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Abstract

A common task in forestry is to determine the value of a forest property, and timber is the most valuable component of that property.
Remotely sensed data collected by an unoccupied aerial vehicle (UAV) are suited for this purpose as most forest properties are of
a size that permits the efficient collection of UAV data. These UAV data, when linked to a probability sample of field plots, enable
the model-assisted (MA) estimation of the timber value and its associated uncertainty. Our objective was to estimate the value of
timber (e/ha) in a 40-ha forest property in Finland. We used a systematic sample of field plots (n = 160) and 3D image point cloud data
collected by an UAV. First, we studied the effects of spatial autocorrelation on the variance estimates associated with the timber value
estimates produced using a field data-based simple expansion (EXP) estimator. The variance estimators compared were simple random
sampling, Matérn, and a variant of the Grafström–Schelin estimator. Second, we compared the efficiencies of the EXP and MA estimators
under different sampling intensities. The sampling intensity was varied by subsampling the systematic sample of 160 field plots. In
the case of the EXP estimator, the simple random sampling variance estimator produced the largest variance estimates, whereas the
Matérn estimator produced smaller variance estimates than the Grafström–Schelin estimator. The MA estimator was more efficient
than the EXP estimator, which suggested that the reduction of sampling intensity from 160 to 60 plots is possible without deterioration
in precision. The results suggest that the use of UAV data improves the precision of timber value estimates compared to the use of field
data only. In practice, the proposed application improves the cost-efficiency of the design-based appraisal of a forest property because
expensive field workload can be reduced by means of UAV data.

Keywords: stereo matching; local difference estimator; aerial imagery; remotely piloted aerial system; design-based inference; 3D point
cloud

Introduction
A value assessment of a forest property is needed, e.g., when the
ownership of the forest property is changed. The value assess-
ment should provide unbiased estimates of the forest resources
in a transparent and objective way. The commercial value of a
forest property consists of several components with the value of
the standing timber and the value of the underlying land that
produces the timber (Harris et al., 2018). The common approach
is to consider the discounted value of the future net harvest
revenues, although the true market value of immature timber
stands may be less. While the value of timber is the main driver
of the value formation associated with forest properties that are
harnessed for timber production, the value of the forest prop-
erty may also be affected by various non-timber factors, such
as carbon sequestration and conservation values (Pearce 2001).
Nevertheless, the value of timber is essential and, e.g., serves as
the starting point in the most common valuation method used
to appraise forest properties in Finland (Eerikäinen and Venho
2018).

The timber value of a tree depends on the timber assort-
ment products that can be derived from the stem. The standard
timber assortment products in the Nordic forestry are logwood,
pulpwood, and energy wood. Given the importance of the timber
assortment volumes in the value formation of forests, their esti-
mation has been of major interest in stand-level forest inventories
(Karjalainen et al. 2019; Korhonen et al. 2008; Peuhkurinen et al.
2008). In Finland, estimates of the volume of timber assortment
by tree species are available in public stand register data (Mal-
tamo and Packalen 2014), although the errors associated with
the estimates are too large for the purpose of timber valuation
(Vähä-Konka et al. 2020). In addition, the temporal resolution of
operational large-area inventories is typically several years, which
impedes the availability of up-to-date forest information in the
absence of growth models.

Owing to the errors associated with forest attribute maps and
the outdated forest information contained in the public stand reg-
isters, the valuation of timber in a forest property has traditionally
relied on stand-level field visits. Field visits are, however, time
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consuming and relatively expensive because each forest stand
in a forest property must be assessed. Some of the stand-level
field inventories also involve subjective components. For exam-
ple, Finnish stand-level assessments rely on angle-count sam-
pling points that are subjectively spread across forest stands. At
each sampling point, the basal area median trees to be calipered
are selected by stratum using visual judgment. These subjec-
tive components introduce errors into the forest attribute esti-
mate that may vary considerably across operators (Kangas et al.
2004). Alternatively, the timber valuation can rely on a proba-
bility sample of field plots that represents the target popula-
tion and enables the design-based inference of the population
parameters using a design-unbiased estimator of mean (or total)
timber value. However, the collection of a probability sample
for a field data-based estimation of timber value in a forest
property is too laborious in most operational settings. The use
of remotely sensed data as auxiliary information in the estima-
tion procedure may enable the reduction of the field workload
(Puliti et al. 2020).

Unoccupied aerial vehicles (UAVs) have become established
platforms for the collection of remotely sensed data in small-scale
forest inventories (Hao et al. 2022; Kotivuori et al. 2020; Kukkonen
et al. 2021; Puliti et al. 2020). The current UAV technology restricts
the geographical extent of UAV data to areas that typically cover a
maximum of hundreds of hectares. This explains why the forestry
applications of UAV typically focus on inventories of forest stands
or forest properties. In practice, the price per hectare is very high
in inventories that focus on target populations of less than a few
hectares unless the use of UAV data can considerably reduce the
workload associated with the collection of field data.

In forestry applications, UAV is usually equipped with a camera
that captures aerial images with spectral recordings of the targets
of interest. The spectral images can be used to construct image-
based (i.e. photogrammetric) three-dimensional (3D) point clouds
(IPC) via photogrammetric processing (Bolles et al. 1987). The
use of UAV platforms enables the collection of up-to-date 3D
data for small areas whenever required, whereas airplane-based
campaigns, e.g. country-level acquisition programs for airborne
lidar (light detection and ranging) data or aerial images, typically
run with temporal resolutions of several years. The temporal
mismatches between field and remotely sensed data are unde-
sirable in forest inventories. For example, natural disturbances
or silvicultural operations may cause that remotely sensed data
collected 1 year ago do not represent the current characteristics
of a forest. For this reason, the acquisition of UAV data may
be preferable to airplane-based acquisitions at some scales of
operation.

The estimation of forest attributes for a finite target population
can be carried out using (1) a probability sample of field data
with a simple expansion (EXP) estimator to expand the sam-
pled units to the level of target population, (2) a model-assisted
(MA) estimator that combines wall-to-wall auxiliary data and a
design-based inference of a field-measured probability sample,
or (3) a model-based estimator that utilizes auxiliary data, as
efficiently as a MA estimator, but without the statistical properties
assured by design-based inference. The EXP and MA estimators
are design-based estimators that provide design-unbiased esti-
mates for mean and total values of a target population, whereas
the properties of the model-based estimator depend on model
specification, which means that there is no guarantee of unbi-
asedness of estimates in a target population. The MA estimator
is more efficient than the EXP estimator, given that the variation
of the residuals in the sampling units is less than the variation

of the corresponding observed values (Breidt and Opsomer 2017).
The use of the MA estimator may result in cost-savings because
the number of field plots required for sufficient precision may
be reduced due to improved efficiency compared to the EXP
estimator.

The estimation of population means (and total values) from a
systematic sample can be more efficient, i.e. it enables smaller
variance estimates for population means or total values than
the estimation based on a simple random sampling (SRS)
design (Dunn and Harrison 2018; Mostafa and Ahmad 2018). An
inferential challenge associated with the systematic sampling
design is that a single systematic sample does not provide a
design-unbiased variance estimator to assess the uncertainty
of population estimates. For this reason, the efficiency of
systematic sampling compared with SRS, e.g., is difficult to
assess in practical applications. Variance of an estimator of the
population mean (or total values) based on a systematic sampling
design is often estimated under the SRS assumption (Magnussen
et al. 2020). When systematic sampling is more efficient than
SRS, this leads to an overestimation of the true variance
(Räty et al. 2020), although this is not considered as a severe
disadvantage in most real-life applications (Magnussen et al.
2020). However, the overestimation of variance may be especially
suboptimal in target populations that cover tens of hectares
because the collection of too many sampling units, in terms of
desired sampling error, rapidly increases the inventory costs per
hectare.

There exist several variance estimators that are capable of
mitigating the overestimation of variance that results from the
false SRS assumption under systematic sampling (Magnussen and
Fehrmann 2019; Räty et al. 2020). A straightforward solution to
reduce the upward bias of the SRS variance estimator is to apply
an estimator that accounts for spatial autocorrelation among
the field plots of a probability sample. So-called local difference
estimators are easy to adapt into systematic designs because the
model is not required to characterize the spatial autocorrelation
in the target population. A simple local difference estimator was
adapted to the line survey designs of the first Nordic national
forest inventories (NFIs) (Langsæter 1932; Lindeberg 1923). Later,
Matérn (1947) elaborated the idea of a local difference estima-
tor for a spatially systematic sampling design. The Matérn (MT)
variance estimator considers rectangular-shaped neighborhoods
of four sampling units and has been in use in the Finnish NFI
since the 5th inventory cycle (Salminen 1973). More recently, Graf-
ström and Schelin (2014) proposed a local difference estimator
for spatially balanced sampling, which follows the ideas of the
local mean variance estimator introduced in Stevens and Olsen
(2004). In contrast to the MT estimator, the Grafström–Schelin (GS)
variance estimator does not require a regular grid of sample plots,
and the estimator can also deal with other spatially balanced
designs. There is a well-established consensus in the literature
that the MT and GS variance estimators provide more realistic
variance estimates than the SRS estimator under a systematic
sampling design (Magnussen et al. 2020).

Here, we estimate the mean timber value (e) per hectare for
a 40-ha forest property using geographically balanced sampling
and UAV data. The UAV data are used as auxiliary information
in the MA estimator. We consider solely the current value of
standing timber without accounting for future net harvest rev-
enues because there is no reason to assume that the real harvest
revenues will differ between the studied estimation alternatives.
We also ignore the value of bare land because it is constant. The
study objectives are
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Figure 1. Location of the study site in eastern Finland (left). Systematic sample grid of 160 field plots on the 40-ha forest property (right).

(1) To compare the SRS and local difference variance estimators
for the estimation of timber value using different sampling
intensities in the EXP and MA estimation frameworks. Our
specific interest is to examine how comparable the results
produced using the SRS variance estimator are with those of
the local difference estimators under the presence of spatial
autocorrelation that is evident when operating at the level of
the forest property.

(2) To investigate the estimated variances associated with the
MA and field data-based EXP estimators to assess the effi-
ciency gains that result from the use of auxiliary UAV data
in the estimation of timber value.

Materials and Methods
Forest property
The 40-ha forest property of interest (62◦36′ N 29◦2′ E) is located
in eastern Finland (Fig. 1). The location of the forest property was
arbitrarily selected from an inventory area that was originally
established for other research and, therefore, the property does
not follow the boundaries of a real forest estate. The property
represents typical Finnish coniferous-dominated forests that are
mainly used to produce timber following the principles of stand-
level forest management. The property contains forest stands that
cover a range of development stages.

The most abundant tree species are Norway spruce (Picea abies
[L.] Karst.) and Scots pine (Pinus sylvestris [L.]). Deciduous species,
mostly birch species (Betula pendula Roth. and Betula pubescens
Ehrh.), are commonly found as mixtures, but they may also grow

as dominant species on fertile soil types and bogs. Other species,
such as aspen (Populus tremula [L.]) and alder (Alnus spp.), occur as
minor species on fertile soil types.

Field data
A sample size of 160 field plots was systematically measured
within the forest property. The location of the upper-left plot
was selected randomly, and the other plots were placed using
a systematic 50 m × 50 m grid. The fieldwork crew navigated to
these initial plot locations using a low-grade differential global
navigation satellite system (GNSS) device. The final plot location
was determined by selection of a random direction (0–359◦) and
distance (0–5 m) from the initial plot location. Therefore, the plot
network was not entirely systematic, and the distance between
plots was variable (Fig. 1). The centers of the field plots were
positioned with submeter accuracy using a Trimble GeoXH DGNSS
device. The field campaign was implemented between 7 Septem-
ber and 1 October 2020.

The field plots were concentric circular plots of radii 5.64 m
and 7.98 m. Diameter at breast height (DBH) thresholds were
used to speed up the measurement of the field plots. Trees
with a DBH >10.0 cm were measured in the 7.98-m-radius
plots, while trees with a DBH between 5.0 and 10.0 cm were
measured from the 5.64-m-radius plots. Height and DBH were
measured, and tree species was determined for each tree within
the plot. Because of the small number of deciduous species
present in the plots (other than birch), all deciduous species were
grouped in the same species class deciduous in the subsequent
analyses.
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Table 1. Bucking dimensions and the price (e/m3) of pulpwood and logwood used in the calculation of timber values.

Logwood Pulpwood

Norway spruce Scots pine Deciduous Norway spruce Scots pine Deciduous

Dmin (cm) 16.0 15.0 18.0 7.0 7.0 7.0
Lmin (m) 3.7 3.7 3.7 2.0 2.0 2.0
Lmax (m) 6.1 6.1 6.1 – – –
Price (e/m3) 71.9 67.7 51.0 22.6 20.5 21.4

Dmin, minimum top diameter of a log; Lmin, minimum log length; Lmax, maximum log length

Figure 2. (A) Proportions of timber assortment volumes in the 160 field plots. (B) Proportions of timber assortment values in terms of total timber
value. For timber assortment prices, please refer to Table 1.

The species-specific taper curves described in Laasasenaho
(1982) were employed to buck stem volumes into logwood and
pulpwood assortment volumes. The bucking procedure maxi-
mized the length of the logwood proportion using 30-cm intervals
subject to the dimensional criteria of commercial logwood. The
pulpwood proportion was calculated as the remainder of the
stem until the minimum diameter of the pulpwood was reached
after the logwood portion had been bucked. Stem volume that
did not fulfill the dimensional criteria of commercial logwood or
pulpwood were allocated to the non-commercial category. The
bucking dimensions are shown in Table 1. The proportions of
timber assortment volumes in terms of total volume in the field
plots are shown in Fig. 2A.

The timber assortment volume and their commercial prices
define the value of the standing timber. We used the average
timber prices in November 2022 (Luonnonvarakeskus 2022). The
timber prices by assortment and tree species are shown in Table 1.
The tree-level values (e) were further aggregated at the plot
level and scaled up to the hectare level to compute the tim-
ber value (e/ha). The hectare-level timber value was used as
a response variable in the estimation of timber value at the
level of the forest property. The proportions of timber assort-
ment values in terms of the total timber value in the field plots
are shown in Fig. 2B. A summary of statistics associated with

the field data collected from the forest property is shown in
Table 2.

We also used an exogenous set of field plots for the selection
of predictor variables for the linear regression model used in the
MA estimation (see section “Estimation of timber value”). We refer
to the exogenous set of field plots as variable selection data.
The variable selection data comprised 156 square plots of 225
m2, which were located nearby in the same region but did not
overlap with the forest property. The measurement protocol of the
variable selection data was similar to the protocol used in the field
plots in the forest property with the exception that trees with a
DBH >5.0 cm were measured. Note that the exogenous set of field
plots is not necessary, albeit recommended, from the viewpoint of
operational application, but the model can be formulated based
on expert knowledge and the avoidance of complex models. The
use of too complex model fitted using endogenous data may lead
to the underestimation of variance (Kangas et al. 2016).

UAV data
The UAV images from the 40-ha study area were captured on
27 September 2020, and images from the variable selection data
area were captured during summer 2020. The UAV images were
captured using a DJI M210 quadcopter (SZ DJI Technology Co.,
Ltd., Shenzhen, China), which was equipped with two cameras:
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Table 2. Mean, standard deviation (SD), and minimum and maximum values of the forest attributes associated with the field data
(n = 160), collected from the forest property.

Mean SD Min Max

Volume (m3/ha) 152.4 123.9 0 517.7
Logwood volume (m3/ha) 81.4 101.0 0 461.5
Pulpwood volume (m3/ha) 59.2 49.2 0 243.2
Basal area weighted mean diameter (cm) 18.7 7.1 5.0 39.7
Basal area weighted mean height (m) 15.7 5.2 3.7 27.3
Timber value (e/ha) 6784.9 7199.9 0 30 994.6

a high-resolution camera with conventional red-green-blue (RGB)
bands (DJI X5S) and a multispectral (MS) camera that, in addition
to RGB, included red-edge (RE) and near-infrared (NIR) bands
(AgEagle, Wichita, KS, USA; MicaSense series, model Altum). The
pixel values of the MS data were converted to reflectance values
(0–1) via reflectance panels using the procedure recommended
by MicaSense (MicaSense 2020). Flight parameters were chosen
based on the MS camera characteristics for 80% lateral and
forward overlap, resulting in an 85% overlap for the DJI camera.
The operation altitude of 100 m produced a nominal ground
sample distance of 4.3 cm and 2.3 cm for the MS and RGB data,
respectively.

Agisoft Metashape (version 1.8.0) was utilized to generate IPC
from the UAV image data, using “high” quality image alignment
and “high” quality dense point cloud generation with “moderate”
filtering. The same parameter values were applied to both MS and
RGB data. The MS images were not used to create photogram-
metric point clouds, but the exterior orientations and the internal
orientation of the MicaSense Altum camera were exported from
Metashape after image alignment. These orientations were uti-
lized to assign a MS reflectance value to each point in the IPC
using collinearity equations, as described in Packalén et al. (2009).
The IPC were then normalized to ground level using previously
acquired low-density airborne laser scanning (ALS) data, which
belong to the open data of the National Land Survey of Finland
(National Land Survey of Finland 2022). A triangulated irregular
network (TIN) was created from ALS echoes classified as ground
(Axelsson 2000), and the TIN model was subtracted from the point
heights of the IPC to compute the above-ground heights.

We extracted plot-level metrics from the height and spec-
tral values associated with the IPC. The height metrics included
mean, median, height standard deviation (sdh), skewness, kur-
tosis, quantiles (q5, q10, . . . , q95), and densities at fixed heights
of 1.3, 2.5, 5.0, 10.0, 15.0, 20.0, and 25.0 m (d1.3, d2, . . . etc.).
The reflectance metrics comprised mean, standard deviation,
skewness, and kurtosis by MS camera bands (R, G, B, RE, NIR). In
addition, between-band ratios of the mean and sdh metrics were
computed.

Subsamples of the systematic sample
Subsampling by rows and columns
Subsampling of the systematic sample must maintain the geo-
graphical balance of the field plots in the population. We refer
to subsampling by rows and columns when the subsampling
of the systematic sample was carried out by the removal of
complete rows or/and columns of the systematic sample. We
selected samples that exhibited similar between-plot distances
for plots that were in the same sample column or row, although
the between-plot distance was allowed to be dissimilar between
sample columns and rows. This ensured that every subsample
relied on a rectangular grid, thereby enabling the use of the MT

variance estimator (Matérn 1947). In total, 17 subsamples, which
included 40, 48, 56, 60, or 80 field plots, were created. An example
of the realization of 80 plots subsampled by rows and columns
from the systematic sample can be seen in Fig. 3A.

Randomized subsampling with a geographical balance
While the subsampling procedure described in the previous sec-
tion produces subsamples that rely on a rectangular grid, the
number of field plots to be selected cannot be freely controlled.
Subsampling by rows and columns results in a limited number of
rectangular samples with limited possibilities to repeat the esti-
mation. For these reasons, we proposed a repeatable randomized
subsampling procedure that still ensured the spread of field plots
over the forest property in a geographically balanced manner.

The randomized subsampling was assisted by a subsampling
grid that consisted of 200 m × 200 m squares that were overlaid on
the forest property. In the rectangular-shaped forest property of 40
ha, the subsampling grid consisted of 10 cells. The cells were used
to allocate the desired number of field plots by randomly selecting
n/10 plots per cell. The use of 10 cells enabled the iteration of the
subsampling of systematic sample m times (m = 100) using n val-
ues of 40, 60, . . . , 140, in order to study the ranges of estimates and
their variances under different sampling intensities. An example
of a randomly subsampled realization of 80 field plots can be seen
in Fig. 3B.

Voronoi tessellation
A Voronoi tessellation was created for each realization of the
sample based on the XY locations of the field plots using the
deldir package (Turner 2021) in the R environment (R Core Team
2023). Motivation for the use of the Voronoi tessellation was 2-
fold. First, the cell areas of the Voronoi tessellation were used as
weightings to account for the geographical coverage of the sub-
sample that aligns suboptimally in the population. Henceforth,
we refer to the plot-level cell areas of the Voronoi tessellation
as sampling weightings. For example, subsampling with removal
of the easternmost column of plots causes under-representation
of field plots on the eastern edge area of the population. In that
case, we set larger sampling weightings for the easternmost field
plots than in the other plots. Second, the Voronoi tessellation was
used to determine the local neighborhoods of the GS estimator.
Examples of the created Voronoi tessellations based on the field
plots are shown in Fig. 3.

Estimation of timber value
Workflow
The estimation framework of this study is illustrated in Fig. 4. The
methodology associated with the estimators is described in detail
in sections “Simple expansion estimator” and “Model-assister esti-
mator”. The estimation framework consists of three steps. First,
the systematic sample was subsampled as described in section
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Figure 3. Examples of subsampling procedures used to select 80 plots from the systematic sample of 160 plots. (A) An example of subsampling by
rows and columns. (B) An example of randomized subsampling.

“Subsamples of the systematic sample”. Second, the subsamples
were used as such in the EXP estimator and in conjunction with
the UAV data in the MA estimator to produce estimates of timber
value. Third, the variance estimators of SRS, MT, and GS were
applied to the subsamples by rows and columns, whereas the SRS
and GS variance estimators were applicable to the randomized
subsamples.

Simple expansion estimator
We used the EXP estimator to produce mean estimates of timber
value μ̂EXP based on field plots without auxiliary data. The EXP
estimates were computed as weighted averages using sampling
weightings. The estimated mean timber value (e) per hectare μ̂EXP

is

μ̂EXP =
∑

i∈S wiyi∑
i∈S wi

(1)

where yi is the timber value (e/ha) in the field plot of sample i S,
and wi is the sampling weighting (in hectares) derived from the
Voronoi tessellation.

A variance estimator for μ̂EXP assuming SRS is

ˆvarSRS
(
μ̂EXP

) = σ̂ 2

n
(2)

where σ̂ 2 =
∑

i∈S wi(xi−μ̂EXP)
2

∑
i∈S wi (n−1)/n is the sample variance and n refers to

the number of field plots in sample S.
Matérn (1947) proposed the MT variance estimator, which is

suitable for samples that rely on rectangular grids. The estimator
accounts for spatial autocorrelation by inspecting the local differ-
ences associated with rectangular-shaped neighborhoods of four
plots in the sample. The MT variance estimator is as follows:

ˆvarMT
(
μ̂EXP

) = 1

4
(∑

i∈Swi
)2

∑
g

(
zg1 − zg2 − zg3 + zg4

)2 (3)

where zg1,..,4 = yg1,..,4 wg1,..,4 − μ̂EXPwg1,..,4 , g refers to the rectangular-
shaped neighborhood of the MT estimator, and subscript g1,..,4

refers to the corner plots of the rectangular-shaped neighborhood.
The number of rectangular-shaped neighborhoods g1,...,4 in the
sampling design was set equal to n. The zg1,..,4 values of missing
field plots associated with the neighborhood, i.e. plots that would
locate outside the population of interest, were set to zero.

The GS variance estimator is another local difference estimator
that relies on the neighborhood of field plots (Grafström and Sche-
lin 2014). The neighborhood is determined based on a distance
measure, which is the Euclidean distance computed based on XY
coordinates. The GS estimator determines the nearest neighbor
plots based on an equal distance value measured from the plot in
the center of the neighborhood. This assumption means that the
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Figure 4. An illustration of the framework associated with the estimation of timber value per hectare.

number of neighbor plots is four for internal plots in a systematic
sample. Since the assumption of equal distance would always
lead to a single neighbor plot in our sample, we relaxed the
assumption of equal distance. The neighborhood, consisting of
n∗

i plots, including the center plot i, was determined based on
the Voronoi tessellation. The neighborhood was constructed by
selecting the center plot of the neighborhood and all the plots
that had a Voronoi cell adjacent to the Voronoi cell of the center
plot. The neighborhood was further filtered by omitting neighbors
whose Voronoi cells had a touching surface length <5% in terms
of the perimeter of the Voronoi cell of the center plot. The GS
variance estimator is as follows:

ˆvarGS
(
μ̂EXP

) =
∑
i∈S

n∗
i

n∗
i − 1

⎛
⎝ yi

πi
− 1

n∗
i

∑
j∈s∗

i

yj

πj

⎞
⎠

2

/A2 (4)

where π refers the inclusion probability associated with plot i or
j, i.e. inversed sampling weight, A2 = (∑

i∈S wi
)2 is the square of

the area covered by the forest property (in hectares), and n∗
i is the

number of neighbor plots in neighborhood S∗
i for plot i of sample

S.
The standard error (SE) of an estimate is

SE
(
μ̂EXP

) =
√

ˆvar
(
μ̂EXP

)
(5)

Model-assisted estimator
We fitted a linear regression model that was used as an assisting
model in the MA estimation:

√
yi = β0 + β1x(1)

i + β2x(2)

i + β3x(3)

i + ei, ei ∼ N
(
0, σ 2/wi

)
(6)

The assisting model explains the relationship between
observed timber value yi in the field plots of the forest property
and UAV metrics x(1)

i . . . x(3)

i . The model was used to predict timber
values of grid cells (ŷk) and timber values of field plots (ŷi).
The sample weightings (wi) of the field plots derived from the

Voronoi tessellation were considered in the modeling process by
estimating model coefficients using the weighted least squares
technique. We square-root-transformed the response variable
to avoid negative predictions and to improve the model fit. The
square-root-transformed predicted values were transformed back
during the prediction phase. The transformation causes bias
that was corrected by adding the squared standard error of the
residuals to the predicted values (Lappi 1993).

We selected the predictor variables using the independent plot
data to minimize the risk of optimizing the model according to the
target population when using an automatized variable selection
algorithm. The predictor variables of the regression model were
selected using a heuristic optimization algorithm, known as sim-
ulated annealing (Kirkpatrick et al. 1983). Our implementation is a
modified form of the algorithm presented by Packalén et al. (2012),
where the algorithm iteratively selects an optimal set of desired
number of predictor variables (in our study, 3), while the number
of iterations is controlled by an initial temperature, a cooling
multiplier, and the number of inner iterations per temperature
value. The initial temperature was set to 1, the cooling multiplier
was set to 0.99, and the number of iterations per temperature was
50. The algorithm uses mean squared error as a cost function.

The MA estimator employs the probability sample of field plots
and the predictive model fitted using the sample field plots and
UAV data. The MA estimator (Särndal et al. 1992, section 6.3) for
mean timber value is

μ̂MA =
∑

k∈U ŷk

N
+

∑
i∈S wiei∑
i∈S wi

(7)

in which the first part of the estimator is an estimate collected
from wall-to-wall timber value predictions ŷk for N grid cells (cell
size 204 m2) in target population U, and the second part is an
estimate of a correction term in which ei refers to the residual
(yi − ŷi) in field plot i that belongs to sample S. The correction
term corrects the systematic error associated with the model
predictions.
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The variances associated with the MA estimates were calcu-
lated based on the model residuals of the field plots. The use of
model residuals from the sample of the target population in the
variance estimator may incorporate the risk of underestimating
variances, particularly in the case of small samples, because
the ideal population residuals are replaced with sample-based
residuals (Särndal et al. 1992, section 6.6). Following the idea
described by Lundström and Särndal (1999), we adjusted the SRS
and GS variance estimators for the loss of degrees of freedom that
resulted from the estimation of model parameters, by multiplying
sample residuals ei with a simple adjustment term

fadj = n − 1
n − (M + 1)

(8)

where M = 3 corresponds to the number of predictor variables in
the regression model.

The SRS and GS variance estimators described in Eqs. 2 and 4
were used for the MA estimates. The sample variance σ̂ 2 of the

SRS estimator (Eq. 2) was replaced with σ̂ 2 =
∑

i∈S wi(eadj,i−eadj)
2

∑
i∈S wi (n−1)/n where

e is the weighted mean of adjusted residuals observed in the field
plots. In the case of the GS estimator (Eq. 4), yi and yj were replaced
with the adjusted residual values in plot i and j.

Evaluation of the estimators
We evaluated the precision of the EXP and MA estimates using
1.96 × SE that corresponds to a half-width of the 95% confidence
interval (CI). The CIs were reported as percentages with respect
to the mean timber value estimate. In addition to the CIs, we
studied the efficiency of estimators using relative efficiency (RE),
which is a ratio of two variance estimates. The RE values were
computed with respect to the variance estimates associated with
the EXP estimator and employed the systematic sample of 160
plots. For instance, RE = ˆvar

(
μ̂160

EXP

)
/ ˆvar

(
μ̂MA

)
and results in an

RE value >1 if the MA estimator is more efficient than the EXP
estimator that employs 160 field plots. The RE values under SRS
can be interpreted via the number of field plots. For example, an
RE value of 2 indicates that a variance estimate equal to ˆvar

(
μ̂MA

)
can be achieved by doubling the number of field plots associated
with ˆvar

(
μ̂EXP

)
.

Results
Comparison of SRS, GS, and MT variance
estimators
The SRS variance estimator produced the largest variance esti-
mates, while the MT estimator resulted in smaller estimates than
the GS estimator (Fig. 5). The comparison of variance estimates
also indicated that the difference between the MT and GS variance
estimates diminished when sampling intensity increased.

The MA estimation
The variable selection algorithm selected the following predic-
tor variables for the assisting model of timber value: the 85th
percentile of height values (q85), the ratio of mean reflectance
values from the green- and red-edge bands (mean_G/RE), and the
standard deviation of height values (sdh). We present parameter
estimates associated with the systematic sample of 160 field plots
in Table 3.

Timber value estimates produced using the EXP estimator and
associated variance estimates differed among the 100 iterations
when the sampling intensity was low, i.e. when the number of

Figure 5. Variance estimates for the estimated mean timber value (μ̂EXP)
using simple random sampling (SRS), Matérn (MT), and
Grafström–Schelin (GS) variance estimators. Points refer to the
individual samples. Lines show the mean trend. EXP—simple expansion
estimator.

Table 3. Estimated regression coefficients (weighted least
squares) fitted using a systematic sample of 160 plots.

Predictor variable Estimate (Std. error)

β0 (Intercept) −54.30 (13.47)
β1 q85 7.59 (0.35)
β2 mean_G/RE 105.28 (31.27)
β3 sdh −3.64 (1.13)
σ 2 7.842

R2 0.88

The response variable (timber value, e/ha) was square root transformed.

field plots <80. For example, the minimum and maximum esti-
mated timber value with 40 plots were 5372 e/ha and 8851 e/ha,
respectively. As a comparison, the corresponding estimates with
100 field plots were 6079 e/ha and 7649 e/ha, respectively. The
use of the MA estimator decreased the fluctuation associated
with the estimates compared to the EXP estimator. For example,
the minimum and maximum estimated timber value with 100
field plots with the MA estimator were 6361 e/ha and 7104 e/ha,
respectively. The CIs associated with the EXP and MA estimates
at sampling intensities of 40, 60, . . . , 140 field plots are shown in
Fig. 6. The systematic sample of 160 field plots produced CI values
of 10.6% and 16.4% with the GS and SRS variance estimators for
the EXP estimates, respectively. Correspondingly, CI values of 5.8%
and 6.3% were obtained with the GS and SRS variance estimators
for the MA estimates.

The reported CIs associated with the timber value estimates
indicated that the MA estimator was more efficient than the
EXP estimator, regardless of sampling intensity (Fig. 6). The CIs
associated with the EXP estimates were, on average, smaller with
the GS variance estimator than with the SRS variance estimator.
In the case of the MA estimates, the CIs associated with the GS
and SRS variance estimators were not as distinct as with the EXP
estimates. At the lowest sampling intensities, the SRS variance
estimator produced smaller CIs associated with the MA estimates
than the GS estimator.
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Figure 6. Variation in the estimated half 95% confidence intervals (CIs)
of the timber value estimates (μ̂) among 100 iterations of the
subsampling procedure per number of field plots (sampling intensity).
The variance estimates were produced by simple random sampling
(SRS) and Grafström–Schelin (GS) variance estimators. Diamond
symbols denote the mean value. MA—model-assisted estimator,
EXP—simple expansion estimator.

Figure 7. Relative efficiency (RE) showing the efficiency gain achieved by
the assisting model when the Grafström–Schelin (GS) variance
estimator was used. The RE values were computed in terms of the
variance estimates of simple expansion estimator that employed a
systematic sample of 160 field plots. The RE values were collected over
100 repetitions of the subsampling procedure. Diamond symbols denote
the mean value over 100 repetitions.

The efficiency gain, with respect to the field data-based EXP
estimator employing 160 plots, achieved by the assisting model is
illustrated in Fig. 7. The MA estimator at a sampling intensity of
≥100 field plots was always more efficient than the EXP estimator
used with the systematic sample of 160 plots. On average, the
MA estimator with 60 plots was roughly as efficient as the EXP
estimator with 160 field plots (mean RE: 1.1).

Discussion
Our results showed that the SRS variance estimator produced
larger variance estimates than the GS and MT estimators. This
finding is in line with the previous studies that reported that the
SRS variance estimator produces conservative variance estimates
under systematic sampling designs (Heikkinen 2006; Magnussen
et al. 2020; Räty et al. 2020). However, the discrepancy in vari-
ance estimates provided by the MT and GS variance estimators
associated with the EXP estimates is not well supported by the
previous literature. For example, Räty et al. (2020) reported that
the MT and GS estimators produced similar variance estimates
under the systematic cluster design of the Finnish NFI, which
has a considerably lower sampling intensity than the sampling
designs in our study. Here, the MT estimator produced smaller
variance estimates than the GS estimator. This can be largely
explained by the geographical extent of the local neighborhoods,
which are smaller in the MT estimator than in the GS estima-
tor. The latter was modified to use the Voronoi tessellation to
determine the neighborhoods. For this reason, the MT estimator
was more effective in accounting for spatial autocorrelation than
the GS estimator. However, it is safe to assume that the MT vari-
ance estimator rarely produces underestimates of actual variance
(Magnussen et al. 2020).

The MT estimator requires a sampling design that relies on a
rectangular grid, which could hamper its practical applicability. It
is worth noting that in this study, we relaxed some of the assump-
tions associated with the GS estimator to ensure that the GS vari-
ance estimator would consider local neighborhoods of more than
two field plots in our samples. Against the assumptions proposed
in Grafström and Schelin (2014), we allowed the calculation of
the local differences in the neighborhoods of unequal Euclidean
distances computed from the center of the neighborhood to the
neighbor plots. The distance relaxation of the GS variance esti-
mator and the irregularity of our sample plot locations increased
the geographical extent of the local neighborhoods. As such, the
variance estimates may be more conservative compared with
truly systematic samples that rely on a regular grid.

The CI estimates indicated that the use of the assisting model
in the MA estimator resulted in efficiency gains compared with
the EXP estimator. The CI estimates produced using the SRS and
GS variance estimators were largely at the same level regardless
of sampling intensity when the MA estimator was applied. This
indicates that spatial autocorrelation among the field plots can
be accounted for by the assisting model. This finding suggests
that little benefit can be achieved using a local difference variance
estimator when MA estimation with a well-performing assisting
model is used. Similar findings were also reported by Räty et al.
(2021), who compared the GS and SRS variance estimators in the
MA estimation of stem frequencies under the systematic Norwe-
gian NFI design, although, in that case, spatial autocorrelation was
considerably lower. Our findings also indicated that the decrease
in sampling intensity caused SRS variance estimates to approach
the GS variance estimates. This can be explained by the fact that
heavy subsampling of the initial systematic sample causes the
subsamples to become less systematic and to resemble simple
random samples, which provides the optimal performance of the
SRS variance estimator.

The variance estimation associated with the MA framework
is most reliable when the assisting model relies on exogenous
auxiliary data, i.e. data collected outside the target population
(Särndal et al. 1992). Kangas et al. (2016) reported that the use of
samples from the target population in model fitting may result
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in an underestimation of variance, especially if the assisting
model is not sufficiently smooth. In the context of this study,
underestimation of variance is problematic as it may lead to a
situation where a suboptimal number of field plots are used in the
inventory. In this study, we used exogenous training data for the
variable selection in the MA estimation, which reduces the poten-
tial risk of variance underestimation that could result from the
automatized variable selection in the endogenous data. We also
adjusted the variance estimators of the MA estimates for the loss
of degrees of freedom that originates from the estimation of the
assisting model (Lundström and Särndal 1999). In most practical
applications, exogenous data are not available for the purposes of
model training. In such cases, the selection of predictor variables
for simple regression models of timber-related forest attributes
can be carried out based on expert knowledge, and too complex
models should be avoided.

The use of UAV data can result in a considerable reduction
in the number of field plots: the MA estimator with 60 field
plots produced, on average, slightly better precision than the
EXP estimator with 160 field plots (mean RE: 1.1). Future studies
should investigate the optimal selection of field plot locations,
especially with the low sampling intensities. It is worth noting
that the systematic sample of 160 plots limited the number of
unique combinations of field plots in the randomized subsam-
pling procedure. This accentuates the finite population effect
of limited sampling units and produces optimistic reporting of
the variation among the 100 iterations especially at the highest
sampling intensities. A potential strategy to search for optimal
locations of sampling units at each sampling intensity level could
include, e.g., the pivotal method that selects spatially balanced
samples in the feature space of auxiliary information (Grafström
et al. 2012). Another option could be to ensure that the feature
space of sampling units covers the feature space of the finite
population to be estimated (Queinnec et al. 2021). An important
remark on the abovementioned techniques is that they require
UAV data or other auxiliary information in the planning stage of
a sampling design.

The findings of this study highlight the potential of UAV data
in the design-based inference of timber value for forest properties
larger than a few hectares. The estimation of timber value dif-
fers from forest management inventories because the appraisal
of timber value must be carried out at short notice. For these
reasons, the only viable remote sensing assisted approach is to
utilize UAV sensor data in the estimation of timber value. While
the estimation framework described in this study includes the
collection of field data, which typically accounts for the largest
portion of inventory costs, the use of UAV data can enable a
reduction in field work, which makes the inventory considerably
less expensive when compared to a field inventory only. As an
example, the reduction of 100 field plots corresponds to a saving
of 8–10 field workdays for an experienced field crew of two people
in our study area.

Conclusions
We evaluated the utility of UAV in the design-based estimation of
timber value for a 40-ha forest property. We draw the following
conclusions based on our findings:

(1) The SRS estimator produced the largest variance estimates
for the field data-based timber value estimates, while the
Grafstöm–Schelin (GS) estimator, with a Voronoi tessellation-
based neighborhood selection, produced larger variance esti-
mates than the Matérn estimator.

(2) The GS and SRS variance estimators produced similar vari-
ance estimates in the MA framework, which would indicate
that the use of an assisting model and its residuals could
effectively mitigate the appearance of spatial autocorrela-
tion evident among the field plots.

(3) The replacement of a field data-based estimator with the
model-assisted (MA) estimator, which employed both field
data and 3D UAV data, enabled a reduction in the sampling
intensity of the systematic sample (from 160 plots to 60
plots) without loss of estimator efficiency.
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