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Abstract Uncertainties are essential, yet often neglected,

information for evaluating the reliability in forest carbon

balance projections used in national and regional policy

planning. We analysed uncertainties in the forest net biome

exchange (NBE) and carbon stocks under multiple

management and climate scenarios with a process-based

ecosystem model. Sampled forest initial state values,

model parameters, harvest levels and global climate

models (GCMs) served as inputs in Monte Carlo

simulations, which covered forests of the 18 regions of

mainland Finland over the period 2015–2050. Under

individual scenarios, the results revealed time- and

region-dependent variability in the magnitude of

uncertainty and mean values of the NBE projections. The

main sources of uncertainty varied with time, by region and

by the amount of harvested wood. Combinations of

uncertainties in the representative concentration pathways

scenarios, GCMs, forest initial values and model

parameters were the main sources of uncertainty at the

beginning, while the harvest scenarios dominated by the

end of the simulation period, combined with GCMs and

climate scenarios especially in the north. Our regionally

explicit uncertainty analysis was found a useful approach

to reveal the variability in the regional potentials to reach a

policy related, future target level of NBE, which is

important information when planning realistic and

regionally fair national policy actions.

Keywords Climate change � Forest carbon dynamics �
Policy planning � Process-based modelling �
Uncertainty quantification

INTRODUCTION

In order to mitigate climate change, many countries and

regions are aiming at carbon neutrality by a specific year.

In the EU, the target of net zero greenhouse gas emissions

has been set to 2050, while Finland, for example, aims to

reach carbon neutrality as early as in 2035. Carbon neu-

trality requires that landscape or nation level greenhouse

gas (GHG) emissions are fully compensated with GHG

sinks. This goal requires maintenance, or even increase, in

GHG sinks. The principal GHG sink in the LULUCF (Land

Use, Land Use Change and Forestry) sector results from

biological carbon dioxide fixation in forests.

However, yearly fluctuations in weather conditions,

forest dynamics (e.g. growth, photosynthesis and distur-

bances) and industrial demand of wood accumulate as

yearly fluctuations in the net biome exchange of CO2

(NBE). Forest initial state, harvest levels and environ-

mental conditions also vary spatially. Uncertainty in cur-

rent forest land NBE estimates and their future projections

is, therefore, assumed to be large, yet often neglected. For

example, The Official Statistics of Finland reports an

uncertainty interval of (�30%, þ33%), equal to about 10

TgCO2eq, in 2020 for the GHG emissions/removals of

forest land remaining forest land in Official Statistics of

Finland (OSF) (2022). Under large uncertainties, it may be

difficult to draw reliable conclusions about the differences

between multiple future projections related to, e.g. climate

change scenarios and harvest scenarios (Kalliokoski et al.

2018). Uncertainty may also vary depending on the spatial

scale (national or regional) and time scale of the projection.

The national goals and agreements for future carbon sinks

should be based on realistic pathways, also taking into

account the risk that the goal is not achieved. The proba-

bility of a proposed national pathway to fulfil these goals is
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determined by the regions where the forests are located.

The characteristics of forest productivity, forest use and

level of uncertainty in current estimates and in future

projections may vary among the regions. Tools and

methods to estimate the region level projection uncertainty

of carbon balance are, thus, needed to enhance reliable and

realistic, as well as regionally fair, policy planning.

Realised state and future dynamics of spatially explicit

forest productivity can be modelled with process-based

models (PBM). PBMs try to mimic biological processes

with simplified equations, and thus, the model parameters

are not known exactly, but should have a biological

meaning. Model parameters are calibrated with measure-

ments using, e.g. Bayesian models (van Oijen 2017), and

the resulting multidimensional, correlated parameter dis-

tributions define the parametric uncertainty of the model.

Some of the parameters may include more uncertainty than

the others. Model parameters may also vary locally, if they

are not parameterised according to the location. After

calibration of the parameters, PBMs provide a flexible tool

to model projections of complex systems under new con-

ditions, such as changing climate, changing management

and varying initial and growth conditions, as long as the

parameters are calibrated to represent a wide range of

conditions comparable to the wide range of expected

changes.

The projections should also capture the effect of all

sources of uncertainties. Monte Carlo simulations can be

used to propagate the uncertainty of inputs and parameters,

as well as the variability and uncertainty in weather con-

ditions and harvest levels, through a model to generate

time-dependent carbon-balance uncertainty distributions.

Uncertainty quantification has been integrated into the

carbon budgets, net ecosystem exchange or carbon stock

modelling through Monte Carlo simulation, e.g. in Ver-

beeck et al. (2006), Zhang et al. (2012) and Akujärvi et al.

(2019).

In this study, the process-based model PREBAS was

used to estimate the NBE and accumulated ecosystem

carbon stock projections with uncertainty estimates for all

the 18 administrative regions of mainland Finland. PRE-

BAS is designed to model segment and landscape level

dynamics of forests. It can be used to simulate the yearly

segment level forest management actions under landscape

level targets for harvested wood volume by simultaneous

simulations of multiple segments. Guidelines for sustain-

able management (Äijälä et al. 2019) define the possible

management actions in individual segments, and the pos-

sible harvests are performed until the landscape level target

is reached.

The present study is building upon and extending pre-

vious work on uncertainty analysis of the PREBAS model.

PREBAS combines three sub-models: the PRELES model

for photosynthesis, the CROBAS model for structural

dynamics and the YASSO model for soil dynamics, which

together result the yearly state of the forests. The sub-

model parameter distributions have been estimated with

Markov Chain Monte Carlo methods, and the resulting

model predictions have been validated for boreal forests

under different climatic conditions (Liski et al. 2005;

Valentine and Mäkelä 2005; Peltoniemi et al. 2015; Min-

unno et al. 2016, 2019). The main sources of uncertainty in

segment level projections of carbon balance were studied

in Mäkelä et al. (2020). A schematic flowchart of an

individual segment or pixel level simulation with PREBAS

is shown in the Supplementary material Fig. S1. In this

study, the PREBAS model validated in former studies was

used for regional projections with uncertainty

quantification.

The objectives of this study were to (1) quantify the

uncertainty of projected forest NBE and ecosystem carbon

stock in the regions of mainland of Finland; (2) analyse

major sources of uncertainty at regional level and with

respect to time; and (3) provide an example of the use of

uncertainty quantification to estimate probabilities to

achieve given targets of forest GHG net sink.

MATERIALS AND METHODS

PREBAS model

PREBAS is an open access, process-based model that is

suitable for projecting effects of different climatic condi-

tions and harvest scenarios starting from real forest struc-

ture data at the landscape level. It combines the PRELES

model to estimate forest carbon acquisition through pho-

tosynthesis (GPP) and the CROBAS model to allocate GPP

to respiration and component growth (Valentine and

Mäkelä 2005; Peltoniemi et al. 2015; Minunno et al.

2016, 2019). A flowchart of basic PREBAS simulation for

one pixel or segment is shown in Fig. S1. In PREBAS,

photosynthesis and evapotranspiration are driven by daily

inputs of radiation, temperature, vapour pressure deficit,

precipitation and ambient CO2 concentration (Peltoniemi

et al. 2015; Minunno et al. 2016; Kalliokoski et al. 2018).

Output variables are estimated with an annual time step.

The model includes tree mortality due to crowding (Rein-

eke 1933) and a random mortality module (Siipilehto et al.

2020) based on forest structure. The ground vegetation

biomass depends on site type and below-canopy light

availability, which are estimated in a separate ground

vegetation model based on empirical results from ground

vegetation inventories (Mäkelä et al. 2023). Effects of

biotic or abiotic disturbances, or possible nitrogen defi-

ciency, which are likely to affect forest growth negatively,
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are not included in the current version of the PREBAS

model.

Required forest initial state values in PREBAS are pixel

or segment level basal area, mean tree breast height

diameter, median tree height and proportions of pine,

spruce and birch. Also average age, which affects the

management decisions, and site type index, which

describes site fertility, are required.

Net biome exchange, NBE, is the sum of the net

ecosystem exchange (NEE) and the harvested biomass. To

calculate NEE, which also includes soil carbon processes,

PREBAS has been linked with the soil carbon model

YASSO07 through annual litter inputs (Liski et al. 2005).

The YASSO model is suitable for mineral soils. The

organic soil carbon processes differ from mineral soil

carbon processes. However, models suitable for landscape

level dynamic modelling of drained organic soil carbon

processes, which could be used with existing country level

spatial information, do not exist at the moment. The min-

eral soil carbon processes in YASSO were, thus, replaced

with static emission coefficient-based estimates that

depend only on the soil type class (drained organic soil),

emission type (et) and site type of the location. In the

organic soils, the GHG emissions consist of methane

(CH4), nitrous oxide (N2O) and carbon dioxide (CO2), see

Table 1. Also the soil carbon stock estimated in PREBAS

was replaced according to Turunen and Valpola (2020) for

forests on organic soils. Lacking a reliable, spatially

accurate initial value of the soil carbon stock in drained

organic soils, it was assumed to remain constant over the

simulation period.

Forest management actions were parameterised on the

basis of the best practices for sustainable forest manage-

ment in Finland (Äijälä et al. 2019; Minunno et al. 2019;

Mäkelä et al. 2023). These best practice guidelines describe

stand level conditions that trigger a need for thinnings or

clearcuts, in terms of species specific mean diameter,

dominant height and stand age. In the regional level sim-

ulations, the yearly harvests are performed in random order

in those segments that meet these conditions, until the

region level sum of harvested round wood and energy

wood volumes reach the given total region level target

volumes. If in any particular region and year, all segments

fulfilling the harvest conditions have been harvested before

reaching the regional target, no more harvests will be

performed. In such a case, the region level target is not

reached.

PREBAS model parameters for estimation of forest

carbon processes have been estimated with Bayesian

methods. The sub-model CROBAS has been calibrated

using wide-ranging field measurements including all three

main tree species of Finland: Scots pine (Pinus sylvestris),

Norway spruce (Picea abies) and Silver birch (Betula

pendula) (Minunno et al. 2019). PRELES parameters were

calibrated using seven eddy-covariance sites spread across

Finland and Sweden (Minunno et al. 2016). YASSO

parameters were calibrated using a global database (Liski

et al. 2005; Viskari et al. 2021). Under extreme weather

conditions, which may occur under severe climate change,

the weather variables may occasionally exceed the ranges

that were used for the model calibrations. This can lead to

erroneous projections.

In this study, the time-dependent model outputs were net

ecosystem production and exchange (NEP and NEE,

gC m�2 year�1); nitrous oxide (N2O, gN2O m-2 year�1)

and methane (CH4, gCH4 m�2 year�1) emissions from

drained organic soils; biomass (kgC ha�1) for soil, ground

vegetation and trees; and harvested biomass (kgC ha�1

year�1). The GHG balance of the forests was estimated

with net biome exchange (NBE, kgCO2eq year �1), which

is the sum of NEE (NEE ¼ �NEP), N2O, CH4 and har-

vested biomass (transformed to CO2eq year �1). Carbon is

transformed to CO2 by multiplication with 44/12. Nitrous

oxide and methane emissions were transformed to CO2-

equivalent by multiplying with Global Warming potential

values 298 for N2O and 25 for CH4 (Forster et al. 2007).

Forest initial values

Spatially explicit initial state variables of the Monte Carlo

simulations were based on the Multi-Source National

Forest Inventory (MS-NFI) map of the year 2015 (Mäki-

sara et al. 2019). These data consist of forest structural

variables, land class and site type in 16 m � 16 m pixels.

Forests pixels were classified according to the soil type to

mineral soil, undrained organic soils and drained organic

Table 1 Drained organic soil emission coefficient mean values and standard deviations by emission type (et). Site types 1–3 include nutrient-

rich sites (herb-rich type and blueberry type) and site types[3 include nutrient poor sites (lingonberry type, dwarf-shrub type and lichen type)

et Gas Site type Unit let ret References

1 CH4 All gCH4m�2year�1 0.34 0.12 Ojanen et al. (2010)

2 N2O 1–3 gN2Om�2year�1 0.23 0.04 Minkkinen et al. (2020)

3 N2O [ 3 gN2Om�2year�1 0.077 0.004

4 CO2 1–3 gCO2m�2year�1 240 70 Ojanen and Minkkinen (2019)

5 CO2 [ 3 gCO2m�2year�1 - 70 30
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soils using the National Land Survey data (Haakana et al.

2022). The pixels on undrained organic soils were excluded

from the simulations.

To reduce computational effort and to consider realistic,

multiple pixel size area management units (similar to

management stands), segments consisting of homogeneous

pixels were used as computational units in the region level

simulations (Haakana et al. 2022). Individual regions

consisted of about 420 000–8 694 000 segments, which

sum up to about 28 million segments in the country level.

The average segment size varied between 0.71 and 0.94

hectares, with the overall smallest segment area 0.026 ha

and largest segment area 540 ha (Table 2).

Within the 18 regions, see Fig. 1a, the mean basal area

varies between 11 m2 ha�1 and 18 m2 ha�1, and mean age

varies from 44 years to 91 years (Table 2). Coniferous trees

dominate in all the regions, with pine dominating more in

the north than in the south, and spruce more in the south

than in the north.

Forest management scenarios

The realised harvest levels of Finland were used as the

target harvest levels in the simulations for the years 2015–

2021, with the total, country level harvested round wood

volume varying between 68 and 78 million m3 year�1

(Natural Resources Institute Finland 2023b). Also the for-

est chip components that were utilised as energy wood,

such as stems smaller than those accepted for round wood,

harvest residues and stumps, were removed from the for-

ests. The country level volume of this type of energy wood

varied between 7.2 and 10.2 million m3 year�1 in the

period 2015–2021 (Natural Resources Institute Finland

2023a).

For the years 2022–2050, target harvest levels were

estimated as average of the previous years in the harvest

scenario BaseHarv, which describes a case where current

harvest level remains the same in the future. Three other

harvest scenarios were used to simulate a slightly more

intensive harvests (MaxHarv), substantially less intensive

harvests (LowHarv) and no harvesting (NoHarv). Target

harvest level in scenario MaxHarv was set to

1:2�BaseHarv level to describe very intense harvests, in

scenario LowHarv to 0:6�BaseHarv level to describe

moderate harvest levels following the approach described

in Huttunen et al. (2022). In scenario NoHarv no harvests

were performed after year 2021, and even though it

describes an unrealistic scenario, it shows the potential

carbon fluxes and the uncertainty propagation by region

without the effect of harvests, which have been shown in

previous studies to be one of the major sources of uncer-

tainty (Mäkelä et al. 2020). Harvests were allocated only to

Table 2 Region level statistics: Study area (segmented forest lands and poorly productive lands), number of segments, mean basal area, mean

age and proportion of different species from the total volume

Region Study area (km2) No. of segments (1000) mean Mean age (years) Volume proportion

ID Name basal area Pine

(%)

Spruce (%) Birch (%)

(m2ha�1)

01 Uusimaa 5761 819 16 51 32 40 18

02 Southwest Finland 6394 864 16 56 46 33 14

04 Satakunta 5294 662 16 51 41 37 15

05 Kanta-Häme 3554 458 17 49 26 49 16

06 Pirkanmaa 10 031 1277 18 51 34 43 16

07 Päijät-Häme 4202 538 18 48 25 49 16

08 Kymenlaakso 3273 413 17 47 41 34 15

09 South Karelia 4147 464 17 44 43 33 15

10 South Savo 10 733 1228 18 49 41 33 17

11 North Savo 13 808 1603 17 50 34 38 18

12 North Karelia 15 335 1642 18 51 46 27 17

13 Central Finland 13 423 1581 18 51 43 33 15

14 South Ostrobothnia 9330 1126 15 54 57 22 14

15 Ostrobothnia 5204 629 16 51 44 30 17

16 Central Ostrobothnia 3442 390 15 58 56 18 17

17 North Ostrobothnia 25 655 3034 14 64 56 18 16

18 Kainuu 16 235 1848 15 62 56 21 15

19 Lapland 55 307 7457 11 93 58 17 13
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the productive forest land (according to the land class), no

fellings were performed in protection areas and poorly

productive forest land.

The target harvest level of each scenario was allocated

to each region according to the region’s proportion in the

actual whole country harvested volume in the years

2015–2021, see Fig. 1b for regional distribution of average

harvested biomass. These proportions are based on the

assumption that the regional distribution of forest produc-

tivity and industrial wood demand remain the same over

the simulation period, which may not hold under climate

change and other changes.

Climate scenarios

Three representative concentration pathways, RCP2.6,

RCP4.5 and RCP8.5, were used as climate scenarios in the

simulations. Under each scenario, five global climate

models (GCMs: CanESM2, CNRM, GFDL, HadGEM2

and MIROC) from the fifth phase of the Coupled Model

Inter-comparison Project were used in the simulations of

climate scenarios (Meehl et al. 2009; Taylor et al. 2012),

similar to the settings in Holmberg et al. (2019). The

resulting climate scenarios were down-scaled to a 0:2� �

0:1� longitude–latitude grid and bias corrected using

meteorological observations and a quantile-quantile type of

bias correction algorithm (Aalto et al. 2013; Räisänen and

Räty 2013; Räty et al. 2014).

Sources of uncertainty

Sources of uncertainty are identified adjusting the uncer-

tainty taxonomy described, e.g. in Kujala et al. (2013) and

McGlynn et al. (2022). Uncertainty elements in the simu-

lations were: (1) inputs: (1a) forest initial state and soil

fertility and (1b) GCM uncertainty representing structural

uncertainty in the used GCMs; and (2) parameters: (2a)

model parameters and (2b) harvest target level. The sim-

ulation settings are shown in Fig. S2. The input uncer-

tainties varied spatially in each region, while the

parametric uncertainties varied only between simulations,

i.e. they remained constant over different regions and

through simulation time periods. Although the climatic

conditions vary spatially, they remain constant under

individual GCMs; thus, they were categorised as input

uncertainty in this study. The drivers that were set as

constant in the simulations were the climate and harvest

scenarios, which were categorised as human decision

Fig. 1 Administrative regions with region IDs in Finland (a); Average region level harvested biomass per study area (generated from harvest

statistics of period 2015–2021) as bar widths on the x-axis and relative region level study area as bar heights on y-axis (b)
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uncertainty. See Table 3 for different types of uncertainty

elements.

Initial state

In the spatially explicit, high-resolution direct Monte Carlo

simulations, computational effort is heavy even when using

the segmented input variables as computation units: The

simulations are repeated multiple times in each scenario for

each computational unit. With the 28 million segments

covering the forest area of this study, the computational

effort needed to be reduced.

The MS-NFI pixel level results are outputs of an

improved k nearest neighbours (ik-NN) model, which is

based on the NFI field measurements and spatially pro-

jected satellite data (Mäkisara et al. 2019). These pixel

level variable values can be considered as realisations of

the real variable values plus random modelling error. The

segment level data used as the initial state variables

included also the random segmentation errors and served

here as the erroneous initial state variable value population.

In the region level analysis, the focus is on the region

level total and average output results, not on the pixel or

segment level. For such analysis, each initial value set of

the simulations has to be a representative sample of the

population of the initial values of that region. To reduce the

computational effort in this study, region level simulations

were performed for a random set of 20 000 pixels in the

region. The pixels were sampled with replacement from the

segmented data population using the proportion of the

distinct segment areas from the total study area as weights

in order to generate a representative sample of the pixels.

Measured error estimates were not available for the

mean age of trees in a pixel. Thus, to produce a realistic

approximation of the age data precision, a rough estimate

for the age uncertainty based on the experience of the

authors was used instead. The mean age of trees in the

pixel was assumed to be known more precisely for the

younger trees than the older trees. For each pixel, they were

sampled using a normal distribution with age-dependent

standard deviation: xage;j �N lage;j;r
2
age;j

� �
, where lage;j is

the MS-NFI mean tree age of the pixel j and

rage;j ¼ 0:1lage;j. Thus, the 95% probability range of 10

years old trees is approximately 8–12 years, while for 100

years old trees it is 80–120 years.

Pixel level site type is also an estimate in the initial state

data. Uncertainty in the site type was simulated by re-

sampling site type of each sampled pixel at the beginning

of each simulation. The model for the site type probability

distributions followed the model given in Haakana et al.

(2022). The pixel’s site type probability distribution

depends on the MS-NFI based site type and sampled mean

tree height, mean tree breast height diameter, basal area

and proportion of pine trees. The probability distribution

was estimated for each pixel according to its structural

variable values. The resulting probability distribution was

used to sample a new site type for that pixel. The sampled

site type was kept constant over the whole simulation period.

The initial values of PREBAS simulations did not include

information about the initial state of the soil carbon stock on

mineral soils. The soil carbon processes were estimated

using the YASSO model combined with the litter outputs

from the PREBAS model. In the absence of the measured

data of the initial state, it was modelled with assumption of a

steady state. Here, the steady state was estimated for each

simulation i separately, starting from the random initial state

variables described above. PREBAS model with randomly

ordered repetitions of realised, historical harvest levels and

real local weather data from the years 2015–2021 was run

until steady state was reached. The steady state, thus,

depends on the sampled initial values and model parameters.

The same initial state was used for projections of different

harvest and climate scenarios.

Model parameters

Model parameters include the parameters used in different

sub-model components attached in the PREBAS model:

CROBAS, PRELES and YASSO. Samples of these

parameters have been estimated and validated with mea-

sured data in previous studies (Minunno et al. 2016, 2019;

Viskari et al. 2021). These samples of parameter values

were used as the parameter populations, from which ran-

dom sample sets for each simulation were re-sampled with

replacement for each simulation i.

In the PREBAS model, the initial value of the species-

dependent volume is a function of the forest structural

values given in the MS-NFI data and estimated crown

height. Crown height is not included in the MS-NFI data;

thus, it has been estimated using empirical equations

(Sharma et al. 2017). However, uncertainty of the crown

height estimate was not available for this study; thus, a

rough estimate for the crown height uncertainty based on

the experience of the authors was used instead. Here, the

crown height uncertainty was simulated by sampling the

crown height factor from normal distribution,

ccrown height;i �Nð1; 0:12Þ and using it to multiply the esti-

mated crown height. Here the crown height was assumed to

vary between 80 and 120% of the estimated crown height

with 95% probability.

The PREBAS and YASSO models are based on

assumption of forests growing on mineral soil. However,

also forests located on drained organic soils were included

in the simulations. The segments located on drained

organic soils have been classified according to the site type

to correspond with mineral sites of similar fertility, and the
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organic soil impact on growth was modelled based on this

classification. Uncertainty of the classification of mineral

and drained organic soils was not simulated in this study.

Uncertainty in the average organic soil emissions was

simulated by sampling emission coefficients,

EFet �Nðlet; r
2
etÞ, for which the mean and standard devia-

tions for the emission type (et) are given in Table 1. The

sampled emission coefficients remained constant during the

simulation period and over all sampled pixels and regions of

simulation i. The soil carbon stock of forests on organic soils

was sampled from xsoilC;peatland �Nð543400; 185002Þ [kg C

ha�1] for all site types (Turunen and Valpola 2020).

Climatic conditions

In the climate scenarios RCP2.6, RCP4.5 and RCP8.5, the

weather data uncertainty was a result of the variation

within different GCM’s: CanESM2, CNRM, GFDL, Had-

GEM2 and MIROC. In each simulation i, one of the five

climate models was chosen randomly with equal proba-

bility. The same GCM was used over all the regions. This

approach allowed computationally efficient validation of

the effect of GCM based uncertainty within a limited

number of simulations.

Amount of harvests

Historical data of the whole country level harvests were

estimated based on information given by Natural Resources

Institute Finland (2021). The uncertainties in round wood

and energy wood statistical harvest levels were simulated by

sampling the target level using normal distribution with

mean value given in statistics or in harvest scenario specific

projected target level, and standard deviation as 2% of the

mean (Peltoniemi et al. 2006). The sampled whole country

harvest levels were allocated to region level according to the

region harvest level proportion in historical data.

Notes about uncertainty sources

Separate uncertainty source components given in this sec-

tion were sampled independent of each other; thus, the

possible correlations between different components of

uncertainty sources were ignored. In the input data uncer-

tainty, the possible spatial correlation of site type index and

age were ignored, as the homogeneous segments were

considered spatially independent. Also, the PREBAS

model relies on the assumption of no interaction between

segments. Classification of forest land class (forest land

and poorly productive forest land) in MS-NFI data and

classification of forests location to mineral soil or to dif-

ferent types of organic soils were based on high resolution

spatial data and were assumed accurate in this study.

The most significant uncertainties that were not included in

this study, are forest disturbances such as wind damages,

forest fires, snow damages and biotic risks. They are not

included in the current PREBAS version, and overall, spatially

explicit projections of such events are difficult to obtain.

Simulation procedure

Forests in the sampled pixels were simulated for time

period 2015–2050. Each region was simulated nsim ¼ 300

times to roughly cover the uncertainty ranges of the given

uncertainty elements. To preserve the spatial and time-

dependent correlations caused by model parameters,

weather and whole country harvest levels, these sampled

values were fixed for the ith simulation over each region.

Spatially distributed initial values were assumed indepen-

dent between different regions and simulations.

Outputs of the region level simulations consisted of

yearly mean values of the pixel level outputs. The whole

country level yearly outputs were estimated as a sum of

region level output variable values multiplied with corre-

sponding region specific areas. The resulting total output

variable values were transformed to per area values by

dividing with the forest area of the country.

The sources of variability in the outputs were evaluated

using canonical correlation analysis (CCA) that identifies

linear relationships between variables (Hotelling and Pabst

1936). The redundancy index (Rdind), which takes into

account both variance and correlation, was used to express

the amount of variance in the output variables that is

explained by variance in the input features (Stewart and Love

1968; Weiss 1972; van den Wollenberg 1977). Redundancy

index varies between zero and one, and a higher value

indicates that the feature explains more the output variable

variability. However, no exact interpretation for the index

value exists, and thus, the index values were examined only

with respect to other index values. Here, the input features

were: average volume and age at the beginning of the sim-

ulation period (vol0 and age0); climate scenarios (RCP);

harvest scenarios (Harv); global climate model (GCM); the

PREBAS (CROBAS and PRELES) and YASSO model

parameter sets (pCrob, pPrel, pYas), organic soil emission

coefficients for carbon, N2O and CH4 (pECorg) and harvest

level uncertainties (pHarv) of each simulation.

RESULTS

Dynamics of uncertainty

The harvested biomass projections are equal for all the

harvest scenarios over the period 2015–2021, after which,

over the period 2022–2050, they depend on the scenario
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specific target level. The country level harvested biomass,

shown in Fig. S3, becomes lower than the target value in

the last years of the simulation period under the two most

intense harvest scenarios (BaseHarv and MaxHarv).

According to the best practices for sustainable forest

management in Finland, harvests are postponed if the

current forest structure does not allow fellings. These

restrictions take place under MaxHarv and BaseHarv in

some regions, while in other regions all the target levels

remain sustained, see Figs. S4 and S5. These restrictions

can then be seen also in the country level total in Fig. S3.

At first (years 2015–2021), no impact of the different

harvest scenarios are visible in the country level

distributions of total net ecosystem exchange (NEE) or

total ecosystem carbon stock projections, see Figs. 2

and S6. Over the years 2022–2050, the ranges of total NEE

distribution remain the most negative under NoHarv and

get larger values under LowHarv, BaseHarv and MaxHarv,

from smallest to largest in the same order. Under the cli-

mate scenario RCP2.6, the total NEE distribution has

slightly increasing trend over time under harvest scenarios

BaseHarv and MaxHarv, while under LowHarv and

NoHarv the trend stays at a nearly constant level. Under

RCP4.5 and RCP8.5, the forest growth has increasing trend

under all the harvest scenarios approximately after the

years 2030–2035 (not shown here). Also the trend of
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Fig. 2 Left column panels: Country level total net ecosystem exchange (NEE); Right column: Country level total ecosystem carbon storage

(carbon in trees, ground vegetation and soil). Top row panels: RCP2.6; Middle row: RCP4.5 and Bottom row: RCP8.5. Negative value of the

total NEE represents a GHG sink positive a source
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projected total NEE becomes more negative and a stronger

GHG sink. Despite of the small differences among the total

NEE trends, the uncertainty in total NEE is large over the

whole simulation period under all the climate and harvest

scenarios the projected simulated distributions overlap

such that no significant differences can be seen between

these scenarios.

However, impact of harvest scenarios is visible in the

total ecosystem carbon stock, which accumulates as the

forest grows. Under scenario NoHarv, the stock becomes

larger than under the other harvest scenarios soon after the

year 2021, and the more intensive the harvest level is, the

smaller the stock remains at the end of the simulation

period. The simulated distributions of the stocks under

different harvest scenarios overlap over the simulation

period for LowHarv, BaseHarv and MaxHarv. However,

under NoHarv, the ecosystem carbon stock distribution

shows significantly higher values than under other harvest

scenarios after the years 2030–2040, depending on the

climate scenario.

Although there are no significant differences in pro-

jected distributions of NEE between the different climate

and harvest scenarios, the empirical distributions of NBE,

which is a sum of NEE and harvested biomass, reveal more

significant scenario level differences, see Fig. 3. After the

year 2021, the simulated distribution of NBE under sce-

nario NoHarv becomes soon substantially more negative

than under the other harvest scenarios, independent of the

climate scenario. The distributions under LowHarv, Base-

Harv and MaxHarv overlap, although the distribution mean

is remarkably lower under LowHarv than under BaseHarv

and MaxHarv. Similar to NEE projection trends, the NBE

distribution ranges are lower, i.e. the net sink is larger,

under climate scenarios RCP4.5 and RCP8.5 than under

RCP2.6, and under RCP8.5, the NBE projections get the

most negative values at the end of the simulation period.

For a specific year, e.g. the year 2035 when Finland

aims to be carbon neutral, the country level probability to

reach a given carbon net sink target level under different

harvest scenarios can be estimated from the year specific

empirical distributions shown in Fig. 3 bottom right panel.

Here, an example of NBE target level of �1000 kgCO2 eq

ha�1 year�1 is shown as red vertical line. The probability to

achieve the target under climate scenario RCP4.5, i.e.

forest net sink larger or equal to target sink which means

NBE less or equal to the target NBE, is 100% under

NoHarv, nearly 100% under Lowharv, 20–30% under

BaseHarv, and only a few percent under MaxHarv.

Fig. 3 Country level average NBE as a harvest intensity scenario-dependent time-series under RCP2.6 (top left panel); RCP4.5 (top right panel);

and RCP8.5 (bottom left panel). In these panels, the vertical line shows the carbon neutrality target year 2035. The year 2035 probability

distributions under RCP4.5 are shown in bottom right panel, where red line represents NBE value �1000 kgCO2eq ha�1 year�1
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Main sources of uncertainty in NBE

The CCA based redundancy indices, Rdind, estimated for

country and region level outputs, are shown for NBE in

Fig. 4 and for NEE and carbon stocks in the Supplementary

material Figs. S7–S10. The unrealistic scenario NoHarv is

not included in this analysis, since it would make the

dominance of the harvest level uncertainty very high and

hide the effect of other uncertainty elements. The dynamics

of uncertainty are analysed for three separate time points,

years 2015, 2035 and 2050. The region level Rdind values,

shown according to the region numbering from 01 to 19

from bottom to top of the figure, follow roughly the south–

north gradient of the regions shown in Fig. 1a.

At the beginning of the simulation period, year 2015, the

main sources of uncertainty in the whole country level are

the uncertainties in the initial volume (vol0), RCP, GCM,

CROBAS parameters and organic soil emission coeffi-

cients. There is some regional variation in the main

uncertainty sources: in the south, the main sources are the

uncertainty in initial volume, CROBAS parameters and

GCM, while in north, the main sources are the uncertainties

in GCM, RCP, and organic soil emission coefficients

(mostly in regions with large areas of forests on drained

organic soils). In the year 2035, the harvest scenario is the

main source of uncertainty for almost all regions, but also

uncertainties in RCP, vol0 and CROBAS parameters have

substantial effect in some regions. At the end of the sim-

ulation period there is more variability in the uncertainty

patterns. In most of the regions, the uncertainty in harvest

scenario is the main source of uncertainty. In the south-

eastern regions 08, 09 and 10, and in the northern regions

18 and 19, the effect of the uncertainty in harvest scenario

is less distinct, and also the uncertainty in input features

vol0 and age0, and CROBAS parameters have large effect

on the NBE uncertainty depending on the region. The

regions 08, 09 and 10 are among the ones for which the

historical harvest intensities are the largest, see Fig. 1b, and

where the harvest target level is not reached under the most

intense harvest scenarios, see for such an example Fig. S4.

On the other hand, the historical harvest intensities in

regions 18 and 19 are the lowest among all the regions, and

the different harvest scenarios have the smallest effects on

NBE values there.

The magnitude of NBE uncertainty varies by region and

by time. To study how the uncertainty originating in inputs,

model parameters and sampling depends on the region area

without the effect of harvests, the 95% range width of the

empirical distributions under NoHarv are shown with

respect to the region forest area in Fig. 5. At the beginning

Fig. 4 Redundancy index for different sources of uncertainty in NBE in the years 2015, 2035 and 2050. For model parameter sets of CROBAS,

PRELES, YASSO, organic soil emission factors and harvest level uncertainty, the highest parameter index value of the set specific Rdind is

shown (pCrob, pPrel, pYas, pECorg and pHarv)
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of the simulation period, the magnitude of the uncertainty

depends on the region area, such that the widest uncertainty

ranges appear among the regions with the smallest areas.

The magnitude of uncertainty remains approximately at the

same level under climate scenarios RCP2.6 through the

simulation period. Under RCP4.5, the uncertainty range is

higher at the beginning of the period, but decreases by the

end of the period, while Under RCP8.5, the uncertainty

range increases by the end of the period.

Region level probability distributions

Region level probability distributions are shown as empirical

cumulative distribution functions (eCDF) for the year 2035 in

Fig. 6. The figure shows the probability (from zero to one) of

the NBE to be less than the value on the x-axis under different

harvest scenarios. For instance, the eCDF curve shows that

there is approximately a 100% certainty that in Region 01

(Uusimaa, the bottom row panels), NBE is less than

5000 kgCO2eq ha�1 year�1 under harvest scenario NoHarv

and climate senario RCP2.6 and less than

7000 kgCO2eq ha�1 year�1 under harvest scenario NoHarv

and climate scenario RCP8.5 in the year 2035. Under harvest

scenario BaseHarv and climate scenario RCP2.6, Region 01 is

a net source with nearly 100% certainty, while under harvest

scenario BaseHarv and climate scenario RCP8.5, it is a net

sink with approximately 50% certainty. Similarly, for each

region, the probability to reach a given NBE target level

depends on the climate and harvest scenarios.

The effects of climatic conditions on forest growth can

be seen in the NBE (equal to NEE) under harvest scenario

NoHarv results in Fig. 6. The potential for the strongest

GHG sinks is in the southern regions, which are also the

regions with the highest harvest levels related to region

forest area (Fig. 1b). Under the harvest scenario MaxHarv,

the estimated NBE is positive, meaning a GHG source, in

the most southern regions.

The changing climate increases the estimated forest

productivity, which increases the probabilities to reach

lower NBE values under all the harvest scenarios. How-

ever, in the most intensively harvested regions, only har-

vest scenarios NoHarv and LowHarv result in high

probabilities of negative NBE levels, independent of the

climate scenario.

DISCUSSION

This study shows that one of the major sources of uncer-

tainty in NBE in the beginning of the simulation period is

the uncertainty in the GCM, which affects in practise the

net ecosystem exchange NEE. The climate scenarios start

to play a more significant role only around the mid-century.

The substantial differences between NBE projections result

mainly from the level and allocation of future harvests.

NBE was estimated to �51:0 TgCO2eq �50:3 TgCO2eq in

the year 2020 under the climate scenario RCP2.6, under

RCP4.5 to �42:3 TgCO2eq �21:8 TgCO2eq, and under

RCP8.5 to �47:2 TgCO2eq �37:4 TgCO2eq. NBE of the

year 2020 was also estimated using the real weather con-

ditions between the years 2015–2021 using similar Monte

Carlo simulations as described in this study, which resulted

to NBE equal to � 36.6 TgCO2eq �32 TgCO2eq. These

uncertainty intervals are substantially higher than the

approximate 2020 estimate of �10 TgCO2eq cited above

(Official Statistics of Finland (OSF) 2022).

The dynamics of uncertainty vary by region, depending on

the harvest intensity in relation to forest structure, region area,

and with respect of the projected time. Overall, at the begin-

ning of the simulation period, the uncertainty in the initial

forest structure, GCMs, and the CROBAS model parameters

have a large effect, and larger ranges of uncertainty appear in

smaller regions than in larger ones. By the mid-century, the

uncertainty in harvest scenarios play the most important role,

Fig. 5 95% range of average Net Biome Emissions in different regions: under a RCP2.6, b RCP4.5, and c RCP8.5 with respect to region area.

Dot sizes represent, from smallest to largest dot size, the years 2015, 2035 and 2050
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while also uncertainty in climate scenarios, initial forest

structure and CROBAS parameters play an important role in

some regions. The uncertainty in climate scenarios affect only

the northern regions by the mid-century.

This study shows that the epistemic uncertainty ele-

ments, for which the uncertainty can be at least partly

decreased using more measurements and improvement of

the knowledge about the model structure (see Table 3),

have generally a major role only at the beginning of the

simulation period. The uncertainty in projections until the

mid-century is mainly caused by aleatory natural variation

and human decision uncertainties, which are difficult to

decrease. However, the main types of uncertainty elements

vary among the regions.

This study shows similar patterns for uncertainties as

previous case studies in Finland. For instance, the uncer-

tainty related to gross primary production (GPP), which is

the source of all carbon in forest ecosystems, and hetero-

trophic respiration, have been estimated under different

GCMs, emissions and forcing scenarios (both RCP and

SRES) in Kalliokoski et al. (2018). In their study, GCM

variability was the major source of GPP prediction uncer-

tainty until 2060, only after which the emission pathway

became the dominant factor. Similarly, uncertainties in

GPP projections were substantially affected by the climate

models, climate scenarios and management actions, while

the ecosystem model parameters played a smaller role in

Mäkelä et al. (2020). Also Vauhkonen and Packalen (2018)

Fig. 6 Region level cumulative distribution function of the probability to achieve a NBE value in the x-axis under different climate and harvest

scenarios
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pointed out that the level and allocation of the future har-

vest cause considerable variation in the carbon stored and

extracted. The management influences the projection

uncertainty more in Southern Finland than in Northern

Finland (Mäkelä et al. 2020). They showed that the impact

of climate models was relatively constant during the whole

period until the year 2100, while the importance of climate

scenarios increased towards the end of the simulation

period. The GPP and respiration trends showed differences

between RCP4.5 and RCP8.5 both in the south and in the

north starting from the year 2040, but the uncertainty of

these differences with yearly variation remained large and

overlapping until the end of the century.

In Finland, carbon-balance projections under different

harvesting and climate scenarios of six empirical or pro-

cess-based models have been compared in the Finnish

Climate panel report by Kalliokoski et al. (2019). The

results showed wide variability between the results of

individual models. All the compared models had been

calibrated, tested or developed from existing measure-

ments, but there is no knowledge of their accuracy in future

projections, where environmental conditions and processes

may differ from the current assumptions. Overall, instead

of just one model, the future projections used in policy

planning should be based on ensembles of models that

complement each other in their response to environmental

drivers. Similarly, in Mahnken et al. (2022), a multi-model

ensemble mean provided more realistic daily productivity

responses to environmental drivers than any single indi-

vidual model.

Current state and productivity of forests, as well as

future productivity and harvest levels vary greatly among

regions. Some regions close to forest industry have been

long under intense harvests, which have greatly changed

the forest structure from its natural state. Such regions are

located in south and south-east Finland, where the soil type

and site type are beneficial for growth. According to the

results of this study, these characteristics may also have an

effect on main sources of uncertainty. This information is

useful when planning to reduce uncertainty in the regional

and whole country level projections. It is also important

that the projections of forests under different management

policies and climate scenarios are down-scaled to region

level analysis which integrates the local conditions to

regional potentials for forest carbon balance. This approach

emphasises and reveals the spatially explicit risk of not

meeting given target with the modelled measures, which

can, in the long run, also improve general confidence in

modelled projections.

This study shows an example of a regionally explicit

modelling procedure, which can be used to estimate region

and nation level potentials for different proposed pathways

to reach the goals of carbon sequestration. A similar

approach can be utilised in all countries for which a locally

calibrated ecosystem model and spatially explicit initial

state data exist. Overall, region level projections of

ecosystem processes give a better insight into the charac-

teristics of different regions, and can reveal possible con-

flicts and links between multiple demands of forests, such

as carbon sequestration and timber use in forest industry.

Such policy incoherence can render policy targets unfea-

sible and even threatens the sustainability of forest

ecosystems, especially in timber-producing countries

(Blattert et al. 2023).

Overall, Monte Carlo simulations are an efficient tool to

project the spatially varying outputs of a complex non-

linear process-based model under multiple uncertain initial

values, parameters and environmental conditions (Ray-

chaudhuri 2008). However, with a large number of spa-

tially distributed segments, the number of simulations in

Monte Carlo analysis needs to compromise with the

accuracy gained by large sample size (number of simula-

tions and number of simulated segments) and the compu-

tational time. In this study, the computational effort of

Monte Carlo simulations with the sample set size and

number of iterations applied was approximately 80–100 h

for all the scenarios per region using parallel computing in

a supercomputer.

As shown in Fig. 2, a substantial increase in NEE is

predicted in the PREBAS simulations when RCP4.5 and

RCP8.5 are assumed. A major issue is, thus, if other factors

might limit this growth in the long term and affect overall

sustainability of the system. Critical climate-sensitive risks

to forest stability, long-term carbon processes and biodi-

versity include disturbance caused by extreme weather

conditions (e.g. fire, drought, strong winds), biotic factors,

invasive species, and large-scale demographic shifts (e.g.

elevated mortality rates, species turnover and/or physio-

logical limits to growth or regeneration). Such climate

related large-scale risks and patterns are currently not well

understood, but they are likely to increase under climate

change (Anderegg et al. 2022; Venäläinen et al. 2020).

Modelling methods, therefore, need to be developed to

quantify the frequency with which, e.g. insects, disease and

fire interact and how these relationships change in the

future (Parker et al. 2006).

Harvesting of biomass permanently removes nutrients

from the forest ecosystems. From a sustainability point of

view, the removal of nutrients in the scenarios should,

therefore, also be compared with the long-term supply.

Nitrogen (N) is generally a growth-limiting factor in boreal

ecosystems (Hyvönen et al. 2008), and although N miner-

alisation may increase under a warmer climate (Wright

1998), the long-term supply is uncertain. The effect of the

nutrient limitation is currently being incorporated in

PREBAS and will be included in the analysis in the near
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future. Also, different types of stochastic disturbances are

being implemented in the model.

Under extreme climate change, the weather inputs may

be out of the ranges that were used for calibration of the

model parameters. This should be noted especially in the

case of the climate scenario RCP8.5, for which the PRE-

BAS model projections may be erroneous. This, combined

with the lack of the stochastic disturbance modules in the

model, is likely to increase the uncertainty of the projec-

tions from those shown in this study and probably turn the

forest from sink to source.

Another source of uncertainty likely leading to under-

estimation of NBE is that the drained organic soil emis-

sions coefficients applied in this study (Table 1) are static.

While dynamic emission coefficients are not available,

especially CO2 emissions are likely to strongly increase

along with the warming climate. Warming climate directly

enhances decomposition and leads to drying of peatlands,

causing emissions to be higher (Hiraishi et al. 2014).

Spatially distributed initial values of the simulations

were chosen to be as accurate as possible. However, the

MS-NFI data are results of a model with modelling errors

and averaging effect, based on field data with measurement

errors. The MS-NFI data is based on k-NN model, which

tends to under-estimate the number of youngest and oldest

forests. Especially the lack of young forests may affect the

estimated near future carbon-balance projections (Haakana

et al. 2022).

CONCLUSIONS

The Monte Carlo simulations integrating several sources of

uncertainty in initial values and model parameters, and

variability and uncertainty in environmental conditions

give a wide overview of the processes and their uncer-

tainties. They also describe how the uncertainty in our

knowledge about the current state of forests and projected

climate and management actions affects the uncertainty

in future state of forests. The resulting probabilities can be

used to estimate the potential to achieve given target levels

of carbon budgets. Our study also points out the need to

broaden the discussion of LULUCF sector GHG emission

levels from a one value per scenario approach to consid-

eration of probabilities and overall risk analysis. Regional

level uncertainty analysis gives more insight in the local

conditions and potentials for carbon sequestration, includ-

ing the risks for over-shoots and significance of different

uncertainty elements.

Multiple studies have shown that the uncertainty in the

net ecosystem exchange estimates is high, and this needs to

be acknowledged in the policy planning. Development of a

road map to the future target to achieve carbon neutrality

should be based on multiple different modelling approa-

ches supplemented with uncertainty estimates, not only on

one model with a deterministic point value result. This

information can be given as risk assessment of the decision

not to meet given targets.
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