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Abstract
Information on terrain conditions is a prerequisite for planning environmentally and economically sustainable forest har-
vesting operations that avoid negative impact on soils. Current soil data are coarse, and collecting such data with traditional 
methods is expensive. Forest harvesters can be harnessed to estimate the rolling resistance coefficient ( �

RR
 ), which is a proxy 

for forest trafficability. Using spatio-temporal data on engine power used, speed travelled, and machine inclination, �
RR

 can 
be computed for harvest areas. This study describes an extensive, high-resolution data on �

RR
 collected in a boreal forest 

landscape in Southern Finland during the non-frost period of 2021, covering roughly 50 km of harvester routes. We report 
improvements in removing some of the previous restrictions on calculating �

RR
 on steeper slopes, enabling the calculation 

within a −10◦ to +10◦  slope range with a speed range of 0.6–1.2 ms−1 . We characterise the variation in �
RR

 both between 
and within 11 test sites harvested during the April-August period. The site mean �

RR
 varies from ∼ 0.14 to 0.19 and shows 

significant differences between the sites. Using simulations of the hydrological state of the soil and open spatial data on forest 
and topography, we identify features that best explain the extremes of �

RR
 within the sites. Several wetness-related indices, 

such as the depth-to-water index with varying thresholds, explain the �
RR

 extremes, while biomass-related stand attributes 
indirectly explain these through their linkage to site and soil characteristics. Obtaining �

RR
 from actual operational data 

extends the capabilities of large-scale harvester-based data collection and paves the way for building data-driven models for 
trafficability prediction.
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Introduction

Mechanised forest operations exert pressure on forest soils, 
which compromises the acceptability of forest management. 
Forest vehicles can cause major soil deformations and/or 
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soil compaction, which have cascading impacts on soil 
hydraulic properties, water flow, soil biogeochemistry and 
plant growth (Hoffmann et al. 2022; Arvidsson et al. 2003; 
Hansson et al. 2019). The degree of damage is related to 
the machinery applied and to the local soil strength, which 
is influenced by soil texture, stoniness, organic matter con-
tent, root systems, soil moisture and frost/thaw dynamics 
(IPCC 2021; Akumu et al. 2019; Schönauer et al. 2022). To 
minimise negative impacts, operations need to be planned so 
that vehicle routing is optimised considering site conditions, 
and past and current weather conditions are accounted for. 
Accurate data on forest soil bearing capacity is a prerequisite 
for planning efficient and environmentally acceptable forest 
operations (Hoffmann et al. 2022; Schönauer et al. 2021).

Despite the availability of several mapping approaches 
serving forest trafficability assessment (Latterini et  al. 
2022a; Kankare et al. 2019; Shabani et al. 2019; Jones and 
Arp 2019; Mohtashami et al. 2012; Reeves et al. 2012; 
Murphy et al. 2011; Suvinen 2006), current trafficability 
maps do not adequately reflect the impact of terrain prop-
erties and varying weather conditions (Mohtashami et al. 
2022; Schönauer et al. 2021; Mohtashami et al. 2017, 2023; 
Salmivaara et al. 2020b). This is a major knowledge gap as 
unfavourable conditions, including shorter periods of frozen 
soils and heavy rainfall events in spring and autumn, are 
becoming more common with climate change (Venäläinen 
et al. 2020; IPCC 2021), making it more difficult to conduct 
low-impact operations. Thus, trafficability assessments must 
be improved both in their spatial and temporal resolution 
(Labelle et al. 2022; Hoffmann et al. 2022; Salmivaara et al. 
2020b).

Spatial patterns of forest soil moisture can, to some 
extent, be depicted using topography-based depth-to-water 
(DTW) maps (Lidberg et al. 2020; Kemppinen et al. 2023; 
Oltean et al. 2016; Ågren et al. 2014; Mohtashami et al. 
2022). Some studies have also reported success in predict-
ing the most severe rut damages using DTW (e.g. Campbell 
et al. 2013), but commonly the performance of DTW in pre-
dicting rutting (Mohtashami et al. 2017; Ågren et al. 2015) 
or soil compaction (Latterini et al. 2022b) has been very 
modest. This is likely because only a minor fraction of soil 
strength variations are related to topography (Oltean et al. 
2016) and associated moisture variability (Mohtashami et al. 
2023; Schönauer et al. 2022), and the large between-site 
variability in, e.g., soil texture compromises the usefulness 
of topographic wetness indices  (Heppelmann et al. 2022; 
Vega-Nieva et al. 2009; Niemi et al. 2017). This is in line 
with the findings of Kemppinen et al. (2023), who found 
that the relationship between volumetric soil moisture and 
topographic indices is very site-specific.

The use of semi-empirical soil strength and rut depth 
models (e.g. Saarilahti 2002; Vega-Nieva et  al. 2009) 
requires both knowing the soil moisture status and having 

accurate information on soil type at spatial scales relevant 
for forest operations (Salmivaara et al. 2020b). Currently, 
the resolution of such soil data is too coarse (e.g., 1:20 
000 to 1:200 000 in Finland; GSF (2015)), and high uncer-
tainties prohibit predicting rut depths using these tradi-
tional models. Collecting soil data manually is expensive 
and slow (Lagacherie and McBratney 2006), and there-
fore, machine learning methods have been used to predict 
soil attributes relevant for trafficability, such as organic 
layer depth (Ågren et al. 2022) and soil moisture (Lid-
berg et al. 2020) using open spatial data. However, these 
approaches cannot directly predict temporal variability of 
soil strength.

Recently, the harvester rolling resistance coefficient 
( �RR ) was shown to correlate well with the depth of ruts 
formed in harvesting (Ala-Ilomäki et al. 2020; Salmivaara 
et al. 2020b). The more the machine movement is resisted 
by the wheel-terrain interaction, the higher the �RR , and 
higher �RR is often associated with deeper ruts  (Ala-
Ilomäki et al. 2020; Salmivaara et al. 2020b; Kurjenluoma 
et al. 2009; Bygdén et al. 2003). Consequently, a higher 
�RR represents less trafficable soils with higher risks of soil 
damage (Kurjenluoma et al. 2009; Bygdén et al. 2003).

The Controller Area Network (CAN-bus) data of a 
harvester offers high-resolution data on, e.g., fuel con-
sumption, engine power usage and speed of the machine 
(Ala-Ilomäki et al. 2020; Suvinen and Saarilahti 2006; 
Melander et al. 2020). Supplementing such routinely col-
lected machine data with inclination, mass and accurate 
position of the machine, enables calculating �RR for the 
areas where the harvester or forwarder has operated (Ala-
Ilomäki et al. 2020). The use of CAN-bus data for estimat-
ing �RR and forest soil trafficability has so far been used 
only at specific experimental setups (Ala-Ilomäki et al. 
2020). Lately, Salmivaara et al. (2020b) envisaged how 
operational collection of rolling resistance data, when 
merged with open spatial data and hydrological forecasts, 
could enable nation-wide trafficability prediction.

In this study, we present the first steps in that direction. 
We collect spatially and temporally extensive harvester 
machine data, covering a range of actual operational har-
vest sites and diverse hydrometeorological conditions dur-
ing the spring-autumn period of 2021. We provide a refined 
model to compute transmission power from engine power to 
estimate �RR for a cut-to-length harvester (Ala-Ilomäki et al. 
2020). With the extensive data representing roughly 50 km 
of harvester routes, we characterise and interpret the within 
and between-site variability of �RR . We identify the terrain 
attributes that are the most influential for �RR extremes. The 
collected database, including the relevant spatial data on ter-
rain and stand characteristics, �RR , and the harvester data 
used for computing �RR is published as open access to cata-
lyse future research.
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Methods

Study area, harvester data and available spatial 
data

The harvester machine data and Global Navigation Satellite 
System (GNSS) data were collected from a Ponsse Ergo har-
vester from January 2021 to March 2022 in the Länsi-Uusi-
maa region in Southern Finland. In this harvester, data was 
obtained through the ARCNET communications protocol, 
which is basically similar to CAN but can transmit data at a 
higher rate. The harvester, instrumented with an inclinom-
eter to measure vehicle longitudinal inclination, i.e., pitch, 
was operating in normal working conditions, where harvest-
ing routes are usually covered with a brush mat. The data 
from the non-frost period (mean monthly temperature above 
0 ◦ C, i.e., April 2021 to November 2021) covers roughly an 
area of 40 ha and 50 km of harvesting routes. A total of 11 
test sites, harvested during April to August 2021 (Fig. 1), 
were selected for more detailed studies. The site attributes 
(mean/majority terrain feature values) are shown in Sup-
plementary Table S2.

For computing �RR , it is necessary to know the trans-
mission hydraulic motor power. Instead of equipping the 
harvester with a special set of sensors for measuring the 
hydraulic transmission power throughout the data collec-
tion campaign, we created a regression model for predict-
ing hydraulic power from diesel engine power, the latter 
which can be directly computed from diesel engine torque 
and rotational speed in the ARCNET data. This approach 
was similar to that in Ala-Ilomäki et al. (2020) based on 
a Ponsse Scorpion harvester but covered a wider range of 

machine pitch and power. The data needed for creating the 
regression model was collected in a separate test drive in 
December 2022.

The spatial forest hydrology model SpaFHy (Launiainen 
et al. 2019) was used with daily gridded 10 km × 10 km 
weather data, covering the dates of operation, to estimate 
spatial variation in saturation deficit (sat_deficit_doy) 
and volumetric soil moisture content at a 16 m × 16 m reso-
lution. The spatial data (Table 1 in Launiainen et al. 2019) 
on forest characteristics, soil and topography was used to set 
up the model for the test sites. The sat_deficit_doy can 
be interpreted as a weather-dependent topographic wetness 
index (TWI) (Beven and Kirkby 1979). It is a robust metric 
of local soil moisture regime at a given time, with the advan-
tage of being easy to compute but still sensitive to weather 
variability (Beven and Kirkby 1979; Launiainen et al. 2019). 
It depends on local slope, the area contributing on water 
flow to that particular grid-cell, and the mean ground water 
storage of the landscape. For instance, after snowmelt and 
heavy rainfalls, landscape-average sat_deficit is small, 
and there are more fully saturated grid-cells (sat_deficit 
= 0) than in dry summer conditions. Volumetric soil mois-
ture gives the percentage of water from unit volume of soil.

In addition, road data (National Land Survey of Finland 
2023) were extracted for the non-frost period dataset, and 
other available open spatial data were compiled for the 11 
test sites (See Supplementary material Tables S1 and S2).

Transmission power model

To calculate �RR , we need the hydraulic transmission out-
put power ( Pt , kW) (Ala-Ilomäki et al. 2020). Pt can be 
determined directly using special hydraulic pressure sen-
sors, or estimated from diesel engine power ( Pe , kW) with a 
machine-specific semi-empirical model (Ala-Ilomäki et al. 
2020). The latter approach has the advantage that �RR can 
be estimated from ARCNET data without additional instru-
mentation of the vehicle.

To build the model to predict Pt from diesel engine power, 
we performed a calibration test run on 9th December 2022. 
In the test, the harvester was driven uphill and downhill 
both on road and on forest terrain with the harvester boom 
facing forward. The bearing conditions were good with air 
temperature −5◦ C and forest terrain consisting mainly of 
dry mineral soil. This enabled focusing on the total engine 
power and transmission power ratio and made it possible 
to cover a wide range of power outputs in varying slopes, 
including engine braking in steep downhill and power cut-
off in steep uphill. In a steep downhill, the machine com-
monly uses the transmission for braking, and the engine is 
consequently turned over by transmission return flow power. 
In a steep uphill, transmission pressure can reach a power Fig. 1   Location of the test sites in Länsi-Uusimaa, Southern Finland
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cut-off threshold which protects the transmission system 
from overloading.

Pt was determined based on the differential pressure over 
the hydraulic pump, motor volume per one rotation set by 
the transmission control unit, the hydraulic unit rotational 
speed, and the hydraulic efficiency using Eq. 1, supplied by 
Ponsse Plc.:

Here Phdiff  is the differential hydraulic pressure (kPa) meas-
ured with the pressure sensors in the test run, nm is hydraulic 
motor rotational speed (s−1 ), Im is hydraulic motor control 
current (mA), a1 = (Vmmax − Vmmin)∕(Immin − Immax) , Vmmax 
is the hydraulic motor maximum displacement per revolu-
tion (cm3 ), Vmmin is hydraulic motor minimum displacement 
per revolution (cm3 ), Immin is the hydraulic motor minimum 
control current (mA), Immax is hydraulic motor maximum 
control current (mA), b1 = −a1 ⋅ Immin + Vmmax , and �mvol is 
the coefficient of motor volumetric efficiency. The calculated 
Pt was multiplied by −1 , which gives the power a positive 
value when the engine is transmitting power to the wheels 
and the machine is moving with the harvester boom up front. 
In cases of steep downhill, the transmission power can get 
negative values, which indicates engine braking.

The effects of acceleration from standstill to the approxi-
mately constant driving speed were excluded from the trans-
mission power model by removing data points where the 
speed of the harvester, which was taken from the ARCNET 
wheel rotational speed, was smaller than 0.5 ms−1.

The resulting data was used to fit a piecewise function to 
model the transmission hydraulic power Pt as a function of 
the diesel engine power Pe (Eq. 2):

(1)
Pt = (Phdiff ⋅ (nm ⋅ 60 ⋅ (Im ⋅ a1 + b1)∕�mvol ⋅ 1000))∕1000.

where A, B, C, D, E, F, Pbrake and Pcut are fitting param-
eters. Pbrake and Pcut represent engine power values where 
engine braking and pressure cut-off begin to affect the 
transmission hydraulic power respectively. PC , the hydrau-
lic power at the point of pressure cut-off, is calculated as 
PC = A ⋅ Pcut + C ⋅ (Pcut − Pbrake)

2
+ D . The initial param-

eter values of the model were searched for using a differ-
ential evolution method (Storn and Price 1997). The final 
values were the result of a curve fit based on a non-linear 
least-squares method, which yielded the following param-
eter values: A = 0.327 , B = 0.005 kW−2 , C = 0.004 kW−1 , 
D = −12.662  kW, E = 116.949  kW, F = 138.331  kW, 
Pbrake = 21.921 kW, and Pcut = 105.847 kW. A heatmap of 
the calibration data consisting of the measured hydraulic 
transmission power Pt versus the diesel engine power Pe 
and the fitted model function are presented in Fig. 2. The 
root-mean-square-error (RMSE) of the fitted function was 
7.37 kW and R2 was 0.94.

The time series of the modelled Pt and the measured 
Pt,meas from the calibration test drive are shown in Fig. 3. 
The modelled Pt significantly deviated from the measured 
one only when the harvester was driving steeply uphill and 
the power cut-off was activated and wheel slip occurred 
(Fig. 4). Wheel slip was indicated by differences between 
wheel speed and GNSS-measured vehicle speed logged 
along the ARCNET data and these were observed at slopes 
greater than 10◦ . When driving downhill with pitch < −10◦ , 
the wheel speed was lower than vehicle GNSS speed due to 

(2)

Pt(Pe) =

⎧
⎪
⎨
⎪
⎩

A ⋅ Pe + B ⋅ (Pe − Pbrake)
3
+ D , Pe ≤ Pbrake

A ⋅ Pe + C ⋅ (Pe − Pbrake)
2
+ D , Pbrake < Pe ≤ Pcut

PC + (E − PC) ⋅ (1 − exp((Pcut − Pe)∕F)) , Pe > Pcut

,

Fig. 2   Heatmap of the test 
calibration data with a 2 kW 
× 2 kW bin size, consisting 
of the transmission power P

t
 

versus the diesel engine power 
P
e
 . The fitted Eq. 2 is plotted 

as the black line. P
brake

 and P
cut

 
represent engine power values 
where engine braking and a 
pressure cut-off begin to affect 
the transmission power
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Fig. 3   Measured ( P
t,meas

 ) and 
modelled ( P

t
 ) transmission 

power and diesel engine power 
( P

e
 ) when driving uphill (left) 

and when driving downhill 
(right) in the calibration test 
drive

Fig. 4   Example of speed from 
the harvester GNSS device and 
the ARCNET wheel speed (top) 
when driving up and down the 
calibration test hill. Pitch, i.e., 
machine longitudinal inclination 
relative to flat ground (bottom). 
The grey range indicates times 
when pitch was outside of the 
[−10

◦ , 10◦ ] range
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skidding of wheels. To avoid the conditions of wheel slip, 
skid and power cut-off, we limited all further analysis to the 
slope range [−10◦ , 10◦].

Rolling resistance coefficient

The harvester rolling resistance coefficient ( �RR ) was the 
target variable of interest in this work. The fundamental 
basis for determining �RR is the equation of motion of the 
harvester,

where Fm is the motive force, Fs is the slope force, m is the 
total mass of the machine, and a is the acceleration of the 
machine. Fr is the total force acting on the machine after the 
effect of slope and motive force have been accounted for. By 
estimating Fm and Fs from the ARCNET data, inclinometer 
data and m, and assuming constant speed (i.e., a = 0 ), one 
can solve Eq. 3 for Fr . We assume here that Fr is solely due 
to rolling resistance. Then, considering a normal force Fn 
acting on the machine as estimated from the inclinometer 
data and m, �RR can be calculated via

The data collection from the harvester was automatised so 
that a new data file was created each time the harvester was 
started up. This led to hundreds of separate data files being 
created over the data collection period. The ARCNET data 
was logged at a frequency of 50 Hz. In practice, the collected 
variable values were mostly updated at a lower frequency 
into the data. A computation pipeline was established to 
process the raw data files into �RR and GNSS path data as 
follows.

First, each data file was cleaned by removing a few 
incomplete rows. Next, the GNSS path data, obtained along 
the ARCNET data file, was smoothed and output using a 
sliding average with a window size of 1.02 s.

Then, the machine data variables of diesel engine torque 
( � , Nm), diesel engine rotational speed ( nRPS , s −1 ), speed 
(v, ms−1 ) as determined directly from the rotation of the 
wheels, as well as the pitch of the machine ( � , ◦ ), were each 
smoothed using a custom-sized sliding average window. The 
window size (3.02 s for � and nRPS , 1.02 s for v, and 10.02 s 
for � ) was determined by visually examining the time series 
of each variable. In the calibration test drive described ear-
lier, the pitch sensor was found to have a systematic bias of 
−1.87◦ , and � was corrected for this bias.

After this, �RR was computed using the smoothed machine 
data variables. For each row of data, the power output by 
the diesel engine was first computed as Pe = � × 2�nRPS , 
after which power output by the hydraulic motor ( Pt ) was 

(3)Fm + Fs + Fr = ma,

(4)�RR = Fr∕Fn

obtained using Eq. 2. The computation was restricted to the 
case of the harvester moving forward with the harvester 
boom up front, as this is the typical configuration for a har-
vester that is moving between logging positions. Four cases 
can be distinguished depending on the sign of the pitch and 
the power output by the hydraulic transmission: 

(1)	 � ≥ 0 , Pt ≥ 0

(2)	 𝛼 < 0 , Pt ≥ 0

(3)	 � ≥ 0 , Pt < 0

(4)	 𝛼 < 0 , Pt < 0.

Here � ≥ 0 describes the situation where the machine is 
moving uphill or on level ground, and 𝛼 < 0 indicates that 
the machine is moving downhill. Pt > 0 means that the 
hydraulic transmission is feeding power to the machine 
wheels, whereas Pt < 0 indicates that the wheels are feed-
ing power to the hydraulic transmission (i.e., the engine is 
acting as a brake).

The equation of motion for the harvester (Eq. 3) was 
formulated separately for each of the four cases presented 
above. To simplify the analysis, we assumed constant 
speed for the harvester, i.e., we set the right-hand side of 
Eq. 3 to zero. Then, we adopted the following definitions: 
Fn = ||mg cos(�)|| and Fs = ||mg sin(�)|| , where g is the 
gravitational constant. The motive force Fm was computed 
as ||�Pt∕v|| when Pt ≥ 0 , here � being the efficiency of the 
mechanical transmission between the hydraulic motor and 
the wheels, and assumed here to be 0.74, similarly as in 
Ala-Ilomäki et al. (2020). In this case, the motive force was 
a force on the machine in the direction of forward motion, 
with energy flowing from the hydraulic motor to the wheels. 
In contrast, when Pt < 0 , the motive force became a decel-
erating force due to engine braking and was computed as 
||Pt∕(v�)|| to describe the flow of energy from the wheels 
to the hydraulic motor. From each equation of motion, the 
corresponding expression for �RR = Fr∕Fn was obtained: 

(1)	 �RR = (Fm − Fs)∕Fn

(2)	 �RR = (Fm + Fs)∕Fn

(3)	 (Constant speed is not possible in this case)
(4)	 �RR = (Fs − Fm)∕Fn

For case (3), constant speed is not possible, as all force com-
ponents on the machine act against the forward motion, and 
a balance of net zero force is unattainable. The value of �RR 
was computed for each row of the machine data, using the 
smoothed values of the variables. The result, including the 
location of the machine, was output for each row.

The series of smoothed GNSS path data was then concat-
enated chronologically to obtain a single GNSS path for the 
entire time interval of data collection. Similarly, the series of 
smoothed machine data along with the result for �RR for each 
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row was concatenated as ordered in time. The time series 
of �RR with the smoothed machine data variables was then 
filtered to include only rows with machine speed and pitch of 
0.6 ms−1 ≤ v ≤ 1.2 ms−1 and −10◦ ≤ � ≤ 10◦ , respec-
tively. By visually inspecting the data, the v range from 0.6 
to 1.2 ms−1 was deemed an interval in which the machine 
moved at approximately constant speed. We also assumed 
that in this speed range, the power consumption of other 
functions besides machine movement, e.g., boom usage, was 
negligible, and practically all engine power was used for 
machine movement. Impacts of this practical simplification 
are discussed later. By filtering the data by pitch value, we 
excluded cases of excessive slip when computing �RR . This 
was done because we did not collect the necessary data for 
taking into account slip resistance (Suvinen and Saarilahti 
2006; Yong et al. 1984) in the total resistive force Fr (Eq. 3) 
which we used to compute �RR (Eq. 4). After this, rows 
corresponding to case (3) of the equation of motion were 
filtered out (covering only 0.001% of the remaining data). 
Finally, the data for each of the 11 test sites was extracted 
for detailed analysis by cutting both the GNSS and �RR data 
by a rectangular bounding box for each site.

Analysis of the rolling resistance data

The rolling resistance of a wheel is mainly due to two fac-
tors: 1) the deformation of the wheel 2) the deformation of 
the surface on which the wheel rolls (Suvinen and Saarilahti 
2006; Wong 2001). In the case of a forest machine the latter 
component dominates (Kurjenluoma et al. 2009), and �RR 
therefore primarily describes machine rolling resistance due 
to the deformation of the terrain. Throughout this paper, we 
assume that the higher �RR is, the greater the deformation of 
the ground and the worse the terrain trafficability.

To ensure that �RR is representative of intact forest terrain, 
only data from off-road forest and from the first harvester 
pass was used. This was achieved by ordering data by the 
timestamp, and for data points in any given 8 m × 8 m spatial 
window of a regular grid, all subsequent data points occur-
ring within a proximity of 4 m and at least 5 min later than 
the earliest timestamp were discarded from further analysis.

For deciphering the capability of �RR to provide informa-
tion on trafficability conditions, we first made statistical tests 
for the entire data collected during the non-frost period in 
2021 to ensure that �RR is lower on ground where bearing 
capacity is higher, as should be when driving on forest road 
versus driving off-road (Bygdén et al. 2003; Ala-Ilomäki 
et al. 2020). For this we statistically tested the homogene-
ity of variances (Levene’s test, p value < 0.05 indicating 
confidence for rejecting the null hypothesis of equal vari-
ances) and further the differences in the means (t-test when 
variances are equal and Welch’s t-test when variances are 

unequal, in both tests p value < 0.05 indicating confidence 
for declining the null hypothesis of means being equal).

The differences in �RR means across the 11 test sites were 
tested using the non-parametric Kruskal–Wallis test suit-
able for comparing multiple groups at once (p value < 0.05 
suggesting confidence in rejecting the null hypothesis of all 
sites having equal means). To find out which sites differ from 
each other, Dunn’s test was used to study each site’s rate 
against the others through a matrix of p values (again value 
< 0.05 indicating confidence for rejecting the null hypothesis 
of equal means). The Bonferroni correction was applied to 
these p values to reduce the risk of false positives due to 
multiple comparisons. Exploring this matrix enables detect-
ing groups of sites or individual sites differing significantly 
from other sites in their �RR means.

The relationship between �RR variability and local terrain 
characteristics was further studied within each site. First, 
for each 8 m × 8 m square, the mean or mode of values was 
retrieved for each feature in the original open spatial data 
(Supplementary Table S1) and for the SpaFHy-model out-
puts. We sought features that best explained the within-site 
variability of �RR . For this, we sub-sampled the �RR data and 
examined those grid cells where the mean of �RR was below 
the 10% quantile or above the 90% quantile of the site’s 
�RR distribution. The median (of the mean or mode) of each 
spatial feature was then determined for these two subsets of 
data, and their differences were studied by the non-paramet-
ric Kruskal–Wallis test and Dunn’s test with significance 
level p < 0.05. Similarly as in examination of the differences 
across sites, we wanted to see whether median feature values 
for these subsets were statistically significantly different and 
thus useful for indicating low or high �RR.

Results

Rolling resistance coefficient on forest road 
and on off‑road forest terrain

The distributions of the rolling resistance coefficient ( �RR ) 
on forest road and on off-road forest terrain for the non-
frost period of 2021 are shown in Fig. 5. For the whole data 
set, the variances between the two cases were not statisti-
cally different (Levene’s test statistic was 0.076 with p value 
0.783, null hypothesis of equal variances cannot be rejected), 
but the means (0.126 on forest road and 0.163 on off-road 
forest terrain) were, as the t-statistic was − 18.243 with a p 
value of 0.000.
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Rolling resistance variability across and within the 
test sites

The distribution of �RR on each of the 11 test sites is shown 

in Fig. 6. The Kruskal–Wallis test indicated that the mean 
values of �RR differ between the sites, and Dunn’s test (Sup-
plementary material Table S3) showed how these differ from 
each other. The mean �RR on site 1 is clearly different from 
all the other sites (except from site 3 with p value 0.16 indi-
cating that site 1 and 3 differ but only with a 84% confidence 
level). The mean �RR is 0.14 on site 1, clearly lower than on 
the other sites, where mean �RR is above 0.16. The highest 
mean �RR is found on site 4, which differs significantly from 
most of the other sites except site 5 (Supplementary material 
Table S3). On sites 4 and 5, �RR is on average higher (0.19 
and 0.18, respectively) than on the other sites.

Detailed maps of the sites, ordered according to operation 
time, with �RR and the soil saturation deficit from SpaFHy 
shown, are presented in Fig. 7. The average site character-
istics are shown in Table S2 of the Supplementary material. 
The two sites that represent the smallest and largest mean 
�RR (Fig. 6) have also been harvested at different times: site 
1 at the beginning of May and site 4 in August. However, 
while they differ in �RR , the sites overall had rather similar 
hydrological conditions in terms of the saturation deficit, 
which on both sites was 0.03 on average.

Sites 1 and 2 are located next to each other (Figs. 1, 7) 
and were harvested at around the same time. Still, they differ 
in the mean �RR significantly. Site 2 has stronger variability 
in soil saturation deficit, and also wetter conditions overall 
(Fig. 7). Generally, sites 1–3, and 7–9 operated before mid-
June show lower mean �RR than the other sites. Also site 10, 
operated in mid to late June, has lower �RR compared to sites 
4, 5 & 6, which were operated in late June to mid-August.

Sites 4, 5 and 6 were harvested at around the same time. 
Site 6 has a mean �RR which is lower than on sites 4 and 5 
but higher than on the rest of the sites. While mean �RR at 
sites 5, 6 and 11 cannot be separated statistically, the means 
of �RR on sites 4, 6 and 11 do differ significantly from each 
other. Site 11 was harvested earlier than sites 4–6. How-
ever, on all these sites, mean �RR is clearly above 0.17, and 
there were crossings across streams or ditches and opera-
tions close to the stream/ditch network. Also on site 1, where 
overall the �RR values were low, they were slightly higher 
in areas close to a stream in the western part of the target 
area (Fig. 7).

Relationship between rolling resistance and terrain 
features

Dunn’s test performed for subsets of high and low �RR grid 
cells and the medians of the associated spatial data revealed 
terrain features that can best explain the within-site variation 
in �RR . The analysis (Table 1) enabled identifying those fea-
tures which differ significantly (p < 0.05) between locations 
where high and low �RR was observed. Several topographical 

Fig. 5   The distribution of �
RR

 on forest roads ( n = 490 is the number 
of 8 m × 8 m grid cells) and in off-road forest conditions ( n = 5544 ) 
across the non-frost period of 2021. The gray plot shows the kernel 
density estimation for the �

RR
 distribution on forest roads and the 

green plot is the corresponding for off-road forest conditions. The 
median is indicated by the white line, and the black box represents 
the range between upper and lower quartiles. The vertical black line 
shows the minimum and maximum of the distribution excluding out-
liers

Fig. 6   Boxplot of the rolling resistance coefficient �
RR

 per test sites. 
The median is indicated by the horizontal line in the box, the mean 
is indicated by a white circle, and the edges of the box are the upper 
and lower quartiles. The whiskers show the minimum and maximum 
of the distribution excluding the outliers, which are shown as crosses
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wetness indices differ significantly between the locations 
corresponding to the extremes of �RR . High values of DTW 
with 4 ha threshold (indicating drier conditions) seem to 
contribute to low �RR values. High TWI values and also high 
root biomass or spruce volume values coincide with high �RR 
values. Table 1 is sorted so that the spatial features showing 
significant differences on several sites are shown at the top. 

Discussion

Our study introduces a pioneering approach to compute the 
harvester rolling resistance coefficient ( �RR ) by utilising 
machine data collected from an operational Ponsse Ergo 

forest harvester over roughly 50 km of harvesting trails in 
actual working conditions. This extensive dataset encom-
passes a wide range of terrains and hydrometeorological 
conditions, representative of operational forest harvesting 
conditions from April 2021 to November 2021 in Southern 
Finland. To the best of our knowledge, this dataset is unprec-
edented in its scope and detail. The data provides a basis for 
predicting forest trafficability, aligning with the framework 
proposed in Salmivaara et al. (2020b). The collected data-
set and our analysis of �RR variability support the previous 
hypothesis that forest harvester data can provide (indirect) 
information on soil strength for use in trafficability predic-
tion (Ala-Ilomäki et al. 2020; Suvinen and Saarilahti 2006; 
Salmivaara et al. 2020b).

Fig. 7   Maps of �
RR

 and hydrological model predicted soil saturation 
deficit during the operation of each test site. The lower the satura-
tion deficit the wetter the soil. The harvester operating dates (in 2021) 

are given above each map. Sites in the upper two rows were operated 
before June 10 and sites in the bottom row June 10–August 13
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Table 1   The spatial features (explained in Table S1 of the Supplementary material) that relate to �
RR

 extremes

The Dunn’s test p values are shown for those features which differ significantly (p < 0.05) between locations of low (below 10th percentile) and 
high (above 90th percentile) �

RR
 at each site. The bold font indicates that an increase in the median of the spatial feature value leads to higher 

�
RR

 (poorer trafficability), while italics indicates that an increase in the median feature value leads to lower �
RR

 (better trafficability)

Site 1 2 3 4 5 6 7 8 9 10 11
Feature

aspect, slope aspect clockwise from north 0.005 0.008 nan 0.025 0.011 0.003 0.046 0.042 nan 0.004 nan
dtw04_0ha, depth-to-water index, 4 ha threshold nan nan 0.022 0.000 0.000 0.001 nan 0.007 0.000 nan nan
aspect_sin,Sine of aspect 0.001 0.026 nan nan 0.003 0.000 nan 0.042 nan 0.001 nan
dtw01_0ha,depth-to-water index, 1 ha threshold nan 0.000 nan 0.004 0.000 0.000 nan 0.012 0.000 nan nan
sat_deficit_doy,Saturation deficit, SpaFHy nan 0.000 nan nan 0.001 0.000 nan nan 0.004 nan 0.013
bmroot_all, Root biomass nan 0.006 nan nan 0.000 0.001 0.021 nan 0.001 nan nan
dtw00_5ha, depth-to-water index [m], 0.5 ha threshold nan 0.014 nan nan nan 0.001 nan 0.012 0.000 nan 0.019
s_rootbm_ratio, Spruce root biomass per all root biomass nan 0.000 nan 0.034 0.000 nan nan nan 0.008 0.046 nan
s_pulp_vol, Volume, spruce pulpwood [m3ha−1] 0.004 0.000 nan nan 0.000 0.001 nan nan 0.003 nan nan
broadlv_vol, Volume, other broad-leaved trees 0.031 0.010 nan nan nan 0.006 0.028 0.018 nan nan nan
p_rootbm_ratio, Pine root biomass per all root biomass 0.000 nan nan nan 0.000 0.000 nan 0.019 0.014 nan nan
dtw10_0ha, depth-to-water index, 10 ha threshold 0.003 nan 0.022 nan 0.007 nan nan 0.007 0.000 nan nan
twi, Topographic Wetness Index nan 0.000 nan nan 0.001 0.000 nan nan 0.004 nan 0.003
tri, Terrain ruggedness index (TRI) 0.020 0.006 nan 0.002 nan nan nan nan 0.008 nan nan
topsoil, Coarseness class of superficial deposit nan nan nan nan 0.000 0.000 nan 0.029 0.000 nan nan
slope, Slope calculated from dem 0.022 0.006 nan 0.001 nan nan nan nan 0.010 nan nan
s_vol, Volume, spruce nan 0.001 nan nan 0.000 0.001 nan nan 0.002 nan nan
p_timber_vol, Volume, pine timber 0.027 nan nan 0.016 0.000 0.026 nan nan nan nan nan
p_pulp_vol, Volume, pine pulpwood 0.001 nan nan nan 0.000 0.003 nan nan 0.047 nan nan
s_timber_vol, Volume, spruce timber nan 0.014 nan nan 0.000 0.031 nan nan 0.002 nan nan
age, Stand age nan nan 0.031 nan 0.000 0.020 nan nan 0.001 nan nan
volume, Volume of the growing stock nan 0.003 nan nan 0.000 0.003 nan nan 0.004 nan nan
broadlv_pulp_vol, Volume, other broad-leaved pulpwood 0.029 0.006 nan nan nan 0.004 nan 0.018 nan nan nan
dem, Mean altitude above sea level 0.005 nan nan nan 0.011 nan nan 0.012 0.000 nan nan
diameter, Stand mean diameter nan 0.038 nan nan 0.000 0.016 nan nan 0.005 nan nan
p_vol, Volume, pine 0.002 nan nan nan 0.000 0.012 nan nan nan nan nan
vol_moisture_doy, Volumetric soil moisture, SpaFHy nan 0.005 nan nan 0.013 nan nan nan 0.010 nan nan
b_pulp_vol, Volume, birch pulpwood 0.016 nan nan nan nan 0.000 0.001 nan nan nan nan
b_vol, Volume, birch 0.029 nan nan nan nan 0.000 0.001 nan nan nan nan
ba, Stand basal area nan 0.024 nan nan 0.000 nan nan nan 0.003 nan nan
broadlv_timber_vol, Volume, other broad-leaved timber 0.013 nan nan nan nan 0.003 nan 0.011 nan nan nan
diffMeanElev8, Local elevation difference 0.024 nan nan 0.028 nan nan nan nan nan 0.026 nan
canopy_cov, Canopy cover nan nan nan nan 0.000 0.000 nan nan 0.039 nan nan
optimal_trafficability_season, classes 0.013 nan nan nan 0.000 nan nan nan 0.002 nan nan
main_class_fertility_class_comb, combination nan nan nan nan 0.010 0.000 nan nan 0.034 nan nan
erosion_risk, Risk of surface soil to erosion 0.014 0.022 nan nan 0.000 nan nan nan nan nan nan
devMeanElev16, St. dev. of local elevation difference 0.032 nan nan nan nan 0.047 nan nan 0.021 nan nan
c_rootbm_ratio, Conifer root biomass per all root biomass nan nan nan nan 0.000 0.000 nan nan nan nan nan
broadlv_rootbm_ratio, Broad-leaved root biomass ratio nan nan nan nan 0.000 0.000 nan nan nan nan nan
broadlv_canopycov, Canopy cover of broad-leaved trees nan nan nan nan 0.001 0.000 nan nan nan nan nan
standheight, Stand mean height nan 0.050 nan nan 0.000 nan nan nan 0.001 nan nan
b_timber_vol, Volume, birch timber nan nan nan nan nan 0.001 0.030 nan nan nan nan
aspect_cos, Cosine of aspect nan nan nan nan 0.000 nan nan nan 0.001 nan nan
roughness_scale, Roughness over a range of spatial scales nan 0.008 nan 0.047 nan nan nan nan nan nan nan
roughness_mag, magnitude over a range of spatial scales 0.009 nan nan nan nan nan nan nan nan nan nan
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Refined transmission power model

In the model presented in Ala-Ilomäki et al. (2020), trans-
mission power depended linearly on diesel engine power, 
and the model was developed using data from mostly level 
ground or slight uphill. Here, we created a refined model 
(Eq. 2) applicable to a wider range of engine power and ena-
bling estimating transmission power also when the machine 
is driving downhill using engine braking. The values of �RR 
calculated with the Ala-Ilomäki et al. (2020) model were 
systematically lower than those calculated with our refined 
model. Apart from the different functional form, the previ-
ous model was developed for a Ponsse Scorpion harvester.

Up‑scaling data collection: possibilities 
and limitations

Collecting �RR data from a fleet of forest harvesters as part 
of commercial forest operations was proposed by Salmivaara 
et al. (2020b) and Ala-Ilomäki et al. (2020). This would 
require calibrating the hydraulic transmission power model 
for different harvester models, and also possibly adjust-
ing the machine parameters based on the status of their 
hydraulics maintenance program. Making such a calibra-
tion (Fig. 2) requires only installing pressure sensors to the 
harvester hydraulic transmission for the short driving tests 
on undulating terrain (Figs. 3, 4). Gathering such data would 
be crucial for developing a more comprehensive model 
to compute �RR from machine data of different harvester 
models and for different efficiency levels of their hydraulic 
transmission system. The Pt model developed in this work 
is machine-specific but provides a potential approach to 
develop similar Pt models for other harvester models.

In our approach to compute �RR , we assumed that in the 
0.6 to 1.2 ms−1 speed range, diesel engine power was only 
consumed in machine movement, and power use in other 
functions such as boom usage was negligible. Our data col-
lection plan did not include variables for enabling detailed 
analysis of boom usage power consumption. However, from 
a post-processing analysis of our data we estimated that 
boom usage can lead to a small overestimation of �RR (of 
the order of 0.01 to 0.02) compared to vehicle movement 
without any other power usage. This overestimation is rather 
small to significantly affect our interpretation of �RR vari-
ability. Also, the overestimation decreases with increasing 
power usage, and thus high �RR , which are of our main inter-
est, are least affected. In future work, logging boom usage 
data would enable improved estimates of �RR distributions.

Furthermore, we assumed that wheel slip is negligible in 
the machine pitch range of −10 to 10◦ considered. Collect-
ing both vehicle GNSS speed and wheel rotational speed 
and comparing them would enable detecting the wheel slip 
or skidding from machine data and subsequently removing 

these sections from the �RR calculation. Successful filtering 
requires, however, accurate GNSS speed, which may some-
times be difficult to obtain due to canopy cover (Kaartinen 
et al. 2015; Blum et al. 2016).

One further limitation of the demonstrated approach to 
estimating �RR is that information on the running gear the 
harvester was fitted with (tyres, tyres with chains, tyres with 
bogie tracks) at a given harvest site was not known. In the 
Nordic countries in snow-free conditions, the harvester is 
typically at least partly equipped with chained tyres, with 
bogie tracks being used only on the softest sites. However, 
changing the running gear will generally have an effect 
on the machine rolling resistance coefficient (Ala-Ilomäki 
1993). Therefore, applying our approach to practical traf-
ficability assessment and prediction in the future requires 
information on the fitted running gear.

Main factors contributing to variation in the rolling 
resistance coefficient

In our results, the mean of �RR varies in a narrower range 
across the 11 test sites ( ∼ 0.14 to 0.19, Fig. 6) than the means 
across the test sites of Ala-Ilomäki et al. (2020) ( ∼ 0.09 to 
0.18). This difference can be attributed to the differences 
in scale and setup of data collection between the two stud-
ies. Our test sites, covering areas of approximately 400 m 
× 400 m, contrast with the smaller scale of the sites (5 m 
× 20 m) investigated by Ala-Ilomäki et al. (2020). In Ala-
Ilomäki et al. (2020), a large variety of soil types and other 
site properties were purposefully chosen for the harvester 
to traverse with no regard to the produced rutting. In the 
present work, in contrast, the data was collected from regu-
lar, commercial forest operations. Most of the 11 sites were 
fully clear-cut, which means that the stands were of a mature 
age, resulting in a rather uniform forest structure across our 
test sites. Moreover, for minimising soil damage following 
normal guidelines for forest operations, the harvester routes 
were likely planned accordingly.

Creating a brush mat from logging residue on the logging 
trail is standard procedure in commercial harvesting opera-
tions such as those analysed in this study. On soft terrain, 
this improves the bearing capacity of the soil and reduces rut 
formation (Uusitalo and Ala-Ilomäki 2013; Poltorak et al. 
2018), which could be expected to reduce �RR . However, at 
very good bearing conditions, the use of a brush mat may 
introduce additional motion resistance (Ala-Ilomäki et al. 
2020), which would increase the computed �RR . The practi-
cally universal presence of brush mat in the present work 
may therefore be another factor contributing to the narrow 
range of �RR observed in our study.

We found significant differences in terrain trafficability, 
as described by �RR , between (Fig. 6) and particularly within 
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(Fig. 7) the test sites. Table 1 shows spatial features that dif-
fer significantly between locations where low or high (10th 
or 90th percentiles of the �RR distributions, respectively) 
rolling resistance coefficient values were observed. There 
are several features that link consistently to �RR extremes at 
most of the sites (Table 1).

Several topography-based wetness indices (depth-
to-water index DTW, topographic wetness index twi) 
and the weather-history dependent soil saturation deficit 
(sat_deficit_doy) simulated by SpaFHy model are 
strong proxies of rolling resistance coefficient extremes. 
The rolling resistance coefficient had a significant nega-
tive relationship with sat_deficit_doy at five and with 
DTW indices dtw01_0ha and dtw00_5ha at 7 of the 
11 test sites (Table 1), indicating that a high �RR was often 
associated with locations of high soil moisture (low DTW 
or saturation deficit). This is supported by the positive rela-
tionship between �RR and twi, as high twi indicates wet 
conditions. These findings agree with other studies that have 
found soil moisture and soil strength linkage (Schönauer 
et al. 2022; Campbell et al. 2013; Mohtashami et al. 2023). 
We also modelled the volumetric soil moisture content, 
which depends on antecedent weather conditions, stand 
attributes, soil hydraulic properties and topography (see 
Launiainen et al. (2019)). In the hydrological simulations, 
we used forest site fertility type dependent hydraulic proper-
ties (Launiainen et al. 2022), but still there was no consistent 
relation between vol_moisture_doy and �RR (Table 1). 
This is likely due to both high variability of soil hydraulic 
properties (Launiainen et al. 2022) and the partial inability 
of the SpaFHy-model to predict small-scale variability in 
soil water flow and soil moisture. Site-specifity is evident 
in our results, which agrees with other studies (Kemppinen 
et al. 2023; Schönauer et al. 2022), and certain sites show 
many more linkages to spatial features than other sites do 
(e.g., 3, 10 and 11). DTW maps with different thresholds 
have been estimated to represent different hydrological con-
ditions, but it is clear that no single topographic wetness 
index outperforms the others. Our results show that DTW 
indices with smaller thresholds seem to work better on sites 
operated later in the year in more moist conditions (based 
on our hydrological model predictions).

While we did not assess rutting damage in this work, 
there is evidence that soil bearing capacity decreases and 
rut depth increases with increasing rolling resistance (Ala-
Ilomäki et al. 2020; Salmivaara et al. 2020b; Kurjenluoma 
et al. 2009; Bygdén et al. 2003). Thus, our extensive high-
resolution harvester data supports the use of topography-
driven wetness indices as a practical means for trafficabil-
ity prediction (Campbell et al. 2013; Heppelmann et al. 
2022; Vega-Nieva et al. 2009; Salmivaara et al. 2020b; 
Mohtashami et al. 2023; Latterini et al. 2022b), particularly 
when the topographic wetness index is selected so that it 

reflects the landscape hydrological state during the operation 
(i.e., accounts for the weather history or variance between 
seasons (Kemppinen et al. 2023; Oltean et al. 2016; Niemi 
et al. 2017)). A practical means of including temporal infor-
mation accompanied by consideration of vegetation, soil 
and climate on soil moisture is to use the soil saturation 
deficit simulated by a hydrological model, as suggested in 
Salmivaara et al. (2020b).

Unlike the wetness indices, the terrain ruggedness index 
(tri) and the difference of grid cell elevation relative to 
its neighbours (diffMeanElev8) reflect small-scale topo-
graphical variability without considering the upslope flow 
accumulation area of the cell or the position of the cell in the 
catchment (Riley et al. 1999; Lindsay 2023). The observed 
negative relationship between �RR and these local topogra-
phy features suggests that rolling resistance increases at local 
surface depressions.

Rolling resistance variability was also strongly associated 
with stand attributes, here based on multi-source national 
forest inventory data (msNFI 2019; Mäkisara et al. 2022, 
Supplementary Table S1). High values of �RR were gen-
erally observed at locations where total tree root biomass 
bmroot_all (5 out of 11 sites), total tree volume (4 out 
of 11 sites) and/or basal area ba (3 out of 11 sites) were 
high (Table 1). Our data shows that �RR is high at loca-
tions with high spruce (s_pulp_vol, s_timber_vol, 
s_rootbm_ratio, on 4 to 5 out of 11 sites) or decidu-
ous tree (broadlv_vol, broadlv_pulp_vol, on 3 to 
4 out of 11 sites) biomass attributes. In contrast, locations 
where pine is the prevailing species (p_rootbm_ratio, 
p_pulp_vol, p_timber_vol, on 3 to 4 out of 11 sites) 
are often associated with low rolling resistance indicating 
terrain with good trafficability (Table 1). The data was col-
lected mainly from clear-cut and some thinning operations 
conducted at closed-canopied, mature stands. Therefore, 
it is likely the variability in stand attributes, especially the 
species composition, reflects soil texture, site fertility and 
hydraulic regime. The high volume and root biomass (and 
high �RR ) occur mainly at spruce and deciduous stands 
that typically dominate fertile and mesic locations, often 
on fine-textured soils with higher organic matter content 
(Launiainen et al. 2022; Muukkonen and Mäkipää 2006). 
This likely explains the high �RR observed at grid cells with 
large root biomass or volume (Table 1). However, due to 
denser forest structure, there might also be over-estimation 
in �RR due to more boom movement along the driving. We 
also observe a negative relationship between topsoil 
class (increasing from fine to coarse textured soils) and �RR , 
suggesting that high (low) extremes of rolling resistance 
coefficient occur more often at fine (coarse) soils, in line 
with Bygdén et al. (2003); Kurjenluoma et al. (2009); Ala-
Ilomäki et al. (2020).
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There are also features of which the relationship with �RR 
is not consistent across the sites (Table 1). Terrain slope 
aspect represents the facing of the slope (i.e., north at 
0 ◦ , south at 180◦ ). Thus, the metric is cyclic by nature, and 
requires a deeper analysis besides taking the sine and cosine 
of the aspect angle (also presented in Table 1). Figures S1 
and S2 in the Supplementary material show, respectively, a 
radar plot of occurrence of aspects per each site and boxplots 
of �RR for each cardinal direction of the aspect for slopes of 
over 5 ◦ steepness, suggesting that south-facing slopes might 
have lower mean �RR than north-facing slopes. However, as 
can be seen from Table 1, the within-site effect of aspect 
can vary. While aspect seems to be a statistically significant 
factor for �RR variation, its effect on �RR is likely driven by 
a multitude of factors, and the interpretation requires future 
studies.

Lessons learnt and outlook

Our high-resolution harvester data collected during opera-
tional forest harvesting, supplemented by a specific one-day 
test run to calibrate the hydraulic power model parameters 
(Figs. 2, 3) enabled estimating the harvester rolling resist-
ance coefficient for a range of sites and environmental con-
ditions (Figs. 6, 7). The obtained �RR differed significantly 
between road and forest terrain (Fig. 5), and its variability 
was logically linked to variability of several terrain features 
obtained from open spatial data (Table 1). The results pro-
vide support for earlier studies proposing forest machines as 
cost-efficient platforms to collect extensive spatio-temporal 
data on trafficability and soil state (Ala-Ilomäki et al. 2020; 
Salmivaara et al. 2020b; Labelle et al. 2022). This concept 
would extend existing capabilities of collecting spatial data 
using forest harvesters, which include monitoring of thin-
ning intensity (Möller et al. 2015), producing delineations 
for forest stands (Melkas et al. 2020), mapping the presence 
of root and butt rot disease (Räty et al. 2021), and collecting 
ground-truth data for remote-sensing forest inventory meth-
ods (Saukkola et al. 2019; Söderberg et al. 2021).

Across our test sites, the observed extremes of �RR were 
not consistently related to the static terrain trafficability map 
(optimal_trafficability_season, Table 1), which 
has been composed from topographic, site fertility type and 
vegetation attributes using expert judgement (Kankare et al. 
2019; Finnish Forest Centre 2018). The pioneering dataset 
on vehicle ARCNET parameters and �RR (see details in Sup-
plementary material Table S4) collected in this study opens 
interesting prospects for improved predictions of terrain 
trafficability. Salmivaara et al. (2020b) proposed that static 
harvest season classifications (Finnish Forest Centre 2018; 
Kankare et al. 2019) could be complemented with weather-
dependent ‘traffic light mapping’. The authors successfully 
demonstrated the approach by combining open spatial data, 

hydrological simulations and a harvester-measured rolling 
resistance coefficient from a tailored field experiment cover-
ing ca. 1.5 km of harvester tracks at a single site. The current 
study takes the first step in upscaling this approach to actual 
harvest operations, and to collect extensive �RR data to build 
data-driven models for trafficability forecasts (Labelle et al. 
2022; Kemmerer and Labelle 2021; Hoffmann et al. 2022).

Forest operations are scheduled and planned based on 
multiple criteria, including economic, ecological and envi-
ronmental (MacDicken et al. 2015; Latterini et al. 2022a) 
objectives. One of the goals is to minimise soil damages by 
careful planning of harvester and forwarder routes, on-site 
decisions by experienced harvester operators, and by use of 
brush mats on the softest areas (Uusitalo and Ala-Ilomäki 
2013; Poltorak et al. 2018). The present work demonstrates 
the direct creation of a ‘trafficability map’ (Fig. 7) for the 
forwarder, which is an assessment of terrain trafficability 
produced from harvester data. Such a map could, in princi-
ple, be used to inform the planning of the subsequent for-
warding operation in, e.g., on-site route planning. Further-
more, the in situ trafficability assessment provided by the 
harvester rolling resistance coefficient for a precise location 
and point in time could be used as a ground truth quantity 
in developing detailed trafficability predictions through any 
approach.

Our preliminary tests suggest that the tails of the �RR dis-
tribution can be distinguished (i.e., the extremes can be pre-
dicted) at the site-level, but not across the all sites combined 
(not shown). This may be due to coarser resolution of open 
data features compared to variability of rolling resistance, as 
well as low signal-to-noise ratio in both �RR and the predic-
tor terrain features.

Conclusions

Our dataset of �RR collected from real commercial forest har-
vesting operations and machine parameters is unprecedented 
in extent and resolution, in both space and time. Our analy-
sis demonstrates that operational harvester data can provide 
valuable information for trafficability assessment and pre-
diction, in particular, for use in planning forwarding opera-
tions. We show that several wetness-related terrain indices, 
such as DTW with 4 ha and 1 ha thresholds and saturation 
deficit obtained from hydrological simulations, appear use-
ful for predicting the occurrence of extreme �RR values at 
the site level. This enables identification of areas with poor 
and good trafficability conditions in a forest stand prior to 
any machine traffic. Using operational harvester data to infer 
and predict site trafficability is a useful addition to existing 
harvester data collection capabilities. In future work, we will 
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investigate the power of using �RR alongside open spatial 
data to predict rut depths resulting from forest operations.
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