12 kb CNV. To infer the copy number of the GC CNV, we 
calculated the fold-change for the CNV by depth relative 
to other regions on the same chromosome using duphold 
(https://​github.​com/​brentp/​dupho​ld), with the resulting 
value doubled and rounded to obtain the copy number. 
We assigned the genotype to CNV following [29] and 
treated 3 copies as 2 copies (wild type) as no cases with 3 
copies were reported in [29] and it could be an estimation 
error due to lower coverage in our dataset compared to 
the previous study [29]. The previous study [29] showed 
incorrect calling of flanking genotypes due to the imbal-
ance of the reference and alternative alleles due to the 
higher copy number of one of the alleles. Thus, we also 
edited the genotype to change the homozygous alterna-
tive allele genotype to a heterozygous genotype for a SNP 
when there was at least one read support for the refer-
ence allele. Finally, we estimated the LD for 72 common 
Nordic Holstein cattle for both the GC CNV and SNP 
genotypes within a window of 1000  Kb around the GC 
CNV.

Genomic feature enrichment analysis
We applied a genomic feature enrichment analysis for 
CM and SCS using GARFIELD [41]. Data were generated 

https://cgtex.roslin.ed.ac.uk/
https://github.com/brentp/smoove
https://github.com/brentp/smoove
https://github.com/brentp/duphold
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in three steps for input into GARFIELD. (1) LD files: 
low R2 (≥ 0.1) to ensure independence of the variants to 
be tested, and high R2 (≥ 0.8) for further annotation of 
variants. These two files were obtained by Plink using 
Holstein animals from Run8 of the 1000 BGP animals 
(closely related individuals were removed) [31]. (2) MAF_
TSS distance file: the minor allele frequency (MAF) of 
Holstein animals from Run8 of 1000 BGP was extracted; 
the transcription start site (TSS) distance was calculated 
by bedtools by finding the closest distance between the 
SNP location and the TSS, as annotated in Ensembl v104 
[47]. (3) Annotation file: the regulator elements and CpG 
islands annotation file were reformatted for GARFIELD. 
The predicted regulatory elements from ATAC-seq, 
H3K4me3, H3K27me3, H3K27ac, H3K4me1, and CTCF 
were retrieved from a recently published data set [53]. 
We also included CpG islands from the UCSC genome 
browser. Then, we defined all annotation as genomic fea-
tures to perform the enrichment analysis and prioritize 
the possible candidate variants by estimation of the key 
variants that drive the enrichment features.

Results
General information about studies involved
The GWAS summary statistics in this study comprised 
CM and SCS association tests with imputed whole 
genome sequence variants following harmonized analy-
sis procedures (see Additional file 1: Table S1) from seven 
partners. These association studies were conducted in 
bulls (female progeny test data) and cows from six dairy 
breeds. The number of bulls and cows submitted by 
each study participant ranged from 134 to 55,547 indi-
viduals by trait and breed group (see Additional file  1: 
Table S2). Overall, within-breed GWAS were conducted 
with 119,438 records for SCS and 30,689 records for CM 
from 68,441 progeny tested bulls and 81,686 cows. Phe-
notypes were obtained using different approaches (see 
methods). For cows, the phenotype reflected repeated 
own performances adjusted for environmental effects 
and averaged within and across parity. For bulls, phe-
notypes reflected the average performances of their 
daughters and were therefore much more accurate than 
phenotypes for cows, especially for CM, which has very 
low heritability. The number of genome-wide significant 
SNPs (− log10(p) > 8.5) discovered in the separate par-
ticipant studies prior to the meta-analysis ranged from 0 
to 2268 (see Additional file  1: Table  S3). During quality 
control of summary statistics, we observed consistency in 
the direction of allele effect estimates in each breed for 
most of the significant SNPs (see Additional file 2: Figure 
S1). The filtered data showed no genomic inflation in any 
of the studies (see Additional file 1: Table S4 and Addi-
tional file 2: Figure S2). For each single-breed GWAS, we 

checked the concordance of the reported GWAS p-value 
with the p-value calculated from z-score (see Addi-
tional file  2: Figure S3). After quality control, the num-
ber of SNPs for meta-analysis ranged from 11,132,286 
to 17,134,891 between the studies (see Additional file 1: 
Table  S5). Results from multi-breed meta-analysis and 
multi-trait analysis were used to pinpoint candidate 
genes. We collected datasets from publicly available 
annotations for protein coding sequence and regulatory 
elements (Fig.  1) to postulate biological connections of 
association results from meta-analyses with CM and 
SCS.

Meta-analyses were performed using three approaches. 
The first two approaches were applied for each trait, 
while the third approach was a multi-trait analysis: (1) 
the fixed effects method from the METAL software pack-
age [39], (2) the method for multi-ethnic meta-analysis 
implemented in MR-MEGA [38], and (3) we first applied 
multi-trait analysis in each breed with summary statis-
tics for both CM and SCS using MTAG [40] and then 
combined the results from all breeds using MR-MEGA 
to yield the multi-trait meta-analysis. We chose the MR-
MEGA approach to combine multi-trait results because 
this method showed higher power to detect association 
signals compared to METAL (results shown below). 
Henceforth, we named the result of meta-analysis by 
combining the software and the trait, for example, analy-
sis with MR-MEGA was named MR-MEGA_CM for CM 
and MR-MEGA_SCS for SCS. The result of the multi-
trait meta-analyses were named MTAG_CM for CM and 
MTAG_SCS for SCS, since MTAG estimated the multi-
trait effect and p-value for both traits.

The meta‑analysis for clinical mastitis
The METAL_CM analysis only detected the well-known 
locus for CM on BTA6 (see Additional file 2: Figure S4) 
but breed-specific significant loci from the single breed 
GWAS were lost (data not shown). Instead, the result 
from MR-MEGA_CM, which accounts for heterogene-
ity in allelic effects correlated with ancestry, showed 
persistence of more within-breed signals and stronger 
association signals (Fig. 2a). The MR-MEGA_CM analy-
sis detected 15 association signals on 13 autosomes 
(Table 1 and Additional file 1: Table S6). Consistent with 
previous studies [18–20, 22], the most significant signal 
was located on BTA6 at 86,940,863  bp (rs210373936) 
and is an intergenic SNP close to the GC gene. The sec-
ond strongest association signal was found on BTA9 at 
10,457,304  bp (rs133164262), with an intergenic variant 
near bta-mir-30f as the lead SNP is. The third strongest 
association signal was located on BTA20, with BTA20: 
22,386,425 (rs380944374) as the lead SNP, which is 
an intron variant of MAP3K1. At most one QTL was 
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identified on a chromosome, except for BTA18 and 
BTA19, which had two identified QTL.

Compared to single breed GWAS, the MR-MEGA_
CM analysis helped to identify six new QTL on BTA5, 
BTA14, BTA18, BTA19 (two on BTA19), and BTA24 
(at position 60,883,696). We identified nine novel QTL 
that were not previously reported in the Animal QTLdb 
(release 49) [15], located on BTA1, BTA2, BTA3, BTA5, 
BTA9, BTA16, BTA18: 25 Mb, BTA19: 7 Mb, and BTA21.

The meta‑analysis for somatic cell score
Similar to the meta-analysis for CM, we observed an 
increase in the number detected QTL by using MR-
MEGA (Fig.  2b) compared to METAL (see Additional 
file  2: Figure S5) for SCS. The MR-MEGA_SCS analy-
sis detected 22 QTL on 15 autosomes (Table 1). Among 
these, chromosomes BTA1, BTA13, BTA20, and BTA29 
each had two QTL and BTA19 had four QTL. Like MR-
MEGA_CM, the strongest signal for SCS was located on 
BTA6 but with a different lead SNP, BTA6: 87,000,654 
(rs108952128), which is an intron variant of the gene 
GC. The second strongest signal was located at BTA4: 
10,207,091 (rs211317759), which was a downstream vari-
ant of ENSBTAG00000051416. The third strongest asso-
ciation was located on BTA9: 10,451,705 (rs210770707), 
with an intergenic variant near OGFRL1 as the lead SNP. 
The lead SNP for the fourth strongest association signal 
was BTA21: 62,941,833 (rs136844062) and was an inter-
genic variant near 5S_rRNA.

The QTL identified around BTA1:131.4  Mb, 
BTA6:87.0  Mb, BTA9:10.5  Mb, BTA16:25.2  Mb, 
and BTA20:22.4  Mb were consistent between the 

meta-analysis and the single breed analyses. The other 
QTL were novel loci identified by MR-MEGA_SCS com-
pared to single breed analyses. However, at the same 
time, 11 QTL that were detected in the single breed 
analyses were not significant in the meta-analysis. By 
comparing it to the AnimalQTLdb [15], we identify four 
novel QTL, which are located on BTA1:143  Mb, BTA9, 
BTA10, and BTA22.

Multi‑trait meta‑analysis
The multi-trait meta-analysis using MTAG of CM 
(Fig.  3a) and SCS (Fig.  3b) showed mostly consistent 
results regarding QTL location for these two mastitis-
related traits. One salient difference is that there were 
two QTL on BTA1 for SCS but none for CM. These two 
QTL overlapped with results from MR-MEGA_SCS and 
were located at 131  Mb and 145  Mb (Table  1). How-
ever, the lead SNPs suggested by MTAG were different 
from those highlighted by MR-MEGA_SCS. The lead 
SNPs on BTA1 for MTAG_SCS were BTA1: 131,508,931 
(rs133645774) and BTA1: 145,932,212 (rs469947398). On 
BTA2, the MTAG_SCS did not identify a genome-wide 
significant association, but detected one QTL for CM, 
which was similar to the MR-MEGA_CM result. On 
BTA3, MTAG detected one new QTL for CM compared 
to the single-breed GWAS and the meta-analysis for both 
traits, with the lead SNP located at BTA3: 24,114,904 
(rs385025933), which is an intergenic variant near gene 
TBX15. On BTA5, MTAG_CM and MTAG_SCS both 
identified a novel QTL at 56 Mb, with two different lead 
SNPs: BTA5: 56,290,204 (rs109848760, MTAG_CM) 
and BTA5: 56,332,715 (rs208358909, MTAG_SCS). 

Fig. 2  Results for meta-analyses using MR-MEGA approach [38].  a Manhattan plot for clinical mastitis . b Manhattan plot for somatic cell count . 
The red horizontal line indicates the genome-wide significance level [− log10(p) = 8.5]
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Table 1  Lead SNPs for QTL for clinical mastitis (CM) and somatic cell score (SCS), along with the nearest gene and the functional 
annotation of the SNPs

BTA Base pair QTL rsid − log10(p) Analysis method Nearest gene Annotation

1 131,393,761 131,144,131–131,643,847 NA 11.23 MR-MEGA_SCS SOX14 Intergenic variant

1 131,399,037 131,149,079–131,649,130 rs209262096 9.15 MR-MEGA_CM SOX14 Intergenic variant

1 131,508,931 131,259,179–131,758,987 rs133645774 19.16 MTAG_SCS SOX14 Intergenic variant

1 143,908,907 143,660,512–144,160,344 rs43282279 9.08 MR-MEGA_SCS AGPAT3 Intergenic variant

1 145,932,212 145,682,433–146,182,333 rs469947398 9.05 MTAG_SCS MCM3AP Intron variant

2 127,010,295 126,760,970–127,260,998 rs109861338 9.11 MR-MEGA_CM TRIM63 Intergenic variant

2 127,199,316 126,949,469–127,449,526 rs133914262 8.92 MTAG_CM PAQR7 Intergenic variant

3 24,114,904 23,865,017–24,365,480 rs385025933 8.87 MTAG_CM TBX15 Intergenic variant

3 32,937,624 32,688,826–33,188,877 rs43336190 9.29 MR-MEGA_CM CYM Intergenic variant

3 32,991,793 32,741,957–33,241,801 rs43336135 8.97 MTAG_CM PROK1 Intron variant

3 33,085,262 32,835,778–33,356,862 rs43335461 11.06 MTAG_SCS RBM15 Downstream variant

4 10,207,091 9,958,314–10,457,519 rs211317759 17.71 MR-MEGA_SCS ENSBTAG00000051416 Downstream variant

5 56,290,204 56,040,322–56,542,938 rs109848760 12.68 MTAG_CM LRP1 Intron variant

5 56,332,715 56,082,869–56,583,125 rs208358909 19.19 MTAG_SCS STAT6 Synonymous variant

5 88,406,861 87,673,289–88,657,962 rs209893772 9.50 MR-MEGA_CM ABCC9 Intron variant

6 86,940,863 86,690,963–87,191,548 rs210373936 33.58 MR-MEGA_CM GC Intergenic variant

6 86,991,630 86,741,866–87,268,801 rs436532576 22.14/19.43 MTAG_CM, MTAG_SCS GC Intron variant

6 87,000,654 86,752,563–87,280,573 rs108952128 22.27 MR-MEGA_SCS GC Intron variant

9 10,451,705 10,202,576–10,702,351 rs210770707 17.59 MR-MEGA_SCS OGFRL1 Intergenic variant

9 10,457,304 10,207,394–10,707,412 rs133164262 23.63 MR-MEGA_CM bta-mir-30f Intergenic variant

9 10,510,020 10,260,034–10,760,190 rs109335443 16.73 MTAG_CM OGFRL1 Intergenic variant

9 10,672,833 10,423,069–10,923,737 rs109718038 25.51 MTAG_SCS ENSBTAG00000048046 Intergenic variant

10 87,184,308 86,811,104–87,436,082 rs42248532 15.37 MR-MEGA_SCS TTLL5 Intron variant

11 12,078,911 11,079,809–12,329,170 NA 8.73 MR-MEGA_SCS EXOC6B Intron variant

11 85,622,206 85,372,220–85,872,367 rs382615161 10.51 MTAG_SCS TRIB2 Intergenic variant

13 56,890,472 56,012,401–57,140,946 rs41696436 9.22 MR-MEGA_SCS PHACTR3 Intron variant

13 79,482,645 78,816,883–79,738,951 NA 13.03 MR-MEGA_SCS ATP9A Intron variant

14 528,726 283,062–778,739 rs110418960 9.70 MTAG_CM ENSBTAG00000053637 Intron variant

14 559,962 311,166–885,752 rs210230767 10.75 MR-MEGA_CM ADCK5 Intron variant

16 25,160,034 24,910,289–25,411,234 rs379742673 11.42 MTAG_CM DUSP10 Intergenic variant

16 25,189,022 24,941,012–25,440,400 rs110061124 13.03 MTAG_SCS DUSP10 Intron variant

16 25,190,389 24,953,782–25,460,899 rs109274215 9.12/ MR-MEGA_CM, MR-MEGA_
SCS

DUSP10 Intron variant

18 43,707,610 43,463,418–43,957,639 rs379699077 10.52 MR-MEGA_CM ENSBTAG00000049393 Intergenic variant

18 44,354,883 43,674,933–44,605,086 NA 10.49 MR-MEGA_SCS ENSBTAG00000050669 Intron variant

18 65,188,613 64,939,546–65,442,597 rs41901751 17.65 MTAG_SCS LOC100124497 Intron variant

18 65,288,692 65,038,910–65,539,395 NA 9.24 MR-MEGA_CM ENSBTAG00000038715 Intergenic variant

19 7,358,480 7,109,618–7,610,867 NA 16.86 MR-MEGA_SCS NOG Intergenic variant

19 7,371,211 7,122,553–7,622,923 rs109184245 10.25 MR-MEGA_CM NOG Intergenic variant

19 31,532,436 31,282,440–31,782,555 rs443527170 10.84 MR-MEGA_SCS ENSBTAG00000052541 Intergenic variant

19 40,053,288 39,502,431–40,303,655 rs134402075 12.25 MR-MEGA_SCS PGAP3 Intron variant

19 54,626,232 54,376,382–54,900,608 rs134693405 11.63 MR-MEGA_SCS SEPTIN9 Intron variant

19 56,012,401 55,763,067–56,483,191 rs135790765 9.81 MR-MEGA_CM LLGL2 Intron variant

20 22,385,791 21,933,562–22,635,895 rs110323061 13.09 MR-MEGA_SCS MAP3K1 Intron variant

20 22,386,425 22,141,590–22,636,468 rs380944374 21.22 MR-MEGA_CM MAP3K1 Intron variant

20 22,422,299 22,172,873–22,673,171 rs209103569 19.42 MTAG_CM MAP3K1 Upstream variant

20 22,428,455 22,180,220 rs208280837 15.14 MTAG_SCS MAP3K1 Intergenic variant

20 39,502,431 39,252,645–39,766,694 rs42663967 9.40 MR-MEGA_SCS RAI14 Intron variant

21 57,144,704 56,895,032–57,394,726 rs378255940 16.51 MR-MEGA_CM SLC24A4 Intron variant
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Because of having two lead SNPs, there are two ‘nearest 
genes’ to this QTL: LRP1 and STAT6. The QTL identi-
fied on BTA6, BTA9, BTA16, and BTA20 were consist-
ent between MTAG and MR-MEGA for both traits, with 
the adjacent of the lead SNPs in each QTL between two 
traits. On BTA11, MTAG_SCS detected a novel QTL, 
with BTA11: 85,622,206 (rs382615161) as lead SNP, 
which is an intergenic variant near TRIB2. On BTA14, 
the QTL was detected using MTAG_CM but not using 
MTAG_SCS. On BTA18, BTA21, BTA22, BTA23, and 
BTA25 QTL were only detected using MTAG_SCS, of 
which the QTL identified on BTA23 and BTA25 are novel 
QTL (Table 2). Moreover, the QTL on BTA23 was one of 
the QTL that was detected in single breed analyses but 

not in the MR-MEGA_SCS analysis. Compared to all 
reported QTL for CM and SCS in Animal QTLdb [15], 
the QTL on BTA3, BTA23, and BTA25 are new QTL.

Validation of candidate CNV in GC for BTA6 QTL variants
In a Dutch Holstein study, Lee et  al. identified a CNV 
which could be the causal variant underlying the BTA6 
QTL for mastitis resistance [29]. Our meta-analysis 
study involved only SNPs and small insertion and dele-
tions (INDELs) and therefore could not test CNVs. We 
therefore verified whether our top associated SNPs and 
the reported CNV tag the same QTL. We called struc-
tural variant genotypes in WGS data from 567 individu-
als from Nordic Holstein, Nordic Red, Jersey, and Brown 

The list of lead SNPs, their annotation and nearest genes for all the meta-analyses used and implemented in MR-MEGA [38] and MTAG [40]. Suffix “_CM” and “_SCS” are 
used for CM and SCS respectively

Table 1  (continued)

BTA Base pair QTL rsid − log10(p) Analysis method Nearest gene Annotation

21 62,941,833 62,691,932–63,192,091 rs136844062 17.55 MR-MEGA_SCS 5S_rRNA Intergenic variant

21 63,051,720 62,801,824–63,302,337 rs133524129 12.53 MTAG_SCS BCL11B Intergenic variant

22 52,947,790 52,698,116–53,199,688 rs135845151 14.17 MR-MEGA_SCS LTF Upstream variant

22 53,007,168 52,757,454–53,257,174 rs385393172 8.58 MTAG_SCS CCRL2 Intron variant

23 39,530,196 39,295,040–39,780,965 rs136857507 13.02 MTAG_SCS KIF13A Intron variant

24 60,882,420 60,633,040–61,132,920 rs41571207 11.74 MR-MEGA_SCS ZCCHC2 Intergenic variant

24 60,883,696 60,633,830–61,133,857 NA 9.37 MR-MEGA_CM ZCCHC2 Intergenic variant

25 38,531,214 37,561,390–38,781,883 rs383719916 8.54 MTAG_SCS LOC618542 Intron variant

29 9,486,040 9,236,161–9,736,089 NA 9.68 MR-MEGA_SCS PICALM Intergenic variant

29 46,577,859 46,074,605–46,834,864 rs378268227 9.36 MR-MEGA_SCS ENSBTAG00000050252 Intergenic variant

Fig. 3  Manhattan plot for multi-trait meta-analysis by MTAG [40].  a clinical mastitis; b somatic cell score. The red horizontal line indicates 
the genome-wide significance level [− log10(p) = 8.5]
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Swiss cattle (see Methods), and identified a 12  kb CNV 
located at BTA6: 86,949,652–86,961,433. The coordinates 
of this CNV agree well with those reported by Lee et al., 
(BTA6: 86,949,651–86,961,428) (location updated by lift-
over [54]). The CNV was segregating in Nordic Holstein 
and Nordic Red cattle but was not detected in Jersey cat-
tle. Of note, our study showed that the QTL was identi-
fied in Nordic Holstein and Nordic Red cattle, but not in 
Danish Jerseys.

Nordic Holstein cattle had between two and ten-
fold more reads mapped to the CNV (see Additional 
file  2: Figure S6) compared to other regions on BTA6, 
which was understood as 2 to 10 copies of the 12  kb 
segment and agrees well with the copy number distri-
bution observed by Lee et al. [29]. The wild type allele 
(1 copy on each homologous chromosome) was the 
most abundant, leading to individuals with 2 copies. 
As individual-level WGS data for the mapping popula-
tions were not available, we checked the LD of the CNV 
tag SNPs from Lee et  al. [29] with the CNV we found 
in the Nordic Holstein animals (Table  3). The SNP 
BTA6: 86,951,401 (rs110813063) and BTA6:86,956,804 
(rs110611635), which were high ranking SNP in 
MTAG_CM and MTAG_SCS, had perfect LD with the 

CNV. Three high ranking SNPs for MR-MEGA_CM 
and MR-MEGA_SCS, BTA6: 86,954,479 (rs109996811), 
BTA6: 86,954,484 (rs109381427), and BTA6: 86,954,490 
(rs110242236) had LD of 0.89 with the CNV. These 
three SNPs are tagging SNPs for the CNV from the 
previous study [29]. Moreover, the lead SNP from MR-
MEGA_CM, BTA6: 86,940,863 (rs210373936), had an 
LD of 0.81 with the CNV. The lead SNP for MTAG_CM 
and MTAG_SCS, BTA6: 86,991,630 (rs436532576) had 
an LD of 0.9 with the CNV. The two latter SNPs are 
located up-stream and down-stream, respectively, of 
the CNV. Moreover, two other SNPs, BTA6: 86,986,115 
(rs109893390, a missense deleterious mutation for a 
novel gene ENSBTAG00000049290 and an intron vari-
ant for GC) and BTA6: 87,324,678 (rs110326785, a mis-
sense mutation of NPFFR2) both had LD larger than 
0.80 with the CNV, which indicated that the signal for 
these three genes, ENSBTAG00000049290, GC, and 
NPFFR2, could be due to a common causal factor. The 
Nordic Red cattle showed similar LD patterns between 
these SNPs and the CNV as for the Nordic Holstein 
cattle (data not shown).

Table 2  Additional novel lead SNPs for QTL identified by multi-trait meta-analysis (MTAG [40]), along with their functional annotation 
and nearest gene

The additional lead SNPs discovered by MTAG addition to meta-analysis (MR-MEGA [38]) for both traits

BTA BP QTL rsid − log10(p) Annotation Nearest gene

3 24,114,904 23,865,017–24,365,480 rs385025933 8.87 Intergenic variant TBX15

5 56,290,204 56,040,322–56,542,938 rs109848760 12.68 Intron variant LRP1

11 85,622,206 85,372,220–85,872,367 rs382615161 10.51 Intergenic variant TRIB2

23 39,530,196 39,295,040–39,780,965 rs136857507 13.02 Intron variant KIF13A

25 38,531,214 37,561,390–38,781,883 rs383719916 8.54 Intron variant LOC618542

Table 3  Linkage disequilibrium between copy number variants in the GC gene and their flanking variants

The LD between tagging SNPs for the GC copy number variant (CNV) reported by Lee et al. [29] and the lead SNPs from the current study with the CNV in Nordic 
Holstein cattle. “Ranking” indicates the ranking of the SNP based on p-value for the following analyses and ordered as: highest ranking in single-trait analysis in any of 
breed for clinic mastitis (CM) and similarly for somatic cell score (SCS), single-trait meta-analysis of CM, single-trait meta-analysis of SCS, multi-trait analysis of CM and 
multi-trait analysis of SCS. NR indicates the variant was not reported in the previous study [29]. NA means the variant is not significant in our analyses

Rs-ID Position in Bp LD (Lee et al. [29]) LD (Nordic Holstein) Ranking

UMD3.1 ARS-UCD1.2

rs210373936 88,672,979 86,940,863 NR 0.81 39/378/1/3/655/727

rs110813063 88,683,517 86,951,401 1 1 38/2/NA/NA/6/3

rs109996811 88,686,597 86,954,479 ≥ 0.98 0.89 28/23/2/5/652/773

rs109381427 88,686,600 86,954,484 ≥ 0.98 0.89 28/23/2/5/652/773

rs110242236 88,686,606 86,954,490 ≥ 0.98 0.89 28/23/2/5652/773

rs110611635 88,688,920 86,956,804 ≥ 0.98 1 31/3/NA/NA/2/2

rs436532576 88,723,742 86,991,630 NR 0.90 40/2/NA/NA/1/1

rs108952128 NR 87,000,654 NR 0.66 11/8/8/1/NA/NA
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Variant annotation around lead SNPs
The SNPs near the lead SNPs of the QTL are potential 
causal variants. We annotated all the significant vari-
ants within a 1  Mb flanking area of lead SNPs, which 
resulted in 11 SNPs (Table  4) with potential effects to 
alter the coding sequence of genes or regulatory ele-
ments that could be considered as potential causal vari-
ant candidates. On BTA6, we selected two SNPs as 
putative causal variants, BTA6: 86,986,115 (rs109893390) 
and BTA6: 87,324,678 (rs110326785). On BTA14, we 
observed three tolerated missense variants for CPSF1, 
SLC52A2, and DGAT1. On BTA18, BTA18: 65,188,613 
(rs41901751) is an intronic variant of a long non-coding 
RNA. On BTA19, BTA19: 7,311,199 (rs110542780) is a 
tolerated missense variant for ENSBTAG00000038823, 
with a GERP score of 1.69. On BTA20, we included two 
intronic variants for MAP3K1, both affecting the ncRNA 
LOC104975241. BTA21: 62,941,833 (rs136844062) is 
an intronic variant of a non-coding RNA that is close to 
VRK1. Within the QTL region on BTA22, we obtained a 
strongly significant SNP that was annotated as a tolerated 
missense variant of the LTF gene.

Gene‑based analysis
To further increase the power of detecting candidate 
genes, we conducted gene-based association analyses 
for the meta- and multi-trait analyses for both traits. The 
gene-based analysis indicated in total 64 genome-wide 
significant genes (see Additional file  1: Tables S7 and 
S8). Among these, STAT6, GC, TTLL5, ATP9A, ADCK5, 
ENSBTAG00000050669, NOG, MAP3K1, and LTF were 
the nearest genes to lead SNPs. Without a criterion to 
further prioritize these genes, we only kept the ones with 
biological support (see Additional file  1: Table  S9) for 
downstream analysis.

Some of the nearest genes had biological support 
from GO biological process terms “defense response”, 
“mammary gland epithelial cell proliferation”, “mam-
mary gland morphogenesis”, and “negative regulation 
of type 2 immune response” (STAT6), or “antibacterial 
humoral response”, “antimicrobial humoral immune 
response mediated by antimicrobial peptide”, and 
“defense response to Gram-negative bacterium” (LTF). 
In the MPD [49], abnormal mammary gland morphol-
ogy, and abnormal immunoglobulin level were reported 
in mice for STAT6 mutations and abnormal inflamma-
tory response and abnormal T cell differentiation for 
GC.

Among the genes prioritized based on biological 
support, some genes are annotated with GO terms “T 
cell differentiation” (SOX14, BCL11B), “somatic hyper-
mutation of immunoglobulin genes” (MCM3AP), 
“response to steroid hormone (PAQR7)”, “negative 
regulation of respiratory burst involved in inflamma-
tory response”, “positive regulation of regulatory T cell 
differentiation”, and “regulation of adaptive immune 
response” (DUSP10), “Immune response” and “inflam-
matory response” (CCRL2), “negative regulation of 
macrophage cytokine production” (TGFB3), “wound 
healing” (PLEC). Furthermore, the MPD [49] suggested 
relevant phenotypes for genes where mutations in 
mice affect B cell number or differentiation (MCM3AP, 
RBM15 TRIB2, PICALM), or T cell number, differen-
tiation and morphology (GC, DUSP10, PGAP3, SEP-
TIN9, BCL11B, DCK, SEPTIN9, PGAP3), decreased 
macrophage proliferation (NPFFR2), abnormal immune 
system physiology (NFATC2), mammary gland devel-
opment (DGAT1), increased susceptibility to bacterial 
infection (HSF1), abnormal wound healing (PLEC), and 
abnormal mammary gland growth during pregnancy 
(TNFRSF11A).

Table 4  Candidate causal mutations selected based on annotation of their potential effect on gene products

SNP Analysis − log10(p) Ranking gene/biotype Effect (SIFT score)

6: 86,986,115 MTAG_CM, MTAG_SCS 21.02/17.99 14/7 Novel gene ENSBTAG00000049290 Missense K15Q, deleterious (0)

6: 87,324,678 MTAG_CM, MTAG_SCS 18.50/10.04 318/496 NPFFR2 Missense E406K, tolerated (0.58)

14: 550,784 MR-MEGA_CM 10.49 46 CPSF1 Missense T430I, tolerated (0.13)

14: 579,239 MR-MEGA_CM 10.58 22 SLC52A2 Missense K242E, tolerated (0.13)

14: 611,019-20 MR-MEGA_CM 10.56 32 DGAT1 Missense K232A, tolerated (0.19)

18:65,188,613 MTAG_SCS 17.65 1 Non-coding transcript lncRNA

19: 7,311,199 MR-MEGA_SCS 9.26 265 Novel gene Missense V361I, tolerated (0.19)

20: 22,385,791 MR-MEGA_CM, MR-MEGA_SCS 20.14/13.09 2/ 1 LOC104975241(MAP3K1, intron) ncRNA

20: 22,386,425 MR-MEGA_CM 21.22 1 LOC104975241 (MAP3K1, intron) ncRNA, deletion

21: 62,941,833 MR-MEGA_SCS 17.55 1 Non-coding transcript lncRNA

22: 52,960,814 MR-MEGA_SCS 9.09 150 LTF lactotransferrin Missense I145V, tolerated (0.2)
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Potential regulation with eQTL
Significant associations between gene expression data 
(from CattleGTEx [35]) and variants that were identi-
fied to be associated with CM and SCS in both single-
trait meta-analyses and multi-trait meta-analyses were 
identified by checking the overlap of significant SNPs. 
We found only four significant SNPs to have a sig-
nificant cis effect (< 1  Mb) on gene expression. Four 
variants (rs133257289 in liver, rs137491588 in uterus, 
rs135442643 in blood, rs135443540 in mammary) that 
were identified as cis-eQTL for DGAT1 on BTA14 were 
also associated with CM (see Additional file 1: Table S10).

Most SNPs that were significant in both the meta-
analysis/multi-trait analysis and the eQTL analysis were 
trans-eQTL (on different chromosome) (see Additional 
file 3: Table S11). For CM, 45 significant SNPs were also 
trans-eQTL (false discovery rate, FDR < 0.05) in three 
different tissues or cells (macrophages, adipose and 
ovary) for 57 genes from 19 chromosomes. Fifty-two sig-
nificant SNPs for SCS were associated with trans-eQTL 
(FDR < 0.05) from eight different tissues or cells (adipose, 
macrophages, muscle, intramuscular muscle, ovary, liver, 
milk, uterus) for 61 genes from 23 chromosomes.

Most of the trans-eQTL SNPs were from BTA6 for 
both traits and were located as blocks around the multi-
allelic CNV region that encompasses the GC gene (Fig. 4) 
that has been associated with mastitis resistance in dairy 
cattle [29]. The SNP blocks A+C were associated with the 
expression of PTGES (BTA11), while block B affected the 
expression of PEX12 (BTA19). The SNPs in block D had 
trans effects on 43 genes from multiple chromosomes. 
These genes were enriched in pathways for blood coagu-
lation and plasminogen activating cascade.

Enrichment of genomic features
We saw an overlap between eQTL and SNPs that were 
significantly associated with CM or SCS. One strategy to 
further investigate the effect of regulatory elements on 
mastitis is an enrichment analysis. To better represent 

the genomic features across the genome, we collected 
coordinates for 5ʹ UTR regions, 3ʹ UTR regions, general 
transcripts, CpG islands, and 13 putative regulatory ele-
ments across eight tissues [53]. The putative regulatory 
elements included active element, active enhancer, active 
promoter, active transcription start site (TSS), CCCTC-
binding factor (CTCF) active TSS, CTCF enhancer, 
CTCF promoter, flanking TSS, insulator, poised pro-
moter, polycomb repressed, primed enhancer, and pro-
moter. The tissues were adipose, cerebellum, cortex, 
hypothalamus, liver, lung, muscle, and spleen.

The summary statistics of MR-MEGA_CM identified 
CTCF enhancer in lung as a significantly enriched fea-
ture for the genome-wide significant variants (Fig.  5a). 
Three key variants were proposed by the analysis to 
drive the enrichment, on BTA9, BTA20, and BTA21. For 
MR-MEGA_SCS, we detected three features that were 
significantly enriched: active enhancer in adipose, poly-
comb repressed elements in hypothalamus, and active 
enhancer in lung (Fig. 5b and Additional file 4: Table S12). 
The potential key SNPs driving these enrichments are 
located on BTA9 (rs210770707), BTA10 (rs42248532), 
BTA13 (rs135899189), BTA19 (rs134402075 for adipose, 
rs443527170, rs134693405, rs110579341, rs109651074 for 
hypothalamus, and rs134402075, rs110579341 for lung), 
BTA20 (rs110323061 for adipose and rs110323061 for 
lung), and BTA21 (rs134705012 for adipose, rs136844062 
for hypothalamus, and rs134705012 for lung). For 
MTAG_CM, seven enriched features were detected: 3’ 
UTR, active element in liver, active promoter in liver, 
and active element in lung (Fig. 5c and Additional file 4: 
Table  S12). The potential key SNPs driving this enrich-
ment were distributed on BTA5 (rs109848760), BTA6 
(rs110076968 for 3ʹ UTR, rs110076968, rs436532576, 
rs436532576 for liver, and rs110076968 for lung), 
BTA9 (rs109335443 for both liver and lung), BTA16 
(rs381913651 for both 3ʹ UTR and lung, and rs379742673 
for lung), and BTA20 (rs209103569 for both liver and 
lung). Lastly, the MTAG_SCS detected six enriched 

Fig. 4  Regional plot of the trans-eQTL located around GC CNV on chromosome 6. Integrative Genomics Viewer [74] representation 
of the trans-eQTL located around GC CNV on chromosome 6. Under the gene track, the black color block indicates the GC CNV. The blue 
color blocks named A, B, C and D are blocks of SNPs that are significantly associated with either CM or SCS in the current analyses that were 
also trans-eQTL in CattleGTEx. The green lines show the lead SNPs from the current study and red line shows one of the candidate causal variants
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features: active promoter in liver, active element in lung, 
active enhancer in lung, primed enhancer in lung, CTCF 
active TSS in muscle, and primed enhancer in spleen 
(Fig.  5d and Additional file  4: Table  S12). The potential 
key SNPs driving these enrichments were distributed 
on BTA3 (rs43335461 and rs109100470 for both lung 

and spleen), BTA5 (rs208358909 for muscle and spleen), 
BTA6 (rs436532576 for liver), BTA9 (rs134514522 
for both elements for lung), BTA11 (rs382615161 for 
lung), BTA16 (rs379742673 for lung and Spleen and 
rs381913651 for lung), BTA20 (rs208280837 for liver), 
and BTA21 (rs110078300 for both elements for lung and 
Spleen).

Fig. 5  Enrichment analysis. Enrichment of significant variants from the single-trait meta-analysis and multi-trait meta-analysis in genomic features 
identified from a previous study [53]. The Radial plot shows a the enrichment (OR) in meta-analysis of clinical mastitis; b OR in meta-analysis 
of somatic cell score, c OR in multi-trait analysis of clinical mastitis, d OR in multi-trait analysis of somatic cell score. Squares on the outside 
of the circle are sorted by tissue for each GWAS significance threshold for 1, 0.1, 0.01, 1e−04, 1e−06 and 3.16e−09 (shown by inner colours and bottom 
legend)
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Comparison with GWAS in US Holstein cattle
Comparing our results to a large-scale GWAS in another 
population can reveal the power of the current study. A 
previous SCS GWAS using a large population of US Hol-
stein cattle [55] reported results based on the UMD3.1 
assembly [56]. We performed a lift over [54] of the 
marker locations from UMD3.1 to ARS-UCD1.2 to ena-
ble comparison with our results. Since the US Holstein 
study used different data processing and GWAS methods 
than the current study, we did not include their sum-
mary statistics in our meta-analysis. In general, the two 
Manhattan plots were similar for the chromosomes with 
shared QTL (see Additional file 2: Figure S7). On BTA6, 
we identified the QTL near GC, while the US study indi-
cated one additional QTL around 50.0  Mb. On BTA13, 
we identified one QTL located around 56.8  Mb, which 
was only detected in meta-analysis of SCS. This QTL was 
close to the QTL identified by US study on BTA13. On 
BTA14, the common QTL between the current and US 
study was the QTL located at around 0.6 Mb. However, 
in our analyses, this QTL was identified for CM. We did 
not identify any QTL on BTA15 contrary to the US study. 
The QTL on BTA18 and BTA19 are reported in our study 
and the US study. Furthermore, our data suggested that 
both CM and SCS have QTL on BTA18 and BTA19.

Putative candidate mutations/genes
Based on the single trait meta-analysis, multi-trait analy-
sis, and multiple post-GWAS analysis, we propose 31 
putative causal genes (with biological support from GO, 
Kyoto encyclopedia of genes and genomes, KEGG, or/
and MPD) (Table  5). Some of the QTL had more than 
one putative causal gene. However, we had 11 QTL with-
out putative causal genes: BTA3:24.1 Mb, BTA9:10.5 Mb, 
BTA11:12.1  Mb, BTA13:56.9  Mb, BTA18:44.4  Mb, 
BTA19:31.5  Mb, BTA20:39.5  Mb, BTA21:57.1  Mb, 
BTA23:39.5 Mb, BTA25:38.5 Mb, and BTA29:46.6 Mb. In 
addition, for some of the putative causal genes, we were 
able to propose putative causal variants. In total, we pro-
pose 14 putative causal variants (Table 5).

Discussion
Meta‑analysis approach
In this study, single- and multi-trait meta-analyses of 
several independent GWAS studies increased the power 
to map genetic variants affecting two related complex 
traits by leveraging GWAS summary statistics from 8 
studies on CM and 14 studies on SCS in six dairy cattle 
breeds. Combining the summary statistics from mul-
tiple breeds for two traits required the application of 
appropriate methods to account for population and trait 
differences. Due to strong within breed selection, we 
expect some QTL to be private to a breed. Such private 

QTL will be diluted or even disappear in a meta-analy-
sis. We observed a clear advantage of using MR-MEGA 
over METAL for GWAS meta-analysis in this study. 
While METAL detected only a well-known locus for 
CM, MR-MEGA detected 15 association signals. Com-
mercial dairy cattle breeds are under strong genetic 
selection within breed and a limited number of bulls are 
used for insemination each year. Therefore, large differ-
ences in allele frequencies at the QTL are expected both 
as a result of artificial selection and genetic drift. The 
observed increased power in our study for MR-MEGA 
could be due to its ability to detect heterogeneity in allelic 
effects between ancestry groups [38], i.e. breeds or popu-
lations in the case of this study in dairy cattle.

The accuracy of the marker genotypes is one of the key 
components of accurate QTL mapping. In this study, 
each single analysis used the threshold of imputation 
accuracy R2 larger than 0.4 to filter the marker set for 
GWAS. To minimize the false positive rate while main-
taining a large number of variants, we used genotype 
dosage instead of genotype to perform the GWAS. The 
genotype dosage is linear transformation of the poste-
rior genotype probabilities and can take the accuracy of 
imputation into account when performing the GWAS.

Meta-analysis of summary statistics has proven to be 
a powerful strategy, not only because it can improve the 
power of detection of alleles with small effect, but it also 
overcomes obstacles experienced in data handling and 
sharing (technical, e.g. storage of the raw data, network 
bandwidth for transferring the raw data, computational 
resource for running all samples, and data sharing regula-
tions) [57]. Moreover, multi-trait analysis of highly cor-
related traits can boost power by using information from 
multiple traits to prioritize common genetic mechanisms 
[40]. In human GWAS, both these strategies are com-
monly used to uncover the effect loci for complex traits 
[58–61]. Such an effort is not frequent in livestock, but 
there are a few studies, e.g. meta-analysis of cattle stature 
[31], milk fat and protein percentage [62, 63], and feed 
efficiency [64], and multi-trait analysis of various pro-
duction traits [65, 66] and meat quality traits [67]. In this 
study, we performed the first large-scale meta-analysis 
for CM and SCS and multi-trait meta-analysis between 
these two traits to uncover the genetic architecture of 
mastitis resistance in dairy cattle.

From this study, we observed an increase in power of 
QTL detection compared to previous GWAS studies 
about mastitis. Based on MR-MEGA and MTAG analysis, 
we detected novel QTL for CM and SCS compared with 
single trait, single breed analysis. We also detected novel 
QTL compared with previous studies on these traits 
that are included in the Animal QTLdb [15], including 
nine new QTL for MR-MEGA_CM, four novel QTL for 
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Table 5  Putative causal genes and variants based on all analyses undertaken

BTA Gene location Gene ID Gene Statistics Functional Variants

1 131,371,915–131,372,637 ENSBTAG00000019535 SOX14 Nearest gene GO: T cell differentiation NA

1 145,931,228–145,971,979 ENSBTAG00000003148 MCM3AP Nearest gene MPD: decreased B cell 
number

NA

2 127,217,390–127,222,938 ENSBTAG00000021787 PAQR7 Nearest gene GO: response to steroid 
hormone

NA

3 33,088,523–33,095,448 ENSBTAG00000012555 RBM15 Nearest gene MPD: abnormal B cell 
differentiation

NA

4 10,203,048–10,206,518 ENSBTAG00000051416 NA Nearest gene/Gene 
analysis

NA NA

5 56,230,519–56,310,118 ENSBTAG00000010830 LRP1 Nearest/ Enrichment 
analysis

NA rs109848760

5 56,325,609–56,339,539 ENSBTAG00000006335 STAT6 Nearest gene/Gene 
analysis/trans-eQTL/ 
Enrichment analysis

Go: defense response, 
mammary gland 
epithelial cell prolif‑
eration, mammary gland 
morphogenesis, negative 
regulation of type 2 
immune response; 
KEGG: Immune system, 
Immune disease; MPD: 
abnormal mammary 
gland morphology, 
abnormal immunoglob‑
ulin level

rs208358909

5 88,262,950–88,412,938 ENSBTAG00000019294 ABCC9 Nearest gene/lead SNP GO: defense response 
to virus

rs209893772

6 86,319,005–86,345,274 ENSBTAG00000012397 DCK Gene analysis MPD: increased mac‑
rophage cell number, 
abnormal response 
to infection

NA

6 86,953,984–87,007,062 ENSBTAG00000013718 GC Nearest gene/Gene 
analysis

MPD: abnormal inflam‑
matory response, abnor‑
mal T cell differentiation

rs436532576

6 86,985,349–86,987,171 ENSBTAG00000049290 Novel gene (GC intron) VEP NA rs109893390

6 87,248,937–87,325,253 ENSBTAG00000009070 NPFFR2 Gene analysis/VEP MPD: decreased mac‑
rophage proliferation

rs11032678

10 86,918,978–87,207,088 ENSBTAG00000025403 TTLL5 Nearest gene/gene 
analysis

NA rs42248532

11 85,237,104–85,266,681 ENSBTAG00000016045 TRIB2 Nearest gene MPD: decreased B cell 
number

NA

13 79,245,983–79,384,839 ENSBTAG00000018270 NFATC2 Gene analysis GO: B cell receptor 
signaling pathway, 
positive regulation of B 
cell proliferation; MPD: 
abnormal immune 
system physiology

NA

14 603,813–612,791 ENSBTAG00000026356 DGAT1 Gene analysis/VEP/ 
cis-eQTL

MPD: abnormal mam‑
mary gland development

rs109234250

14 613,328–634,349 ENSBTAG00000020751 HSF1 Gene analysis KEGG: Infectious disease: 
bacterial; MPD: increased 
susceptibility to bacterial 
infection

NA

14 839,972–896,647 ENSBTAG00000011922 PLEC Gene analysis GO: wound healing; 
MPD: abnormal wound 
healing, abnormal T cell 
physiology

NA

14 542,386–556,837 ENSBTAG00000008355 CPSF1 Gene analysis/VEP NA rs134432442

14 578,057–580,805 ENSBTAG00000000857 SLC52A2 Gene analysis/VEP NA rs134364612
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MR-MEGA_SCS, and three novel QTL from multi-trait 
meta-analysis. For SCS, even though there have been 
many association studies performed previously and the 
list of QTL in the Animal QTLdb [15] is long (1320 QTL, 
release 49), we still uncovered new QTL.

Although meta-analysis and post-GWAS analyses 
help to define QTL regions, the problem remains how 
to discriminate the causative variants from linked poly-
morphisms. Recent gene editing techniques may offer a 
way to test the functional effects of candidate variants to 

Table 5  (continued)

BTA Gene location Gene ID Gene Statistics Functional Variants

16 25,186,203–25,227,307 ENSBTAG00000001729 DUSP10 Nearest gene/lead SNP GO: negative regula‑
tion of respiratory burst 
involved in inflammatory 
response, positive regula‑
tion of regulatory T cell 
differentiation, regulation 
of adaptive immune 
response; MPD: abnor‑
mal adaptive immunity, 
increased activated T cell 
number, decreased T cell 
proliferation

18 64,961,803–64,989,519 ENSBTAT00000053442 LOC100124497 Nearest gene/VEP NA rs41901751

19 7,389,042–7,389,740 ENSBTAG00000040282 NOG Nearest gene/ Gene 
analysis

GO: wound healing NA

19 40,047,113–40,061,042 ENSBTAG00000011732 PGAP3 Nearest gene/ Gene 
analysis

MPD: abnormal T cell 
morphology

NA

19 54,497,005–54,676,832 ENSBTAG00000002633 SEPTIN9 Nearest gene/ Gene 
analysis

KEGG: Infectious disease: 
bacterial; abnormal T cell 
differentiation

NA

20 22,314,474–22,323,346 ENSBTAG00000013426 SETD9 Gene analysis NA NA

20 22,340,163–22,417,428 ENSBTAG00000013790 MAP3K1 Nearest gene/Gene 
analysis/ Enrichment 
analysis/ Lead SNP/VEP

NA rs110323061, 
rs380944374

21 64,193,536–64,290,496 ENSBTAG00000018019 BCL11B Nearest gene GO: alpha–beta T cell 
differentiation; MPD: 
abnormal T cell differen‑
tiation

NA

22 52,952,571–52,986,619 ENSBTAG00000001292 LTF Nearest gene/Gene 
analysis/VEP

GO: antibacterial 
humoral response, 
antimicrobial humoral 
immune response 
mediated by antimicro‑
bial peptide, defense 
response to Gram-
negative bacterium; 
KEGG: Exosomal proteins 
of breast milk

rs109741625

22 52,998,333–53,000,232 ENSBTAG00000006155 CCRL2 Nearest gene GO: Immune response, 
inflammatory response; 
MPD: abnormal T-helper 
2 physiology

NA

24 60,733,395–60,790,306 ENSBTAG00000007569 TNFRSF11A Gene analysis GO: mammary gland 
alveolus development, 
adaptive immune 
response; MPD: abnormal 
mammary gland growth 
during pregnancy, 
abnormal negative T cell 
selection, decreased B 
cell number

NA

29 9,519,111–9,620,607 ENSBTAG00000001657 PICALM Nearest gene/ trans-eQTL MPD: abnormal B cell 
differentiation

NA
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further confirm effects at the cellular or animal level. Our 
list of prioritized variants could serve as a starting list for 
such functional validation. The most interesting regions 
in this respect are located on BTA5, BTA6, BTA14, 
BTA20, and BTA22.

The putative causal genes and variants
On BTA5, the candidate region between 56.29–56.34 Mb 
includes the genes LRP1 and STAT6. In addition to 
rs109848760 and rs208358909 being lead SNPs based on 
MTAG multi-trait meta-analysis for, respectively, CM 
and SCS, these two SNPs showed an enriched localiza-
tion in liver-active elements, and the latter lead SNP, 
for SCS, showed a trans-eQTL effect in liver on BTA18 
(gene ANKRD27) in another study [35]. The first lead 
SNP, rs109848760, is within an intron of the LRP1 (LDL 
receptor related protein) gene, which is involved in 
intracellular signaling, lipid homeostasis, and clearance 
of apoptotic cells. The second lead SNP, rs208358909, 
is a synonymous mutation in the STAT6 gene, which is 
involved in several central pathways of the immune sys-
tem and in mammary gland development. It is unlikely 
that this SNP itself is the causative variant but if may be 
in LD with a causative SNP in a regulatory feature, poten-
tially having effects on gene expression.

The best (overall) known QTL region for mastitis and 
somatic cell count is the one on BTA6 surrounding the 
gene GC. We have detected many potential variants that 
are associated with mastitis resistance in this region 
(86.8–87.3  Mb), in addition to the CNV that encom-
passes an enhancer of the GC gene. The SNP with high-
est significance, rs210373936 (single trait meta-analysis 
for clinical mastitis), is located downstream of the GC 
gene, outside the CNV region. Based on our results, a 
promising candidate for further validation would be 
rs436532576 at BTA6: 86,991,630, which was the lead 
SNP for multi-trait meta-analysis of both CM and SCS 
and resides within an intron of the GC gene. This SNP 
has also been reported in 3 French breeds to affect udder 
depth and SCS [28]. Furthermore, it showed up as the key 
variant to drive the enrichment of liver active elements 
and promoters [53]. Another interesting SNP for further 
study is at BTA6: 86,986,115 (rs109893390), which leads 
to a deleterious variant within a novel candidate muta-
tion within an intron of the GC gene. Another candidate 
in the region to validate is the missense mutation in the 
nearby NPFFR2 gene, which was identified by meta-
analyses for both single-trait and multi-trait-analysis 
for CM, was genome-wide significant in the gene-based 
GWAS analysis and has been found to be associated 
with decreased macrophage proliferation in mice [49]. 
Based on currently available information, it is not possi-
ble to separate the effects or verify the different candidate 

variants further due to the strong LD patterns within the 
region, but it seems plausible that the CNV is not the only 
causal variant for all the observed effects. The SNP blocks 
around the CNV-GC region with trans-eQTL effects may 
be haplotypes due to recent positive selection, as indi-
cated by Lee et al. [29]. Interestingly, the SNPs in the GC 
gene region have trans-effects on expression of several 
genes on multiple chromosomes in the CattleGTEx [35].

The QTL region on BTA14 overlaps the well-known 
QTL candidate for milk yield and composition, DGAT1, 
which has also been reported to be associated with mas-
titis resistance [68, 69]. Moreover, a bivariate associa-
tion analysis of the QTL at DGAT1 showed pleiotropic 
effects on mastitis resistance and milk yield [68]. Pleio-
tropic effects on mastitis and milk production have also 
been reported for the BTA6 QTL (GC CNV region) in 
several breeds [23, 28, 70]. In our meta-analysis, pleio-
tropic effects on additional traits were not studied, as 
these were not available for current study. Studying the 
functional effects of the variants suggested by this study 
in different breeds may reveal the underlying architecture 
of the pleiotropy and elucidate the background for allelic 
dynamics.

On BTA20, an interesting region is around the 
MAP3K1 gene, with four lead SNPs from single-trait 
and multi-trait analyses of both CM and SCS between 
BTA20: 22,385,791 and 22,428,455. The MAP3K1 gene 
is a potential candidate gene, as it is part of many sig-
nal transduction cascades, including the ERK and JNK 
kinase pathways, as well as the NF-kappa-B pathway, 
and the GO annotation indicated that it is involved in 
the immune system. The variants at BTA20: 22,385,791 
(rs110323061) and BTA20: 22,386,425 (rs380944374) 
are both located in a ncRNA, LOC104975241, within 
the first intron of the MAP3K1 gene. The first variant is 
a SNP and the second one is a deletion. The intron SNP 
(rs110323061) was the key variant that drove the enrich-
ment of lung-active-element and the upstream SNP 
BTA20: 22,422,299 (rs209103569) was the key variant to 
drive the enrichment of liver and lung active elements 
and liver active promoters.

On BTA22, a missense mutation I145E (tolerated 0.2) 
in the lactotransferrin gene was found at 52,960,814 bp. 
The p-value for this SNP was 10–9.1, while for the lead 
SNP at 52,947,790  bp for SCS (MR-MEGA) the p-value 
was 10–14.2. In the gene analysis, LTF ranked 2nd (after 
LRRC2) on BTA22 for SCS. LTF is a multifunctional pro-
tein with antimicrobial properties that have an important 
defense role in innate immunity and has been associated 
with mastitis resistance in humans [71]. Wojdak-Mak-
symiec et  al. [72] showed parity dependent associations 
between a SNP (rs109623119) within the LTF gene and 
clinical mastitis in cattle. Interestingly, in a study of 
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alternative splicing associated with mastitis [73], one of 
the LTF- isoforms (Lactoferrin_10) was one of the most 
under-expressed isoforms in the mastitis samples com-
pared to the healthy samples, which suggests that further 
analysing the expression of this gene may be important 
for revealing the mechanisms involved in the develop-
ment of mastitis.

The limitations of this study and future perspectives
The cattle genome has not been well annotated, which 
hampers the effort to explore the genetic determinants 
for complex traits like mastitis. In our findings, the lead 
SNPs harbour a long list of intergenic variants (Table 1). 
Although we included the regulator element annotation 
from eight tissues [53] and large-scale eQTL mapping 
from farmGTEx [35], we still had limited information 
to interpret these variants and important regulatory ele-
ments could be hidden among. In recent years, key ini-
tiatives have been underway to improve annotation of 
the cattle genome. The Functional Annotation of Animal 
Genomes (FAANG, https://​www.​faang.​org/), an interna-
tional consortium since 2015 [36], aims to generate the 
genomic feature landscape for several livestock species, 
including the epigenome, chromatin accessibility, and 
the transcriptome. Meanwhile, the EU BovReg consor-
tium (https://​cordis.​europa.​eu/​proje​ct/​id/​815668, www. 
Bovreg.eu) started in 2019 and aims at functional anno-
tation of active genomic regions in the bovine genome 
in various tissues that underly phenotypic diversity and 
plasticity in cattle. With the information that will be gen-
erated by these functional studies, we have the potential 
to better understand the biological connection between 
identified genetic variants and mastitis resistance and 
develop models to integrate knowledge on regulatory 
variation into genomic selection schemes. The other 
limitation of interpretation of the lead SNPs is lack of 
direct functional validation. This could be solved by (1) 
including the putative causal variants from our findings 
(Table 5) on the panel for routine genotyping and validate 
the effect in each population; (2) followed-up by design-
ing molecular biological experiments to confirm the 
causal relationship.

Enrichment analysis one of the methods to provide 
additional biological meaning to GWAS results, with 
statistical support. Our enrichment analysis for general 
genomic features and tissue specific regulatory elements 
(Fig.  5.) detected several enrichments. However, some 
limitations of these analyses include: (1) the extensive LD 
in the cattle genome could lead to spurious enrichments; 
(2) the enrichment of a specific tissue should not lead to 
the conclusion of the causality of such tissue to the trait 
of study, because the tissue collection is broad but not 
complete and, in addition, regulatory elements overlap 

among tissues; and (3) regulatory elements are only pre-
dicted by bioinformatic analysis without final experimen-
tal validation.

In this study, we considered clinical mastitis pheno-
types from different countries as the same trait. Measur-
ing clinical mastitis presents several challenges, including 
the variability in defining the condition, different meas-
urement methods, the presence of subclinical mastitis, 
and subjective judgments in symptom assessment. Har-
monizing phenotype definition for clinical mastitis can 
improve power of future meta-GWAS. For some coun-
tries, cows’ and bulls’ data were analysed separately, 
although they are from the same population and are 
related. This violates the assumption of the independent 
information from individual studies in a meta-analysis.

Conclusions
In this study, we collected the largest dataset for masti-
tis traits, CM and SCS, in dairy cattle. In total, GWAS 
summary statistics based on data from 30,689 animals 
for CM and 119,438 animals for SCS from six dairy cat-
tle breeds were combined with meta-analysis methodol-
ogy to account for breed differences and with multi-trait 
meta-analysis. We identified 58 lead markers that were 
associated with mastitis incidence, including 16 novel 
loci compared with previously identified QTL archived 
at the Animal QTLdb. Meanwhile, we collected multiple 
sources of annotation information, including predicted 
regulatory elements and eQTL from multiple tissues, and 
designed a comprehensive workflow to prioritize the can-
didate genes and variants. At last, we proposed 31 can-
didate genes and 14 possible causal variants that affect 
mastitis resistance. The data collection and methodol-
ogy for post-GWAS is a unique resource for livestock 
genetics research. Due to the importance of mastitis for 
animal welfare, the knowledge obtained from this study 
will serve as a primary source for cattle mastitis research, 
cattle breeding, cattle management, and veterinary 
medicine.
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