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Multi-resolution remote sensing for flark area detection in 
boreal aapa mires
Kaapro Keränena,b, Aleksi Isoaho a,c, Aleksi Räsänena,b, Jan Hjortb, Timo Kumpula d, 
Pasi Korpelainend and Parvez Ranaa

aNatural Resources Institute Finland (Luke), Oulu, Finland; bGeography Research Unit, University of Oulu, 
Oulu, Finland; cWater, Energy and Environmental Engineering Research Unit, Faculty of Technology, 
University of Oulu, Oulu, Finland; dDepartment of Geographical and Historical Studies, Faculty of Social 
Sciences and Business Studies, University of Eastern Finland, Joensuu, Finland

ABSTRACT
Peatlands have suffered significant degradation globally due to 
human impacts, which has increased the need to monitor the 
condition and changes in peatland ecosystems. With remote sen-
sing, point-based in-situ observations can be upscaled to larger 
areas but there is a need to develop scalable monitoring methods. 
We predicted wet flark area extent, a key ecological indicator for 
patterned flark fens, in five sites in central Finland. Our primary aim 
was to test how the spatial and spectral resolution of different 
optical satellite image products (Landsat 8–9, Sentinel-2, 
PlanetScope) affect flark area coverage prediction. We also tested 
if there were seasonal or site-specific differences in prediction 
accuracy. Lastly, we upscaled the flark area coverage to entire 
mire areas. We used unmanned aerial vehicle (UAV)-derived flark 
area classification as a ground reference data to compare satellite 
sensors’ prediction accuracies. We predicted flark area coverage 
using spectral bands and indices as predictor variables using ran-
dom forest regression. All sensors provided accurate results with 
some differences between Landsat (pseudo-R2 32−84%, root-mean 
squared error (RMSE) 10 − 18%), Sentinel-2 (R2 61−92%, RMSE 6 
−14%), and PlanetScope (R2 46 − 92%, RMSE 6 − 17%). The short-
wave infrared bands of Landsat and Sentinel-2 did not increase the 
prediction accuracy. There were notable site-specific variations in 
prediction accuracy despite all the sites having typical open aapa 
mire wet flark – dry string patterns. With single-site models, the 
prediction accuracies were similar for early and late summer data, 
but when transferring the models to the other sites, performance 
significantly decreased, especially with the models using the late- 
summer imagery. Finally, we successfully upscaled the flark area 
coverage across entire mire areas. Our results demonstrate that the 
combination of UAV and satellite imagery can be used successfully 
to monitor peatland conditions and changes in them.
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1. Introduction

Globally, peatlands have degraded because of anthropogenic influence and accelerating 
global warming (Page and Baird 2016), which has led to the drying of naturally wet 
ecosystems (Leifeld and Menichetti 2018). As a consequence, the carbon sink and water 
regulating the functioning of peatland ecosystems has weakened worldwide and many of 
the peatland habitats and species are threatened (Page and Baird 2016; Strack, Magnus 
Keith, and Xu 2014; Urák et al. 2017). The changes have been dramatic, especially in the 
peatland-rich areas within the boreal zone, where 57% the global peatlands are located 
(United Nations Environment Programme 2022). The degradation has resulted in the need 
for monitoring changes in the status of the peatlands (Czapiewski and Szumińska 2021; 
Harris and Bryant 2009). Additionally, Global Biodiversity Framework (2024) suggests that 
30% of the degraded peatlands should be under effective restoration by 2030, which 
further emphasizes the need for cost-effective monitoring methods.

Peatlands have traditionally been monitored with field observations, such as vegeta-
tion inventories and water table measurements (Haapalehto et al. 2011; Kolari et al. 2022; 
Menberu et al. 2016). Additionally, satellite and other remote sensing (RS) techniques 
have been used in numerous ways in the monitoring (Bechtold et al. 2018; Burdun et al.  
2023; Czapiewski and Szumińska 2021; Isoaho et al. 2024; Ozesmi and Bauer 2002; 
Räsänen, Tolvanen, and Kareksela 2022). For instance, the RS methods are widely applied 
in the assessment of vegetation cover and composition (Pang et al. 2023; Räsänen and 
Virtanen 2019; Steenvoorden and Limpens 2023) and wetness (Burdun et al. 2020; Isoaho 
et al. 2023, 2024; Jussila et al. 2023; Lendzioch et al. 2021; Räsänen, Tolvanen, and 
Kareksela 2022), which are key indicators for peatland ecosystem functioning. The use 
of RS methodology is beneficial as in-situ field samplings can disturb the ecosystems and 
require a lot of laborious field work (Lendzioch et al. 2021). Furthermore, with RS, the 
point-based field observations can be upscaled to larger spatial extents (Czapiewski and 
Szumińska 2021; Harris and Bryant 2009; Isoaho et al. 2024).

Optical satellite data has been utilized in peatland research with different spectral 
wavelengths and spectral indices. Previous studies indicate that optical RS data perform 
well when modelling peatland surface wetness (Burdun et al. 2020; Isoaho et al. 2023,  
2024; Räsänen, Tolvanen, and Kareksela 2022). Typically, utilized indices describe soil 
moisture conditions, open water cover, and the state of vegetation (Czapiewski and 
Szumińska 2021; Kolari et al. 2022). However, single bands have outperformed most of 
the spectral indices in multiple studies targeting soil moisture and water table level 
(Isoaho et al. 2023; Kolari et al. 2022; Räsänen, Tolvanen, and Kareksela 2022). 
Nonetheless, the simultaneous use of indices and single bands can provide more com-
prehensive information for accurately estimating peatland wetness (Isoaho et al. 2024; 
Räsänen, Tolvanen, and Kareksela 2022).

In addition to satellite RS, high-resolution unmanned aerial vehicles (UAV), also 
known as drones, have been applied in the RS-based peatland monitoring. UAV 
images provide accurate and high resolution spatial information, which is needed to 
correctly classify land cover types in spatially highly heterogeneous peatland ecosys-
tems (Räsänen and Virtanen 2019; Steenvoorden and Limpens 2023; Wolff et al. 2023). 
UAVs have also been applied e.g. for modelling the spatial patterns of peatlands’ water 
table level (Isoaho et al. 2023), water flow routes, and soil moisture patterns (Ikkala 

INTERNATIONAL JOURNAL OF REMOTE SENSING 4325



et al. 2022). UAV can be useful as training data for satellite image applications and for 
upscaling field-measurements to larger spatial extents (Pang et al. 2023; Räsänen and 
Virtanen 2019).

While several studies have focused on peatland water table level and soil moisture 
across the globe (Burdun et al. 2020; Czapiewski and Szumińska 2021; Isoaho et al.  
2023; Kalacska et al. 2018; Räsänen, Tolvanen, and Kareksela 2022), less research has 
concentrated on wet flark area coverage, a key indicator of the ecological condition in 
northern peatlands (Jussila et al. 2023; Kolari et al. 2022; Tahvanainen 2011; Talvitie, 
Räsänen, and Silvan 2023). Flark area coverage is an important indicator because it 
reflects the overall ecohydrological state of flark fens; additionally, flark area has 
broadly decreased in the boreal aapa mires due to drainage and possibly climate 
change (Granlund et al. 2022; Kolari and Tahvanainen 2023; Kolari et al. 2022; Sallinen 
et al. 2019). Even though flarks are semi-permanent microtopographical forms, there 
are seasonal changes in their spatial extent due variations in peatland hydrology 
(Talvitie, Räsänen, and Silvan 2023). The site- and season-specific variations in flark 
coverage also remain mostly unstudied, while site-specific differences have been 
observed in water table dynamics (Burdun et al. 2023; Räsänen, Tolvanen, and 
Kareksela 2022).

Multiple studies have compared different satellite sensors and aerial RS methods in 
modelling of peatlands and wetlands (Bourgeau-Chavez et al. 2017; Burdun et al. 2020; 
Czapiewski and Szumińska 2021; Kalacska et al. 2018; Klinke et al. 2018; Kolari et al. 2022). 
Some studies have also compared multiple medium to high spatial resolution satellite 
imagery to detect land cover and vegetation patterns and open water bodies (Lefebvre 
et al. 2019; Räsänen et al. 2021; Sirin et al. 2018; Zhou et al. 2017). The respective studies 
show varying impacts how the spatial resolution affects the predictive capacities of the 
models, and that higher spatial resolution does not always translate to better prediction 
performance. However, boreal peatlands have high spatial heterogeneity and it has been 
discussed that detailed monitoring can be conducted only with fine-resolution UAV 
imagery (e.g. Ikkala et al. 2022; Isoaho et al. 2023; Steenvoorden and Limpens 2023). 
Nevertheless, coarser spatial resolution satellite imagery could still be tested in these sites; 
even though they cannot realistically capture the exact location of peatland microforms, 
they can potentially be used to assess flark area coverage within pixels and entire peat-
land complexes.

Satellites provide more autonomous data capture and are temporally more accessible 
than UAV-based data, which makes them essential to meet the need of cost-effective 
peatland monitoring. However, different satellite products with varying spatial resolution 
have not been compared in the prediction of the flark coverage. To address this gap, we 
utilize RS data from three different resolution optical sensors (Landsat 8–9, Sentinel-2, 
PlanetScope) to model the flark area coverage of northern aapa mires. We compare the 
performances of the sensors and develop a method to upscale UAV-based information 
with satellite imagery. Our specific research questions are the following:

(1) How does the spatial and spectral resolution of different sensors affect the predic-
tion of the flark area coverage?

(2) How does the seasonal and site-specific differences affect the prediction accuracy?
(3) Can the flark area coverage be upscaled to larger peatland complexes?
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2. Materials and methods

2.1. Study sites

The research was conducted in five boreal minerotrophic aapa mires: Vihtaneva (26°3’E, 
63°52’ N), Haudanneva (26°5’E, 63°49’ N), Kurkineva (26°24’E, 64°6’ N) and Niittysuo (26° 
42’E, 65°1’ N) in the Northern Ostrobothnia region, and Vahtisuo (27°35’E, 63°51’ N) in the 
Northern Savonia region of Finland (Figure 1).

Aapa mires are peat-accumulating boreal peatland complexes that have wet flark fen 
areas in the middle (Tahvanainen 2011). Flark fen areas consist of water-filled depressions 
called flarks, and dry hummock called strings; i.e. there is a flark-string pattern (Kolari et al.  
2022; Sallinen et al. 2019). The strings are narrow (<10 m) and long (even over 1000 m) 
elevated micro-topographical forms with vegetation including Sphagnum mosses, forbs, 
graminoids, and some shrubs, while wet flarks are partly covered by shallow (<30 cm), 
open water with vegetation consisting of Sphagnum and wet brown mosses, graminoids 
and forbs. Flarks are typically wider than but equally long as strings. The edges of the aapa 
mires are drier consisting of thick peat layers and Sphagnum-dominated ground vegeta-
tion and are typically sparsely treed pine or spruce mire types (Seppä 2002). The studied 
areas are mostly treeless open parts of mires, although some Scots pines (Pinus sylvestris) 
and Norway spruces (Picea abies) are found in more elevated and drier areas.

Figure 1. The locations of the study sites: Vihtaneva (1; aerial orthoimage acquired on 27 June 2022), 
Haudanneva (2; 25 June 2022), Kurkineva (3; 4 June 2021), Vahtisuo (4; 2 June 2021) and Niittysuo (5; 
29 June 2021). Delineations within the sites are densely treed areas excluded from the study. Aerial 
orthoimages are open data from National Land Survey of Finland (2023).
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Historically, edges of studied mires were drained for forestry purposes during the 
1960s and 1970s. This involved excavating drainage ditches around the mire margins 
and in the adjacent peatland forest areas. As the aapa mires are dependent on the 
surrounding surface and near-surface groundwater flows, the drainage led to efficient 
drying of the mires, including the central unditched areas (Sallinen et al. 2019). Such 
drying caused the flark ponds to shrink and triggered a shift in vegetation from Carex- 
dominated vegetation to Sphagnum-dominated (Granlund et al. 2022; Kolari and 
Tahvanainen 2023; Kolari et al. 2022; Tahvanainen 2011). More recently, there have 
been efforts to restore these sites by directing water flow routes from drainage to the 
unditched but dried parts of the peatland complexes (Isoaho et al. 2023). Ultimately, the 
restoration processes aim to recover the mire ecosystems to their natural-like state 
(Haapalehto et al. 2014; Strack, Magnus Keith, and Xu 2014).

While the study sites are similar in terms of drainage and restoration history, there are 
some notable site-specific differences. Based on Hautala (2022) vegetation inventories 
and our empirical experiences on the field, Vahtisuo has less Sphagnum cuspidatum while 
having more hummock and forest species coverage indicating less wet conditions than 
other sites. In the same vein, Niittysuo has more forbs indicating more nutrient-rich 
conditions than other sites. Kurkineva, Vihtaneva and Haudannaeva are generally similar 
to each other having a similar coverage of different plant functional groups and flark- 
string patterns.

2.2. Remote sensing data

We utilized multiple optical RS datasets, consisting of multispectral UAV and satellite 
imagery (Table 1, Figure 2). We conducted UAV flights with DJI Matrice 300 with real-time 
kinematic positioning in late May (hereafter early summer) and mid-August (hereafter late 
summer). Early summer imagery represents the time-point when the water table is 
typically at its highest right after snowmelt, while late summer represents low water 
table conditions (Figure S1; Sallinen et al. 2023) in which vegetation cover is close to its 
seasonal peak (Pang et al. 2023). In Vihtaneva and Kurkineva, we conducted flights in both 
2021 and 2022, while at other sites, only in 2021 (Table S1). We collected the data with 
5-band MicaSense sensors (RedEdge-M in 2021 and spring 2022, and Altum-PT in 
August 2022, Table 1) and radiometrically calibrated the imagery with reflectance panels 

Table 1. Remote sensing datasets used and their acquisitions dates, bands, spatial resolutions, and 
sources. UAV refers to unmanned aerial vehicle, NIR to near-infrared and SWIR to shortwave infrared.

Dataset Image acquisition date Captured bands
Spatial 

resolution
Data source 
(Reference)

UAV Early and late summer 2021 & 2022 Early 
and late summer 2021 & 2022

Blue, Green, Red, 
NIR, Red Edge

5–10 cm Authors

PlanetScope Early and late summer 2021 & 2022 Blue, Green, Red, 
NIR,

3 m Planet Labs (Planet 
Team 2023)

Sentinel-2 Early and late summer 2021 & 2022 Blue, Green, Red, 
NIR, SWIR1, SWIR2

10 m, 20 m for 
SWIR bands

European Space 
Agency (ESA 2023)

Landsat 8–9 Early and late summer 2021 & 2022 Blue, Green, Red, 
NIR, SWIR1, SWIR2

30 m U.S. Geological 
Survey (USGS 2023)
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and empirical line calibration. The calibrated data were used to construct fine-resolution 
(5–10 cm) orthomosaics with Agisoft Metashape (version 1.8.4). However, the UAV image 
of early summer 2021 from Kurkineva was shaded by clouds and therefore, omitted from 
our analysis. In total, we utilized 13 UAV orthomosaics.

Additionally, we incorporated satellite imagery from three distinct sources: NASA/USGS 
Landsat 8–9, ESA Copernicus Sentinel-2 and Planet Inc. PlanetScope (Table 1). All satellite 
data were atmospherically corrected surface reflection products (Level-2 for Landsat, 
Level-2A for Sentinel, and Planet Surface Reflectance for PlanetScope). We obtained 
cloud-free satellite data to as close as possible with the UAV flight dates, up to 14 days 
apart (Table S1). Landsat 8–9 had the lowest temporal frequency between the dates of 
images, but from late summer, cloudless images were difficult to find also for Sentinel-2 
and PlanetScope data.

2.3. Feature extraction

We extracted individual bands and several vegetation and moisture-related indices from 
the RS datasets (Table 2). We calculated vegetation indices as they have correlated with 
vegetation greenness and vegetated land cover extent (Kolari et al. 2022; Lendzioch et al.  
2021; Riihimäki, Luoto, and Heiskanen 2019; Taddeo, Dronova, and Depsky 2019) and 
moisture-related indices as they are connected with surface wetness of peatlands and 
open water cover (Kalacska et al. 2018; Kolari et al. 2022; Meingast et al. 2014). Particularly, 
we included the Green Difference Vegetation Index (GDVI; Sripada et al. 2006) and 
Automated Water Extraction Index (AWEI; Feyisa et al. 2014), which have correlated 
strongly with open water flark areas according to Kolari et al. (2022). Lastly, we added 
the Enhanced Vegetation Index (EVI; Huete et al. 2002) and Soil Adjusted Vegetation Index 

Figure 2. Simplified flowchart of methodology used in this study. R2: percentage of variance explained 
and RMSE: root-mean-square error.

INTERNATIONAL JOURNAL OF REMOTE SENSING 4329



(SAVI; Huete 1988), as those indices differentiate vegetated and non-vegetated land 
covers (Poulin, Davranche, and Lefebvre 2010; Taddeo, Dronova, and Depsky 2019). For 
the extraction process, we constructed 30 m resolution grids based on the pixel dimen-
sions of Landsat images within the study sites. We then calculated the area-weighted 
mean for each band and index within these grids.

2.4. Flark and non-flark area classification

For the classification of flark and non-flark areas, we utilized Geographic Object-Based 
Image Analysis (GEOBIA) (Blaschke et al. 2014) segmentation-classification approach on 
each of the 13 UAV images using ArcGIS Pro. First, we used green, red, and NIR spectral 
bands from the UAV images in mean-shift segmentation (Comaniciu and Meer 2002) as 
those bands produced distinctive spatial features based on our initial tests. We set 
spectral and spatial detail parameters to 19 and 15, respectively, and minimum segmen-
tation size was set to 100 pixels, equivalent to a minimum area of 0.25–1 m2 per segment. 
Second, we constructed around 25 training data polygons of both flark and non-flark 
areas with an average coverage distribution of 27% and 73%, respectively (Table S2). 
Third, we used the segmented images and training data as input data for random forest 
classifications (Breiman 2001). We set the maximum number of trees to 200 as typically 
the performance diminishes, and the model stabilizes after a couple of a hundred trees 
(Rodriguez-Galiano et al. 2012). To avoid overfitting, we set the max tree depth to 30. 
Finally, we set the max number of samples to 100,000 since this value erased random 
noise based on our initial tests. Fourth, we verified the accuracy of the classifications 
based on 100 randomly generated points and visual interpretation of the UAV images 
(86–96%, Table S2, Figure S2–S6). Finally, we extracted the percentage of flark area in each 
30 m grid cell.

2.5. Regression models for flark area prediction

We used random forest regressions for predicting the flark area coverage in 30 m 
grids with spectral bands and indices serving as predictor variables and UAV-image 

Table 2. List of spectral indices calculated from the Landsat 8–9, Sentinel-2, and PlanetScope data. NIR 
refers to near-infrared and SWIR to shortwave infrared.

Index Abbreviation = Equation Reference

Normalized Difference Vegetation 
Index

NDVI ¼ NIR� Redð Þ

NIRþRedð Þ
Rouse et al. (1974)

Normalized Difference Moisture 
Index*

NDMI ¼ NIR� SWIR1ð Þ

NIRþSWIR1ð Þ
Wilson and Sader 

(2002)
Normalized Difference Water 

Index
NDWI ¼ Green� NIRð Þ

GreenþNIRð Þ
McFeeters (1996)

Green Difference Vegetation 
Index

GDVI ¼ NIR � Green Sripada et al. (2006)

Automated Water Extraction 
Index*

AWEI ¼ 4� Green � SWIR1ð Þ � 0:2� NIRþ 2:75� SWIR2 Feyisa et al. (2014)

Enhanced Vegetation Index  

Soil Adjusted Vegetation Index

EVI ¼ 2:5� NIR� Redð Þ

NIRþ6�Red� 7:5�Blueþ1ð Þ

SAVI = 1.5 X (NIR-RED) / (NIR+RED+0.5)

Huete et al. (2002)  

Huete (1988)

*Only for Landsat and Sentinel.
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classified flark area coverage being the response variable. Random forest is effective 
in this context as it can handle multiple predictor variables without being prone to 
overfitting or multicollinearity (Probst, Wright, and Boulesteix 2019).

First, we developed single-site models, i.e. separate models for each satellite image 
data for the area covered by one UAV image. We built the models separately for early 
summer and late summer seasons. For Landsat and Sentinel, we constructed the models 
both with and without SWIR bands to get comparable results with PlanetScope data 
which lacked SWIR-bands, and to assess if SWIR-bands were important for the model 
performance.

Second, to evaluate the transferability of our models across different sites, we com-
bined multi-site datasets for each sensor, separately. We split the data into training and 
test sets so that the data from four sites were used as training data and the fifth site was 
the testing data. We repeated the model so that all sites were used once as testing site 
and constructed the models both with-SWIR and non-SWIR datasets, and for early 
summer and late summer seasons.

We opted for the default parameter setting: 500 trees and one-third of variables 
tried at each split, as default values have been found to be sufficient when using RS 
data (Belgiu and Drăguţ 2016; Probst, Wright, and Boulesteix 2019). We assessed the 
model performance based on the percentage variance explained (random forest 
pseudo-R2) and root-mean-square error (RMSE). For single-site models, we utilized 
a 10-fold cross-validation, and for multi-sites, we assessed the performance with the 
test sites’ fit. We also extracted variable importance for the models utilizing percen-
tage increase in mean square error statistic. We summed the importance of the 
predictor variables and normalized the values between 0 and 100 for each sensor 
and model type (i.e. sensor-specific single-site and multi-site models of with-SWIR 
and non-SWIR datasets). We conducted the modelling and cross-validation with the 
caret package (Kuhn 2008) in R (version 4.3.0).

Finally, we upscaled the model predictions to 30 m Landsat grids (see section 2.3) 
covering the entire aapa mires and compared the predicted flark area maps to visual 
interpretation of aerial orthoimagery (50 cm pixel size, National Land Survey of 
Finland). For upscaling, we selected the single-site model with the generally best- 
performing season for each site. If with-SWIR models performed better than non- 
SWIR models, these were used in the case of Sentinel-2 and Landsat models. We 
upscaled each sensor type separately to evaluate whether there were noticeable 
differences among the used satellite datasets.

3. Results

3.1. Different sensors for flark area prediction

In the single-site models, median R2 values were high (84–92%) and RMSE values (6– 
10%) relatively low for all sensors (Table 3, Figure 3). On average, the models based on 
Landsat had lower predictive capacity compared to Sentinel-2 and PlanetScope-based 
models, the latter two having very similar performances. The exclusion of SWIR data 

INTERNATIONAL JOURNAL OF REMOTE SENSING 4331



did not remarkably change the model performance for Landsat and Sentinel-2 data 
(Table 3).

Multi-site models had notably lower performances than the single-site models, 
with more variation in the accuracies between models based on different sensor data 
(Figure 4, Table 3). While Sentinel-2-based multi-site models’ performances stayed 
relatively high, the performance of Landsat and PlanetScope models decreased 

Table 3. Regression models accuracies by each sensor, single-site and multi-site models with SWIR and 
non-SWIR datasets. Models’ performances are portrayed by median values of variance explained % 
(R2) and root-mean-square error (RMSE) values of predicted flark percentage (%).

Single-site Multi-site

With-SWIR Non-SWIR With-SWIR Non-SWIR

Sensor R2 (%) RMSE (%) R2 (%) RMSE (%) R2 (%) RMSE (%) R2 (%) RMSE (%)

Landsat 8–9 84.1 9.7 83.7 9.6 33.1 17.6 31.7 17.5
Sentinel-2 92.3 6.0 92.2 6.2 61.4 13.1 61.0 13.6
PlanetScope 92.3 6.3 45.9 16.8

Figure 3. Single-site Random Forest regression models results. The variance explained % (R2), (A, B), 
and root-mean-square error (RMSE) of the flark area coverage predicted (%), (C, D). The sub-figures 
a and C represent the models with SWIR datasets and sub-figures B and D with non-SWIR datasets. For 
PlanetScope, the same results are replicated for both types of models.
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remarkably (Table 3). The performance of multi-site models did not drastically vary 
between SWIR and non-SWIR datasets.

An analysis of variable importance across all datasets revealed consistent trends 
(Figure 5). The most important variables were consistently the NIR, green and red 
bands, and GDVI. In contrast, the SWIR bands and indices that utilized SWIR data had 
low importance in the models.

3.2. Seasonal and site-specific differences

In the single-site models, Vihtaneva, Haudanneva and Kurkineva had the highest 
performance, with R2 values between 71.1 and 96.5%. In contrast, Vahtisuo models 
showed the poorest performance (R2 = 30.2–77.4%; Figure 3). Notably, in the single- 
site models, the overall difference between seasons was negligible, except for 
a notable deviation in Vahtisuo during late summer.

Multi-site models displayed greater variability among sites and seasons, along 
with more pronounced differences between the highest and lowest values of model 

Figure 4. Multi-site Random Forest regression models results. The variance explained % (R2), (A, B), 
and root-mean-square error (RMSE) of the flark area coverage predicted (%), (C, D). The subfigures 
a and C represent the models with SWIR datasets and subfigures B and D with the non-SWIR datasets. 
For PlanetScope, the same results are replicated for both types of models. Negative R2 are shown as 
a 0.
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accuracies (Figure 4). The ranking of sites in term of performance remained con-
sistent, with Vahtisuo and Niittysuo at the lower end, with some models even 
having negative R2 values. There were clear differences between seasons since 
models of early summer had notably better performance than late summer.

3.3. Upscaling to larger areas

When upscaling model predictions to larger areas, Sentinel-2 and PlanetScope 
models predicted the spatial flark-string patterns more realistically than Landsat 
models (Figure 6). This was particularly evident when the predicted maps are visually 
compared with the flark-string pattern in aerial orthoimagery (see Figure 1). The 
most notable examples of this were observed in Vihtaneva and Haudanneva, where 
the flark area patterns depicted in the Sentinel-2 and PlanetScope model-based 
maps were quite distinct, while in the Landsat-models the strings between flarks 
are not similarly distinguishable due to smoother prediction outcome. Despite these 
differences, the predicted values between the sensors were generally close to each 

Figure 5. Spectral variable importance is shown as the percentage increase in mean square error. 
Figures (A, C) represent the single-site models and (B, D) multi-site models. Figures (A, B) represent the 
models with-SWIR datasets and (C, D) non-SWIR datasets. Variables and index acronyms are explained 
in Table 2.
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Figure 6. Models’ predictions upscaled to larger areas. Predicted area is delineated with black line, 
masking out mire margins and densely treed areas inside mires. The dates of the models were from 
late summer 2022 for Vihtaneva, late summer 2021 for Haudanneva, early summer 2022 for Kurkineva, 
early summer 2021 for Vahtisuo and late summer 2021 for Niittysuo. The mean (µ) and maximum 
(Max) values of grid flark % are shown for each mire’s prediction. Aerial orthoimagery in the 
background are open data (National Land Survey of Finland 2023).
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other, with the landscape-level mean flark coverage differing only by a few percen-
tage points.

4. Discussion

Our study demonstrates that flark area coverage can be accurately predicted using 
a combination of UAV-based flark area classification and regression models that utilize 
medium to high spatial resolution (3–30 m) optical satellite imagery. However, there are 
some differences between satellite image sensors, sites, and seasons in the model 
performance.

4.1. Spatial and spectral resolution effects

The effect of spatial resolution was to some extent evident as finer resolution 
imagery of Sentinel-2 (10 m) and PlanetScope (3 m) generally provided better 
model performance than the coarser resolution Landsat models (30 m). However, 
the performance of Sentinel-2 and PlanetScope was almost similar. This observation 
is contradicted by earlier studies that have suggested the use of very high resolution 
imagery in patterned peatlands (Räsänen and Virtanen 2019; Steenvoorden and 
Limpens 2023) but aligns with Räsänen et al. (2021), who found no significant 
advantage of PlanetScope over Sentinel-2 in modelling aboveground biomass pat-
terns in northern peatlands and Arctic tundra. The finding can be related to the 
lower radiometric quality of PlanetScope when compared to Sentinel-2 (Frazier and 
Hemingway 2021), which might limit its predictive capacity despite its high spatial 
resolution.

While we found that Landsat models had the worst performance, the overall difference 
between the tested sensors was modest because on a landscape level, the difference 
between overall flark coverage varied only by a few percentage points. Additionally, in 
single-site models, the performance between sensors was mostly very close to each other 
(Figure 3). This observation is consistent with Lefebvre et al. (2019), who found that 
Sentinel-2 did not significantly improve in landcover classification over Landsat imagery. 
Similar findings were drawn by Sirin et al. (2018), where higher spatial resolution (6 m) did 
not enhance prediction accuracy compared to Landsat 8 or Sentinel-2. These modest 
differences imply that datasets of different sensors could be fused to construct dense 
time-series to monitor changes in peatlands as suggested by (Räsänen, Tolvanen, and 
Kareksela 2022). However, in the multi-site models, the differences between the sensors 
were larger than in the single-site models, and there was also more variation between 
sites.

In our results, the predictive performance for the datasets with and without SWIR 
bands were similar. This contrasts with earlier studies that have highlighted the impor-
tance of SWIR data in the modelling of peatlands’ flark area (Jussila et al. 2023) and 
moisture and water table level (Burdun et al. 2020; Kalacska et al. 2018; Räsänen, Tolvanen, 
and Kareksela 2022). Instead, our results indicated that green, red, and NIR bands were the 
most important predictor variables. The lack of importance of SWIR might be related to 
the fact that we did not model water table or soil moisture, but instead, used flark area 
extent as our indicator for the hydrological and ecological status of peatlands. Kolari et al. 

4336 K. KERÄNEN ET AL.



(2022) had a similar approach and a similar result: SWIR bands did not correlate as strongly 
as NIR bands with the flark area. However, a relatively high correlation between the 
peatland water table and individual NIR bands was also demonstrated by Isoaho et al. 
(2023). We also found out the vegetation indices such as GDVI, EVI, and SAVI were among 
the most important and outperformed the tested wetness indices. A possible avenue for 
future studies could be utilizing other NIR or SWIR-based trapezoid models such as 
OPTRAM (Sadeghi et al. 2017) or its newer variant (Sadeghi et al. 2023) OPTRAM has 
consistently correlated with the peatland water table, outperforming several wetness and 
vegetation indices as well as individual bands (Burdun et al. 2023; Räsänen, Tolvanen, and 
Kareksela 2022).

4.2. Site-specific and seasonal variability

Our results indicate differences in model performance among sites. However, the models 
for the three best modelled sites (Vihtaneva, Haudanneva, Kurkineva) had relatively 
similar performance. All these sites have similar flark-string patterns in the centre with 
drier Sphagnum and shrub-dominated areas surrounding them. Niittysuo, a site with 
moderate model results, has also distinct patterns with large flarks but no dry margins 
at all. The least accurate models were produced for Vahtisuo, which had a more unclear 
and scattered flark-string patterns than the other sites. This characteristic possibly makes 
it difficult to distinguish between flark and non-flark surfaces with the satellite imagery. 
Additionally, the entire area surveyed by UAV in Vahtisuo underwent significant seasonal 
changes, being covered by shallow open water in early summer but with no open water 
coverage in late summer (Figure S5), which possibly hampered the modelling for this site 
in late summer. Other studies regarding peatland wetness have also identified that 
relatively similar sites can have different modelling performances caused by small site- 
specific differences such as historical development of the site or tree coverage (Klinke 
et al. 2018; Räsänen, Tolvanen, and Kareksela 2022).

Based on our results, single-site models performed the best while multi-site models 
had lower performance and more variability. Therefore, the approach of training models 
with data from multiple sites and testing them on a single site seems to lead to inferior 
performance than training and validating a model in one site due to site-specific differ-
ences (Belgiu and Drăguţ 2016; Juel et al. 2015; Räsänen, Tolvanen, and Kareksela 2022; 
Vetrivel et al. 2015). This implies underlying site-specific variation which have been 
discussed in (Burdun et al. 2023; Klinke et al. 2018; Räsänen, Tolvanen, and Kareksela  
2022). In our results, the multi-site models performed worse in Vahtisuo and Niittysuo 
than in the other sites, which could be due to differences in ground vegetation. Kurkineva, 
Vihtaneva and Haudanneva were relatively similar to each other, while Niittysuo and 
Vahtisuo had more unique ground vegetation patterns (Hautala 2022). Still, the transfer-
ability of the models seemed to be possible for some sites, but a larger sample size with 
more variation in on-site conditions is required for more robust evidence on 
transferability.

The seasonal differences in single-site models were small, except for Vahtisuo. 
However, in multi-site models, there was greater seasonal variation, with late summer 
models performing less accurately than early summer models. This is likely due to the 
imagery from this period featuring clearer distinctions between water and non-water 
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covers, a result of a higher water table (Menberu et al. 2016; Sallinen et al. 2023) and 
reduced vegetation cover (Pang et al. 2023). Nonetheless, some models for early summer 
underperformed, possibly due to temporal gaps (over 10 days; Table S1) between UAV 
and used satellite images which might be representing different phenological and hydro-
logical conditions. Earlier, Cole et al. (2014) have highlighted that peatland vegetation is 
spectrally the most separable during early or mid-growing season but suggested that the 
optimal temporal window for RS data collection is dependent on the study question.

4.3. Upscaling and model application

Despite the challenges with multi-site transferability, the upscaling of single-site 
models to entire mire areas was successful. The upscaled flark area coverage closely 
resembled the visual interpretation of the aerial orthoimagery. This suggests the 
model’s efficacy in capturing the typical central flark fen patterns in aapa mires 
(Haapalehto et al. 2014; Tahvanainen 2011). Moreover, areas with lower flark coverage 
in the central wet zone typically correspond to locations of dry strings (Granlund et al.  
2022; Sallinen et al. 2023). However, it is important to note that the random forest 
method tends to produce conservative estimates for extreme values (Coulston et al.  
2016), potentially leading to a slight underestimation in flark-rich areas. Future studies 
could be conducted to compare different modelling algorithms for flark area 
prediction.

Talvitie, Räsänen, and Silvan (2023) demonstrated the feasibility of monitoring seasonal 
and multi-year variations in flark coverage using aerial and PlaneScope imagery. This was 
also demonstrated by Kolari et al. (2022) by utilizing individual images from 1988, 1997 
and 2019. Given the availability of Landsat imagery since 1980s, our developed metho-
dology of flark coverage predictions could be applied to assess the long-term changes at 
specific sites, which is essential for future monitoring needs and targets (Global 
Biodiversity Framework 2024). However, this would require appropriate training data, as 
multi-site models have shown some limitations. Talvitie, Räsänen, and Silvan (2023) used 
PlanetScope imagery for flark area classification, similar to our approach with UAV images. 
This suggest that PlanetScope could also provide multitemporal training data for models 
using coarser resolution imagery; however, PlanetScope is available only from 2016.

5. Conclusions

We tested three different optical satellite products for predicting aapa mire flark area 
coverage and investigated the effect of spatial and spectral resolution on the predictive 
capacity. We utilized UAV images to produce high spatial resolution flark area classifica-
tions and used them as training data for random forest regression. We predicted flark 
coverage separately for every site but also tested the model transferability between the 
sites. Our results indicate that all three tested satellite image sensors have a good 
accuracy in single-site flark area prediction, but PlanetScope and Sentinel-2 outperform 
Landsat, and the use of SWIR bands do not increase the model performance. Additionally, 
there are notable between-site differences in the results with single-site models being 
more accurate than models trained in multiple sites but transferred to an additional site. 
Our results also indicate that differences in modelling performance between early and late 
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summer imagery are small. The developed approach functions well in upscaling flark area 
beyond the area covered by UAV. Overall, the developed methodology shows promise for 
monitoring long-term changes in peatland hydrological and ecological conditions.
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